PowerPoint プレゼンテーション

Size: px
Start display at page:

Download "PowerPoint プレゼンテーション"

Transcription

1 2-1 情報デバイス工学特論 第 2 回 MOT の基本特性

2 最初に半導体の電子状態について復習 2-2 i 結晶

3 エネルギー 分子の形成 2-3 原子 エネルギー 反結合状態結合状態反結合状態 分子 結合状態 波動関数.4 電子のエネルギー 結合エネルギー 反結合状態 結合状態 原子間の距離 ボンド長

4 結晶における電子のエネルギー 2-4 原子間距離大 小 原子 分子 結晶 電子は動き回ることができる 電子のエネルギー 反結合状態 運動エネルギー エネルギー禁制帯 結合状態 運動エネルギー

5 周期律表と原子の外殻電子配置 2-5 +e +2e +3e +5e +6e +7e +8e I II III I I II III H He Li e N O Ne Na Mg Al i P l Ar K a 遷移金属 Ga Ge As e r Kr Rb r In n b Te I Xe s a 希土類 Tl Pb i Po At Rn 半導体

6 原子 結晶 2-6

7 結晶における電子のエネルギー 2-7 伝導帯 伝導電子 正孔 運動エネルギー 価電子帯 基底状態では電子は価電子帯をすべて埋め 身動きできない 電子が励起されると伝導電子と正孔が形成される 伝導電子と正孔は結晶中を動くことができる

8 電子と正孔の熱的な形成 2-8 ermi Dirac 分布関数 f ( ) = e 1 k T + 1 T = T > k T : 電子のエネルギー : フェルミ準位 : oltzmann 定数 : 絶対温度 伝導帯 (conduction band) 伝導電子 価電子帯 (valence band) 正孔 f() k f() 価電子帯を電子が完全に満たしている 伝導電子濃度 正孔濃度 価電子帯の電子が伝導帯に熱的に遷移 ( ) ( ) n= D f d ( ) 1 ( ) p = D f d ( ) * ( 2m ) 32 e D = 2 3 2π ( ) 状態密度 * ( 2m ) 32 h D = 2 3 2π m e * : 電子の有効質量 m h * : 正孔の有効質量

9 有効状態密度 2-9 n p * ( ) 32 * d + 2 me mkt e = 2 exp 2π 2π kt kt e + 1 * ( ) 32 * d + 2 mh mkt h = 2 exp 2π 2π kt kt e + 1 >> kt >> kt ax 1 e xdx = 2a π a G = n = N exp kt 伝導帯の有効状態密度 N * mkt e = π e (i) p = N exp kt 価電子帯の有効状態密度 N * mkt h = π 32 k T ~.26e G =

10 真性キャリヤ密度 2-1 n = N exp kt p = N exp kt 2 np = n i i 3K N = 2.8 x 1 19 cm -3 n = N N exp i G 2kT N = 1.4 x 1 19 cm -3 n i = 1.45 x 1 1 cm -3 G = 1.8 e 真性半導体 ( 不純物を含まない半導体 ) では 伝導電子 正孔は熱的に励起される n= p= n i 真性フェルミ準位 i + kt N = + ln 2 2 N n i [cm -3 ] x 1 1 cm -3 ( 室温 ) i T [K]

11 +e +2e +3e +5e +6e +7e +8e 2-11 不純物の添加により結晶の中を自由に動き回れる伝導電子と正孔を作りだすことができる I H Li Na K II He e Mg a 遷移金属 III Al Ga I i Ge N P As I O e II l r III Ne Ar Kr Rb r In n b Te I Xe s a 希土類 Tl Pb i Po At Rn III 族の原子 ( アクセプタ ) を入れる p 型半導体 族の原子 ( ドナー ) を入れる n 型半導体 +3e +5e

12 不純物の添加はフェルミ準位で表される 2-12 エネルギー 伝導帯 伝導帯 ~.5e 伝導帯 ドナー 1.1e 価電子帯 ~.5e アクセプタ 価電子帯 価電子帯 1 f () 1 f () 1 f () 真性半導体 p 型半導体 n 型半導体

13 アクセプタ準位 ドナー準位 2-13 伝導帯 電子 -q 伝導帯 ~.5e ドナー準位 +q +q ドナー 価電子帯 n 型半導体 電子がドナーに束縛されている状態 ( 原子軌道に似た状態 ) 4 mq = 8ε h 2 2 電子がドナーに束縛されていない状態 ( 真空準位に似た状態 ) 価電子帯 原子 :Rydberg =13.6 e i:ε = 11.9 ε e

14 熱平衡でのキャリヤ濃度 2-14 i n= N e p = N e k T k T n= ne i p = ne i kt i kt i i =qφ n= ne i p = ne i qφ kt qφ k T 電気的中性条件 ND NA = n p φ : フェルミポテンシャル N D : ドナー濃度 N A : アクセプタ濃度 1..8 N A φ kt N N 1 D A = sinh q 2ni φ [] エネルギー禁制帯 ( ) sinh 1 ( x) = ln x+ x ln(2 x) ln( 2 x) x >>1 x << N D, N A [cm -3 ] N D

15 バンド図 2-15 バンド図 エネルギー 真空 伝導帯 伝導電子 価電子帯 正孔 は電子のエネルギー分布を, は電子の状態密度を代表 f().5 1 電子のエネルギー分布 D() 電子の状態密度 ( 量子準位の数 ) バンド図を見たらこのような図がすぐ思い浮かぶようにしよう

16 電界がある場合のバンド図 2-16 結晶内電子状態のエネルギー 静電エネルギー トータル エネルギー 伝導帯 + qφ = 伝導帯 伝導電子の運動エネルギー 価電子帯 位置 正孔の運動エネルギー 価電子帯 位置

17 電界がある場合 ( 静電ポテンシャルが変化している場合 ) のフェルミポテンシャル 2-17 真空 真空 = 真空 qφ i 伝導帯 i = qφ = qφ = qφ i 上添え字 は φ = のときの値を表す 価電子帯 フェルミポテンシャル i = qφ 静電ポテンシャル φ には直接依存しない 平衡状態では場所に依らない一定値 位置 i = q ( φ φ) n= ne i p = ne i kt i kt i n= ne i p = ne i q kt q kt ( φ φ ) ( φ φ )

18 矢印による物理量の表し方について 2-18 ここでは 物理量を矢印で表したとき 矢印の先の座標値から 矢印の元の座標値を差し引いた値で定義することにする A X X = A 座標軸の方向に矢印が向いている場合には物理量は正 ( X > ) 座標軸と反対に矢印が向いている場合には物理量は負 ( X < ) また A を A で表す

19 p 型半導体と n 型半導体をつなげると 2-19 エネルギー 伝導帯 平衡状態ではフェルミ準位 ( フェルミポテンシャル ) はどこでも同じ値でなければならない アクセプター q bi フェルミ準位 伝導帯 ドナー フェルミ準位 : 電子を 1 個付け加えるのに必要なエネルギー フェルミ準位が場所に依って異なるとフェルミ準位の低いところに電子が移動 価電子帯 p 型半導体 価電子帯 pn 接合部で静電ポテンシャルが空間的に変化 ( 電気 2 重層による電界の発生 ) n 型半導体 ビルトインポテンシャル N A φ = φ p = ne i q kt ( φ φp ) N D = φ = φ n ne i q k T ( φ φ ) n kt NAN D = φ φ = ln 2 q ni bi n p

20 q 1 q 2 外部印可電圧は静電ポテンシャルでは無く フェルミポテンシャルを与える 2-2 孤立して置いた場合 真空レベル qφ M qχ 電極 p n 電極 接続した場合 ( 1 = 2 ) 電位差 q 1 q 2 電極での接触電位 接続した場合 ( 1 2 )

21 非平衡状態への拡張 2-21 熱平衡状態電子の流れが無い状態 n= ne i p = ne i q kt q kt ( φ φ ) ( φ φ ) φ : フェルミポテンシャル n p 非平衡状態電流 = ne i = ne i q kt q kt ( φ φ ) n ( φp φ ) φ n : 電子擬フェルミポテンシャル φ p : 正孔擬フェルミポテンシャル 擬フェルミポテンシャルは imref とも呼ばれる imref は ermi を逆に書いたもの j n = qμ n+ qd n j = qμ pqd p 電流密度 n n p p p jn = qμnn φ n j = qμ p φ p p p 平衡状態 ( 電流 = ) は擬フェルミポテンシャルが場所に依らず一定ということで表される 外部の電源 ( 電圧 ) とオーミック コンタクトで接続している場合 接続点で外部電源と熱平衡にあるとして φ n = φ p =

22 MO キャパシタ 2-22 ゲート ( G ) エネルギー 金属 絶縁体 ( 酸化膜 ) -qg -qφ -qφ i i p 型 i x ゲートのフェルミ準位 基板 () x コンタクトでのフェルミ準位 = 外部印加電圧

23 lat-band 電圧 真空レベル qφ M = q + qχ qφ M M -q -qχ =Φ χ φ M 数値例 (3K) Φ M Al n + -polyi q 4.1 e 4. e i p + -polyi 5.2 e χ 4.5 e ( - i )/q.55 e 酸化膜中のイオン 酸化膜中の電荷や界面電荷が存在すると それによる電位も補わなければならない M + 界面電荷 Q i Q 1 = t ox i ox ox tox ρ( x) xdx ox ε = t ox ox 酸化膜中の電荷密度

24 エネルギー 半導体領域 ( x > ) において qg -qφ -qφ i i 伝導電子濃度正孔濃度 Poisson 方程式 n= ne i p = ne i q k T q k T ( φ φ ) ( φ φ ) ゲートのフェルミ準位 d dx 2 2 ρ φ = ε ρ = qn ( N n+ p) D A x x で ρ =, φ = kt N N = ne ne D A i i q φ q φ kt 2 q q q q d qn φ φ φ φ i k T kt kt kt φ = e e 1 e e 1 2 dx ε

25 電界 x dφ = dx 2qφ 2kT qφ kt x =, e ql D kt (, ) ( ) x x = + 1+ ( 1) x y sign x e x y e x L ktε D = : extrinsic Debye length 2 qna 2-25 半導体基板中の電荷量 ( 単位面積あたり ) 2qφ 2εkT qφ kt Q = ρdx= ε ( ), x x= = e ql D kt accumulation depletion.1 weak inversion strong inversion Q [/cm 2 ].1 φ φ Q > Q < i φ [] N A = 2x1 17 cm -3

26 Q [/cm 2 ] accumulation depletion Q > weak inversion φ φ i strong inversion Q < L D ~ 9.2nm L D φ s = c x = 付近 ( 青鎖点領域 ) を拡大 ~1nm φ [] 空乏層 φ s =.5 x 反転層 伝導電子が界面に誘起 空乏層の幅は L D の 5~1 倍 反転層 蓄積層の厚さは L D よりもはるか に小さい φ s = 正孔が界面に誘起 蓄積層

27 ゲート電圧との関係 2-27 ゲート ( G ) 金属絶縁体 ( 酸化膜 ) p 型 i 基板 () エネルギー -qg ゲートのフェルミ準位 t ox -qφ -q ox -qφ i i x G = ox + φ ゲート絶縁膜での電圧降下 ox ox Q = ε = t ox ox ox t ox = 1 nm N A = 2x1 17 cm φ 2φ Q = +φ G ox G

28 MO キャパシタ 2-28 ゲート ( G ) 金属絶縁体 ( 酸化膜 ) p 型 i 基板 () ox : 絶縁膜のキャパシタンス s : 半導体のキャパシタンス / ox 1 キャパシタンス ( 単位面積あたり ) = + = ox dq dφ t ox = 1nm at φ =2φ ε s s( φ s = ) L N A = 2x1 17 cm -3 1 = tox ε ox D LD + ε G

29 MO キャパシタ - 高周波 2-29 ゲート ( G ) 金属絶縁体 ( 酸化膜 ) p 型 i 反転層 空乏層 反転層の電子は端子に接続されてなく 孤立している 反転層の電子密度が変わるには電子 正孔対の形成が必要 電子 正孔対形成のレートは小さく 反転層の電子が平衡に達するには時間が必要 高周波でのキャパシタンス 2εkT qφ Q =, y qld kt dq = dφ 計算式低周波高周波強反転 Q = +φ 基板 () G fb ox y = e y = e 電子密度の項 2qφ k T y = 高周波 : 直流ゲート電圧 + 高周波小信号強反転 : ゲート電圧を高速に変化 2qφ k T y = e 2qφ k T y = y = 反転層の電子は追従できず電子密度は凍結される / ox 低周波高周波強反転 G

30 強反転領域でのキャリヤ分布 2-3 φ s = 電荷密度 Q x hole concentration N A Q n 不純物電荷 ( 空乏層 ) p [cm -3 ] 反転層の電子電荷 n [cm -3 ] electron concentration Q = ρdx= Q + Q n ( ) Q =q N N p dx A D Qn =q ndx

31 空乏層近似で Q を評価 2-31 p hole concentration N A N A p [cm -3 ] W x d qn 2 A 2 dx φ = ( < x < W ) ε 2 d 2 dx φ = ( W < x ) dφ φ = = ( x = W ) dx Q qn φ A = ( W x ) 2ε φ = qn W A Q qn A = W 2ε = 2 W [cm] qN ε φ A W ε φ qn max 2 A 最大空乏層幅 ( φ = 2φ ) 空乏層近似計算式 (p = N A /2となる点で評価) G

32 閾値反転層が形成されるゲート電圧 2-32 Q = +φ G ox Q = Qn + Q 反転層の電荷 閾値 Q Qn =ox G φ + φ 2φ ( 反転層の伝導電子濃度 = 基板濃度 ) ( ) = ox G T Q T = + φ + 2φ + ox ox 2qN ε 2 ( φ ) A ox T T ( ) φ = 3 [] ( φ ) = + φ + T T 2qN ε 2 ( φ ) A ox 基板濃度により閾値の調整が可能 N A [cm -3 ]

33 ソース n ゲート G L チャネル p x 基板 MOT の特性解析 ドレイン D n 空乏層 y MOT ではソース ドレインが加わり 電位関係が複雑 gradual channel 近似 y 方向の電界は x 方向の電界に比べ小いと 仮定 チャネルが形成されているとする チャネルの電位 ( 電子の擬フェルミポテンシャ ル ) はソース ドレインの電圧で決められる 2-33 Q [ φ ] n = ox G ox Q q( +2φ ) q qφ i q [ φ ] Q = 2qN ε 2 + A qφ n ox G T ( ( )) Q = y チャネルは強反転しており 電子の擬フェルミポテンシャルは i の qφ 上にある x () = ( L) = D + 2φ + T 2qN ε 2 ( φ ) A ox

34 G T > D > 2-34 ソース n L x ゲート G チャネル p (y) 基板 ドレイン D n 空乏層 y ゲート直下 ソースからドレインまで反転層が形成される n ox G T () = ( L) = D ( ( )) Q = y I = Wμ Q n n n y y d = dy ( ) d In = Wμnox G T dy 1 L Wμ D nox ID = Idy ( ) n G T d L = L Wμnox 1 2 ID = ( G T) D D L 2

35 ソース n L x ゲート G p L p チャネル (y) pinch-off 基板 D > G T > ドレイン D n 空乏層 y Dsat D Dsat n ox G T ( ( )) Q = y Q n < 反転 Q n > 空乏 pinch-off 点 (Q n = ) が存在 電流は反転層での伝導で決まる 2-35 D の残りは空乏領域にかかり pinch-off 点の電位はほとんど変わらない Dsat = G T L p L 実行チャンネル長 L が減少 ΔL 1 = D L LΔL L L L p ( λ ) Wμnox I = +λ 2L 2 ( ) ( 1 ) D G T D

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部 電気電子工学科 12/08/'10 半導体電子工学 Ⅱ 1 全体の内容 日付内容 ( 予定 ) 備考 1 10 月 6 日半導体電子工学 I の基礎 ( 復習 ) 11/24/'10 2 10 月 13 日 pn 接合ダイオード (1) 3 10 月 20 日 4 10 月 27 日 5 11 月 10 日 pn 接合ダイオード (2) pn 接合ダイオード (3)

More information

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E >

<4D F736F F F696E74202D2094BC93B191CC82CC D B322E > 半導体の数理モデル 龍谷大学理工学部数理情報学科 T070059 田中元基 T070117 吉田朱里 指導教授 飯田晋司 目次第 5 章半導体に流れる電流 5-1: ドリフト電流 5-: 拡散電流 5-3: ホール効果第 1 章はじめに第 6 章接合の物理第 章数理モデルとは? 6-1: 接合第 3 章半導体の性質 6-: ショットキー接合とオーミック接触 3-1: 半導体とは第 7 章ダイオードとトランジスタ

More information

Microsoft PowerPoint - semi_ppt07.ppt

Microsoft PowerPoint - semi_ppt07.ppt 半導体工学第 9 回目 / OKM 1 MOSFET の動作原理 しきい電圧 (V( TH) と制御 E 型と D 型 0 次近似によるドレイン電流解析 半導体工学第 9 回目 / OKM 2 電子のエネルギーバンド図での考察 金属 (M) 酸化膜 (O) シリコン (S) 熱平衡でフラットバンド 伝導帯 E c 電子エネルギ シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない

More information

Microsoft PowerPoint - semi_ppt07.ppt [互換モード]

Microsoft PowerPoint - semi_ppt07.ppt [互換モード] 1 MOSFETの動作原理 しきい電圧 (V TH ) と制御 E 型とD 型 0 次近似によるドレイン電流解析 2 電子のエネルギーバンド図での考察 理想 MOS 構造の仮定 : シリコンと金属の仕事関数が等しい 界面を含む酸化膜中に余分な電荷がない 金属 (M) 酸化膜 (O) シリコン (S) 電子エ金属 酸化膜 シリコン (M) (O) (S) フラットバンド ネルギー熱平衡で 伝導帯 E

More information

Microsoft PowerPoint - H30パワエレ-3回.pptx

Microsoft PowerPoint - H30パワエレ-3回.pptx パワーエレクトロニクス 第三回パワー半導体デバイス 平成 30 年 4 月 25 日 授業の予定 シラバスより パワーエレクトロニクス緒論 パワーエレクトロニクスにおける基礎理論 パワー半導体デバイス (2 回 ) 整流回路 (2 回 ) 整流回路の交流側特性と他励式インバータ 交流電力制御とサイクロコンバータ 直流チョッパ DC-DC コンバータと共振形コンバータ 自励式インバータ (2 回 )

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部電気電子工学科 小川真人 09/01/21 半導体電子工学 II 日付内容 ( 予定 ) 備考 1 10 月 1 日半導体電子工学 I の基礎 ( 復習 ) 2 10 月 8 日半導体電子工学 I の基礎 ( 復習 ) 3 10 月 15 日 pn 接合ダイオード (1) 4 10 月 22 日 pn 接合ダイオード (2) 5 10 月 29 日 pn 接合ダイオード

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 1 全体の内容 日付内容 ( 予定 ) 備考 1 10 月 6 日半導体電子工学 I の基礎 ( 復習 ) 11/01/1 10 月 13 日 接合ダイオード (1) 3 10 月 0 日 4 10 月 7 日 5 11 月 10 日 接合ダイオード () 接合ダイオード (3) 接合ダイオード (4) MOS 構造 (1) 6 11 月 17 日 MOS 構造 () 7 11

More information

13 2 9

13 2 9 13 9 1 1.1 MOS ASIC 1.1..3.4.5.6.7 3 p 3.1 p 3. 4 MOS 4.1 MOS 4. p MOS 4.3 5 CMOS NAND NOR 5.1 5. CMOS 5.3 CMOS NAND 5.4 CMOS NOR 5.5 .1.1 伝導帯 E C 禁制帯 E g E g E v 価電子帯 図.1 半導体のエネルギー帯. 5 4 伝導帯 E C 伝導電子

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部電気電子工学科 小川真人 11//'11 1 1. 復習 : 基本方程式 キャリア密度の式フェルミレベルの位置の計算ポアソン方程式電流密度の式 連続の式 ( 再結合 ). 接合. 接合の形成 b. 接合中のキャリア密度分布 c. 拡散電位. 空乏層幅 e. 電流 - 電圧特性 本日の内容 11//'11 基本方程式 ポアソン方程式 x x x 電子 正孔 キャリア密度の式

More information

diode_revise

diode_revise 2.3 pn 接合の整流作用 c 大豆生田利章 2015 1 2.3 pn 接合の整流作用 2.2 節では外部から電圧を加えないときの pn 接合について述べた. ここでは, 外部か らバイアス電圧を加えるとどのようにして電流が流れるかを電子の移動を中心に説明す る. 2.2 節では熱エネルギーの存在を考慮していなかったが, 実際には半導体のキャリアは 周囲から熱エネルギーを受け取る その結果 半導体のキャリヤのエネルギーは一定でな

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

Microsoft PowerPoint - 集積デバイス工学5.ppt

Microsoft PowerPoint - 集積デバイス工学5.ppt MO プロセスフロー ( 復習 集積デバイス工学 ( の構成要素 ( 抵抗と容量 素子分離 -well 形成 ゲート形成 拡散領域形成 絶縁膜とコンタクト形成 l 配線形成 6 7 センター藤野毅 MO 領域 MO 領域 MO プロセスフロー ( 復習 素子分離 -well 形成 ゲート形成 拡散領域形成 絶縁膜とコンタクト形成 l 配線形成 i 膜 ウエルポリシリコン + 拡散 + 拡散コンタクト

More information

Acrobat Distiller, Job 2

Acrobat Distiller, Job 2 2 3 4 5 Eg φm s M f 2 qv ( q qφ ) = qφ qχ + + qφ 0 0 = 6 p p ( Ei E f ) kt = n e i Q SC = qn W A n p ( E f Ei ) kt = n e i 7 8 2 d φ( x) qn = A 2 dx ε ε 0 s φ qn s 2ε ε A ( x) = ( x W ) 2 0 E s A 2 EOX

More information

Microsoft PowerPoint - 第2回半導体工学

Microsoft PowerPoint - 第2回半導体工学 17 年 1 月 16 日 月 1 限 8:5~1:15 IB15 第 回半導体工学 * バンド構造と遷移確率 天野浩 項目 1 章量子論入門 何故 Si は光らず GN は良く光るのか? *MOSFET ゲート SiO / チャネル Si 界面の量子輸送過程 MOSFET には どのようなゲート材料が必要なのか? http://www.iue.tuwien.c.t/ph/vsicek/noe3.html

More information

半導体工学の試験範囲

半導体工学の試験範囲 練習問題 1. 半導体の基礎的性質問 1 n 形半導体について 以下の問いに答えよ (1) エネルギーバンド図を描け 必ず 価電子帯 ( E ) フェルミ準位( E ) 伝導帯( E ) を示す こと () 電子密度 ( n ) を 伝導帯の有効状態密度 ( ) を用いた式で表せ (3) シリコン半導体を n 形にする元素を挙げ その理由を述べよ F 問 型半導体について 以下の問いに答えよ (1)

More information

スライド 1

スライド 1 電子デバイス工学 9 電界効果トランジスタ () MO T (-1) MOキャパシタ 金属 - 絶縁体 - 半導体 電界効果トランジスタ 金属 Metal 絶縁体 Isulator 半導体 emcouctor 金属 Metal 酸化物 Oxe 半導体 emcouctor Gate wth, Z MI T MO T Polslco or metal 半導体として を用い, その酸化物 O を絶縁体として用いたものが主流であったため,

More information

PowerPoint Presentation

PowerPoint Presentation 半導体電子工学 II 神戸大学工学部 小川 電気電子工学科 真人 10/06/'10 半導体電子工学 II 1 他講義との関連 ( 積み重ねが大事 積み残すと後が大変 ) 2008 2009 2010 2011 10/06/'10 半導体電子工学 II 2 量子物理工学 Ⅰ 10/06/'10 半導体電子工学 II 3 IC の素子を小さくする利点 このくらいのだったらなぁ 素子の微細化が必要 (C)

More information

予定 (川口担当分)

予定 (川口担当分) 予定 ( 川口担当分 ) (1)4 月 13 日 量子力学 固体の性質の復習 (2)4 月 20 日 自由電子モデル (3)4 月 27 日 結晶中の電子 (4)5 月 11 日 半導体 (5)5 月 18 日 輸送現象 金属絶縁体転移 (6)5 月 25 日 磁性の基礎 (7)6 月 1 日 物性におけるトポロジー 今日 (5/11) の内容 ブロッホ電子の運動 電磁場中の運動 ランダウ量子化 半導体

More information

Microsoft PowerPoint 修論発表_細田.ppt

Microsoft PowerPoint 修論発表_細田.ppt 0.0.0 ( 月 ) 修士論文発表 Carrier trasort modelig i diamods ( ダイヤモンドにおけるキャリヤ輸送モデリング ) 物理電子システム創造専攻岩井研究室 M688 細田倫央 Tokyo Istitute of Techology パワーデバイス基板としてのダイヤモンド Proerty (relative to Si) Si GaAs SiC Ga Diamod

More information

Microsoft PowerPoint - 2.devi2008.ppt

Microsoft PowerPoint - 2.devi2008.ppt 第 2 章集積回路のデバイス MOSトランジスタダイオード抵抗容量インダクタンス配線 広島大学岩田穆 1 半導体とは? 電気を通す鉄 アルミニウムなどの金属は導体 電気を通さないガラス ゴムなどは絶縁体 電気を通したり, 通さなかったり, 条件によって, 導体と絶縁体の両方の性質を持つことのできる物質を半導体半導体の代表例はシリコン 電気伝導率 広島大学岩田穆 2 半導体技術で扱っている大きさ 間の大きさ一般的な技術現在研究しているところナノメートル

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

2013 1 9 1 2 1.1.................................... 2 1.2................................. 4 1.3.............................. 6 1.4...................................... 8 1.5 n p................................

More information

<4D F736F F D2097CA8E718CF889CA F E F E2E646F63>

<4D F736F F D2097CA8E718CF889CA F E F E2E646F63> 量子効果デバイス第 11 回 前澤宏一 トンネル効果とフラッシュメモリ デバイスサイズの縮小縮小とトンネルトンネル効果 Si-CMOS はサイズの縮小を続けることによってその性能を伸ばしてきた チャネル長や ゲート絶縁膜の厚さ ソース ドレイン領域の深さ 電源電圧をあるルール ( これをスケーリング則という ) に従って縮小することで 高速化 低消費電力化が可能となる 集積回路の誕生以来 スケーリング側にしたがって縮小されてきたデバイスサイズは

More information

電子回路I_4.ppt

電子回路I_4.ppt 電子回路 Ⅰ 第 4 回 電子回路 Ⅰ 5 1 講義内容 1. 半導体素子 ( ダイオードとトランジスタ ) 2. 基本回路 3. 増幅回路 電界効果トランジスタ (FET) 基本構造 基本動作動作原理 静特性 電子回路 Ⅰ 5 2 半導体素子 ( ダイオードとトランジスタ ) ダイオード (2 端子素子 ) トランジスタ (3 端子素子 ) バイポーラトランジスタ (Biolar) 電界効果トランジスタ

More information

AlGaN/GaN HFETにおける 仮想ゲート型電流コラプスのSPICE回路モデル

AlGaN/GaN HFETにおける 仮想ゲート型電流コラプスのSPICE回路モデル AlGaN/GaN HFET 電流コラプスおよびサイドゲート効果に関する研究 徳島大学大学院先端技術科学教育部システム創生工学専攻電気電子創生工学コース大野 敖研究室木尾勇介 1 AlGaN/GaN HFET 研究背景 高絶縁破壊電界 高周波 高出力デバイス 基地局などで実用化 通信機器の発達 スマートフォン タブレットなど LTE LTE エンベロープトラッキング 低消費電力化 電源電圧を信号に応じて変更

More information

Microsoft PowerPoint - アナログ電子回路3回目.pptx

Microsoft PowerPoint - アナログ電子回路3回目.pptx アナログ電 回路 3-1 電気回路で考える素 ( 能動素 ) 抵抗 コイル コンデンサ v v v 3-2 理 学部 材料機能 学科岩 素顕 iwaya@meijo-u.ac.jp トランジスタ トランジスタとは? トランジスタの基本的な動作は? バイポーラトランジスタ JFET MOFET ( エンハンスメント型 デプレッション型 ) i R i L i C v Ri di v L dt i C

More information

弱反転領域の電荷

弱反転領域の電荷 平成 6 年度集積回路設計技術 次世代集積回路工学特論資料 微細化による特性への影響 松田順一 本資料は 以下の本をベースに作られている Yanni ivii, Operaion an Moeing of he MOS ranior Secon Eiion,McGraw-Hi, New York, 999. 概要 チャネル長変調 短チャネルデバイス 短チャネル効果 電荷配分 ドレイン ~ ソース電圧の効果

More information

Microsoft PowerPoint - 4.1I-V特性.pptx

Microsoft PowerPoint - 4.1I-V特性.pptx 4.1 I-V 特性 MOSFET 特性とモデル 1 物理レベルの設計 第 3 章までに システム~ トランジスタレベルまでの設計の概要を学んだが 製造するためには さらに物理的パラメータ ( 寸法など ) が必要 物理的パラメータの決定には トランジスタの特性を理解する必要がある ゲート内の配線の太さ = 最小加工寸法 物理的パラメータの例 電源配線の太さ = 電源ラインに接続されるゲート数 (

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

アナログ用MOSトランジスタ動作の基礎 公開講座資料

アナログ用MOSトランジスタ動作の基礎 公開講座資料 5 年 3 月 日 アナログ用 MOSFET 動作の基礎ー MOSFET モデルの考え方ー 群馬大学 松田順一 概要 ドリフト電流と拡散電流 エンハンスメント型 MOSFET 特性 強反転 / 弱反転一括モデル ( 表面電位表現 ) 強反転モデル 弱反転モデル EK モデル ピンチオフ電圧 移動度 温度依存性 イオン注入されたチャネルを持つ MOSFET 特性 デプレッション型 MOSFET 特性

More information

Microsoft PowerPoint - siryo7

Microsoft PowerPoint - siryo7 . 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/

More information

コロイド化学と界面化学

コロイド化学と界面化学 環境表面科学講義 http://res.tagen.tohoku.ac.jp/~liquid/mura/kogi/kaimen/ E-mail: mura@tagen.tohoku.ac.jp 村松淳司 分散と凝集 ( 平衡論的考察! 凝集! van der Waals 力による相互作用! 分散! 静電的反発力 凝集 分散! 粒子表面の電位による反発 分散と凝集 考え方! van der Waals

More information

36 th IChO : - 3 ( ) , G O O D L U C K final 1

36 th IChO : - 3 ( ) , G O O D L U C K final 1 36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic

More information

スライド 1

スライド 1 電子デバイス工学 7 バイポーラトランジスタ () 静特性と動特性 トランジスタの性能指標 エミッタ効率 γ F ベース輸送効率 α T エミッタ効率 : なるべく正孔電流は流れて欲しくない の程度ベース輸送効率 : なるべくベース内で再結合して欲しくない の程度 Emittr Efficicy Bas Trasort Efficicy Collctor Efficicy Elctro Flow E

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態

More information

03J_sources.key

03J_sources.key Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E

More information

電子物性工学基礎

電子物性工学基礎 電子物性工学で何を学ぶか? エネルギーバンドの概念 半導体の基礎物性 半導体 ( 接合 素子の基礎 電子の波束とは何であったか? 量子力学における電子波 電子の波動 波動関数 確率波として シュレディンガー方程式 シュレディンガー波動方程式の導出 } ( e{ } ( e{ z k y k k wt i A t i A z y kr ( V m k H V m ( エネルギーバンドの概念 (1 自由電子

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

Microsoft PowerPoint - 第11回半導体工学

Microsoft PowerPoint - 第11回半導体工学 207 年 2 月 8 日 ( 月 ) 限 8:45~0:5 I05 第 回半導体工学天野浩項目 8 章半導体の光学的性質 /24 光る半導体 ( 直接遷移型 ) と光らない半導体 ( 間接遷移型 ) * 原理的に良く光る半導体 :GaAs GaN IP ZSe など * 原理的に殆ど光らない半導体 ( 不純物を入れると少し光る ):Si Ge GaP SiCなど結晶構造とバンド構造 E E 伝導帯

More information

Microsoft PowerPoint - qchem3-11

Microsoft PowerPoint - qchem3-11 8 年度冬学期 量子化学 Ⅲ 章量子化学の応用.6. 溶液反応 9 年 1 月 6 日 担当 : 常田貴夫准教授 溶液中の反応 溶液反応の特徴は 反応する分子の周囲に常に溶媒分子が存在していること 反応過程が遅い 反応自体の化学的効果が重要 遷移状態理論の熱力学表示が適用できる反応過程が速い 反応物が相互に接近したり 生成物が離れていく拡散過程が律速 溶媒効果は拡散現象 溶液中の反応では 分子は周囲の溶媒分子のケージ内で衝突を繰り返す可能性が高い

More information

Microsoft PowerPoint - 2.1MOSFETの特性.ppt [互換モード]

Microsoft PowerPoint - 2.1MOSFETの特性.ppt [互換モード] 2.1 MOSFET の特性 教科書 2.1 節 ~2.5 節 教科書には詳細な特性パラメータの式が示されていて複雑だが ディジタル回路設計では 本プリントの内容を理解していれば問題はない 2.1.1 PN 接合と内部電界 不純物による電気伝導の制御 (1) III IV V B C N Al Si P ドープ (Dope): 不純物を混ぜること 電子 ( 青色 ) Ga In Ge Sn As Sb

More information

untitled

untitled MOSFET 17 1 MOSFET.1 MOS.1.1 MOS.1. MOS.1.3 MOS 4.1.4 8.1.5 9. MOSFET..1 1.. 13..3 18..4 18..5 0..6 1.3 MOSFET.3.1.3. Poon & Yau 3.3.3 LDD MOSFET 5 3.1 3.1.1 6 3.1. 6 3. p MOSFET 3..1 8 3.. 31 3..3 36

More information

<4D F736F F D208CF595A890AB F C1985F8BB389C88F CF58C9F8F6F8AED2E646F63>

<4D F736F F D208CF595A890AB F C1985F8BB389C88F CF58C9F8F6F8AED2E646F63> 光検出器 pin-pd 数 GHzまでの高速応答する光検出器に pin-フォトダイオードとアバランシェフォトダイオードがある pin-フォトダイオードは図 1に示すように n + 基板と低ドーピングi 層と 0.3μm 程度に薄くした p + 層からなる 逆バイアスを印加して 空乏層を i 層全体に広げ 接合容量を小さくしながら光吸収領域を拡大して高感度にする 表面より入射した光は光吸収係数 αによって指数関数的に減衰しながら光励起キャリアを生成する

More information

高周波動作 (小信号モデル)

高周波動作 (小信号モデル) 平成 9 年度集積回路設計技術 次世代集積回路工学特論資料 高周波動作 小信号モデル 群馬大学松田順一 概要 完全 QS モデル 等価回路の導出 容量評価 - パラメータモデル NQSNon-Qua-Sac モデル NQS モデルの導出 NQS 高周波用 等価回路 RF アプリケーションへの考察 注 以下の本を参考に 本資料を作成 Yann T Operaon an Moeln of he MOS

More information

ハートレー近似(Hartree aproximation)

ハートレー近似(Hartree aproximation) ハートリー近似 ( 量子多体系の平均場近似 1) 0. ハミルトニアンの期待値の変分がシュレディンガー方程式と等価であること 1. 独立粒子近似という考え方. 電子系におけるハートリー近似 3.3 電子系におけるハートリー近似 Mde by R. Okmoto (Kyushu Institute of Technology) filenme=rtree080609.ppt (0) ハミルトニアンの期待値の変分と

More information

物性物理学I_2.pptx

物性物理学I_2.pptx phonon U r U = nαi U ( r nαi + u nαi ) = U ( r nαi ) + () nαi,β j := nαi β j U r nαi r β j > U r nαi r u nαiuβ j + β j β j u β j n α i () nαi,β juβj 調和振動子近似の復習 極 小 値近傍で Tylor展開すると U ( x) = U ( x ) + (

More information

物性物理学I_2.pptx

物性物理学I_2.pptx The University of Tokyo, Komaba Graduate School of Arts and Sciences I 凝縮系 固体 をデザインする 銅()面上の鉄原子の 量子珊瑚礁 IBM Almaden 許可を得て掲載 www.almaden.ibm.com/vis/stm/imagesstm5.jpg&imgrefurl=http://www.almaden.ibm.com/vis/

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) デルタ関数. ローレンツ関数. ガウス関数 3. Sinc 関数 4. Sinc 関数 5. 指数関数 6. 量子力学 : デルタ関数 7. プレメリの公式 8. 電磁気学 : デルタ関数 9. デルタ関数 : スケール 微分 デルタ関数 (delta function) ( ) δ ( ) ( ), δ ( ), δ ( ), δ ( ) f x x dx

More information

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63>

<4D F736F F D20824F B CC92E8979D814696CA90CF95AA82C691CC90CF95AA2E646F63> 1/1 平成 23 年 3 月 24 日午後 6 時 52 分 6 ガウスの定理 : 面積分と体積分 6 ガウスの定理 : 面積分と体積分 Ⅰ. 直交座標系 ガウスの定理は 微分して すぐに積分すると元に戻るというルールを 3 次元積分に適用した定理になります よく知っているのは 簡単化のため 変数が1つの場合は dj ( d ( ににします全微分 = 偏微分 d = d = J ( + C d です

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 平成 17 年度前期大学院 情報デバイス工学特論 第 9 回 中里和郎 基本 CMOS アナログ回路 (2) 今回の講義内容は 谷口研二 :LS 設計者のための CMOS アナログ回路入門 CQ 出版 2005 の第 6 章ー 9 章 (pp. 99-158) の内容に従っている 講義では谷口先生のプレゼンテーション資料も使用 ソース接地増幅回路の入力許容範囲 V B M 2 M 1 M 2 V in

More information

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を

( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を ( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計

More information

devicemondai

devicemondai c 2019 i 3 (1) q V I T ε 0 k h c n p (2) T 300 K (3) A ii c 2019 i 1 1 2 13 3 30 4 53 5 78 6 89 7 101 8 112 9 116 A 131 B 132 c 2019 1 1 300 K 1.1 1.5 V 1.1 qv = 1.60 10 19 C 1.5 V = 2.4 10 19 J (1.1)

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為

Techniques for Nuclear and Particle Physics Experiments Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r 2 e = (e 2 mc 2 ) 2 で表される為 Techniques for Nuclear and Particle Physics Experiments.. Energy Loss by Radiation : Bremsstrahlung 制動放射によるエネルギー損失は σ r e = (e mc ) で表される為 質量に大きく依存する Ex) 電子の次に質量の小さいミューオンの制動放射によるエネルギー損失 m e 0.5 MeV, m

More information

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ

物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように 2つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右の2つ 物性物理学 I( 平山 ) 補足資料 No.6 ( 量子ポイントコンタクト ) 右図のように つ物質が非常に小さな接点を介して接触している状況を考えましょう 物質中の電子の平均自由行程に比べて 接点のサイズが非常に小さな場合 この接点を量子ポイントコンタクトと呼ぶことがあります この系で左右のつの物質の間に電位差を設けて左から右に向かって電流を流すことを行った場合に接点を通って流れる電流を求めるためには

More information

Microsoft PowerPoint - tft.ppt [互換モード]

Microsoft PowerPoint - tft.ppt [互換モード] 薄膜トランジスター 九州大学大学院 システム情報科学研究科 服部励治 薄膜トランジスターとは? Thin Film Transistor: TFT ソース電極 ゲート電極 ドレイン電極ソース電極ゲートドレイン電極 n poly 電極 a:h n n ガラス基板 p 基板 TFT 共通点 電界効果型トランジスター nmosfet 相違点 誘電膜上に作成される スタガー型を取りうる 薄膜トランジスター

More information

4端子MOSトランジスタ

4端子MOSトランジスタ 平成 8 年度集積回路設計技術 次世代集積回路工学特論資料 4 端子 MOS トランジスタ 群馬大学松田順一 概要 完全チャージ シート モデル 簡易チャージ シート モデル ソース参照モデル 対称モデル 強反転モデル 完全対称モデル 簡易対称モデル 簡易ソース参照モデル 弱反転モデル EK.. Ez F. Krummachr E. A. ioz モデル 実効移動度 温度依存性 p チャネル トランジスタ

More information

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

物性基礎

物性基礎 水素様原子 水素原子 水素様原子 エネルギー固有値 波動関数 主量子数 角運動量 方位量子数 磁気量子数 原子核 + 電子 個 F p F = V = 水素様原子 古典力学 水素様原子 量子力学 角運動量 L p F p L 運動方程式 d dt p = d d d p p = p + dt dt dt = p p = d dt L = 角運動量の保存則 ポテンシャルエネルギー V = 4πε =

More information

電子回路基礎

電子回路基礎 電子回路基礎アナログ電子回路 デジタル電子回路の基礎と応用 月曜 2 時限目教室 :D205 天野英晴 hunga@am.ics.keio.ac.jp 講義の構成 第 1 部アナログ電子回路 (4/7, 4/14, 4/21, 5/12, 5/19) 1 ダイオードの動作と回路 2 トランジスタの動作と増幅回路 3 トランジスタ増幅回路の小信号等価回路 4 演算増幅器の動作 5 演算増幅器を使った各種回路の解析

More information

電子回路I_6.ppt

電子回路I_6.ppt 電子回路 Ⅰ 第 6 回 電子回路 Ⅰ 7 講義内容. 半導体素子 ( ダイオードとトランジスタ ). 基本回路 3. 増幅回路 バイポーラトランジスタの パラメータと小信号等価回路 二端子対回路 パラメータ 小信号等価回路 FET(MOFET) の基本増幅回路と等価回路 MOFET の基本増幅回路 MOFET の小信号等価回路 電子回路 Ⅰ 7 増幅回路の入出力インピーダンス 増幅度 ( 利得 )

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 平成 17 年度前期大学院 情報デバイス工学特論 第 回 CMOSFET の更に進んだ特性 中里和郎 NMOSFET 基本直流特性 N V S V G V D W L P V B N 線形領域 VGS VT > VDS 1 I = β V V V V + V 飽和領域 ( ) ( 1 λ ) D GS T DS DS DS VDS > VGS VT > β I = V V +λv 0 ( ) ( 1

More information

1 演習 :3. 気体の絶縁破壊 (16.11.17) ( レポート課題 3 の解答例 ) ( 問題 3-4) タウンゼントは平行平板電極間に直流電圧を印加し, 陰極に紫外線を照射して電流 I とギ ャップ長 d の関係を調べ, 直線領域 I と直線から外れる領域 II( 図 ) を見出し, 破壊前前駆電流を理論的 に導出した 以下の問いに答えよ (1) 領域 I における電流 I が I I expd

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

<4D F736F F D208CF595A890AB F C1985F8BB389C88F913791BE977A E646F63>

<4D F736F F D208CF595A890AB F C1985F8BB389C88F913791BE977A E646F63> 1. 光伝導効果と光伝導素子 2. 光起電力効果と太陽電池 3. 通信用フォトダイオード 1 1. 光伝導効果と光伝導素子半導体に禁制帯幅以上のエネルギーを持つ光子が入射した場合 価電子帯の電子が伝導帯に励起される この結果 価電子帯に正孔が伝導帯に電子が一対光生成される 光生成したキャリアは 半導体の外部から電界をかけることにより移動し 電流として寄与する これを光導電効果 ( あるいは内部光電効果

More information

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード]

Microsoft PowerPoint - 基礎化学4revPart1b [互換モード] 化学結合と分 の形 なぜ原 と原 はつながるのかなぜ分 はきまった形をしているのか化学結合の本質を理解しよう 分子の形と電子状態には強い相関がある! 原子 分子 基礎化学 ( 化学結合論 構造化学 量子化学 ) 電子配置分子の形強い相関関係 ( 電子状態 ) ( 立体構造 ) 分子の性質 ( 反応性 物性 ) 先端化学 ( 分子設計 機能化学 ) 機能 分子の形と電子配置の基礎的理解 基礎 ( 簡単

More information

Taro-F25理論 印刷原稿

Taro-F25理論 印刷原稿 第 種理論 A 問題 ( 配点は 問題当たり小問各 点, 計 0 点 ) 問 次の文章は, 真空中の静電界に関する諸法則の微分形に関する記述である 文中の に当てはまるものを解答群の中から選びなさい 図のように, 直交座標系において電界の z 軸成分が零となるような電界について, y 平面の二次元で電位や電界を考える ここで,4 点 (h,0),(0,h), (- h,0),(0,-h) の電位がそれぞれ

More information

Microsoft PowerPoint - 14.菅谷修正.pptx

Microsoft PowerPoint - 14.菅谷修正.pptx InGaAs/系量子ドット太陽電池の作製 革新デバイスチーム 菅谷武芳 電子 バンド3:伝導帯 E3 E3 E 正孔 バンド:中間バンド 量子ドット超格子 ミニバンド 量子ドットの井戸型 ポテンシャル バンド:価電子帯 量子ドット太陽電池のバンド図 6%を超える理想的な量子ドット太陽 電池実現には E3として1 9eVが必要 量子ドット超格子太陽電池 理論上 変換効率6%以上 集光 を採用 MBE

More information

Microsoft PowerPoint pptx

Microsoft PowerPoint pptx 4.2 小信号パラメータ 1 電圧利得をどのように求めるか 電圧ー電流変換 入力信号の変化 dv BE I I e 1 v be の振幅から i b を求めるのは難しい? 電流増幅 電流ー電圧変換 di B di C h FE 電流と電圧の関係が指数関数になっているのが問題 (-RC), ただし RL がない場合 dv CE 出力信号の変化 2 pn 接合の非線形性への対処 I B 直流バイアスに対する抵抗

More information

電子回路I_8.ppt

電子回路I_8.ppt 電子回路 Ⅰ 第 8 回 電子回路 Ⅰ 9 1 講義内容 1. 半導体素子 ( ダイオードとトランジスタ ) 2. 基本回路 3. 増幅回路 小信号増幅回路 (1) 結合増幅回路 電子回路 Ⅰ 9 2 増幅の原理 増幅度 ( 利得 ) 信号源 増幅回路 負荷 電源 電子回路 Ⅰ 9 3 増幅度と利得 ii io vi 増幅回路 vo 増幅度 v P o o o A v =,Ai =,Ap = = vi

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

本文/報告1

本文/報告1 Millimeter wave Radio on Fiber System for Digital Broadcasting Signals Tsuyoshi NAKATOGAWA, Mikio MAEDA and Kimiyuki OYAMADA ABSTRACT 24 NHK R&D/No.127/2011.5 f C f sig f car f car f car + f sig f C f

More information

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B 5. A B B A B A B B A A B A B 2 A [A] B [B] 51 v = k[a][b] 51 A B 3 0 273.16 A B A B A B A A [A] 52 v= k[a] 52 A B 55 2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

Microsoft PowerPoint - 集積回路工学(5)_ pptm

Microsoft PowerPoint - 集積回路工学(5)_ pptm 集積回路工学 東京工業大学大学院理工学研究科電子物理工学専攻 松澤昭 2009/0/4 集積回路工学 A.Matuzawa (5MOS 論理回路の電気特性とスケーリング則 資料は松澤研のホームページ htt://c.e.titech.ac.j にあります 2009/0/4 集積回路工学 A.Matuzawa 2 インバータ回路 このようなインバータ回路をシミュレーションした 2009/0/4 集積回路工学

More information

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン

2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える

More information

F 1 2 dc dz ( V V V sin t 2 S DC AC ) 1 2 dc dc 1 dc {( VS VDC ) VAC} ( VS VDC ) VAC sin t VAC cos 2 t (3.2.2) 2 dz 2 dz 4 dz 静電気力には (3.2.2) 式の右

F 1 2 dc dz ( V V V sin t 2 S DC AC ) 1 2 dc dc 1 dc {( VS VDC ) VAC} ( VS VDC ) VAC sin t VAC cos 2 t (3.2.2) 2 dz 2 dz 4 dz 静電気力には (3.2.2) 式の右 3-2 ケルビンプローブフォース顕微鏡による仕事関数の定量測定 3-2-1 KFM の測定原理ケルビンプローブフォース顕微鏡 (Kelvin Force Microscopy: KFM) は ケルビン法という測定技術を AFM に応用した計測手法で 静電気力によるプローブ振動の計測を利用して プローブとサンプルの仕事関数差を測定するプローブ顕微鏡の手法である 仕事関数というのは 金属の表面から電子を無限遠まで取り出すのに必要なエネルギーであり

More information

高知工科大学電子 光システム工学科

高知工科大学電子 光システム工学科 卒業研究報告 題 目 量子力学に基づいた水素分子の分子軌道法的取り扱いと Hamiltonian 近似法 指導教員 山本哲也 報告者 山中昭徳 平成 14 年 月 5 日 高知工科大学電子 光システム工学科. 3. 4.1 4. 4.3 4.5 6.6 8.7 10.8 11.9 1.10 1 3. 13 3.113 3. 13 3.3 13 3.4 14 3.5 15 3.6 15 3.7 17

More information

の実現は この分野の最大の課題となってい (a) た ゲージ中の 酸素イオンを 電子で置換 筆 者 ら の 研 究 グ ル ー プ は 23 年 に 12CaO 7Al2O3 結 晶 以 下 C12A7 を用 い て 安定なエレクトライド C12A7: を実現3) Al3+ O2 Cage wall O2 In cage その電子状態や物性を解明してきた4) 図 1 のように C12A7 の結晶構造は

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Microsoft PowerPoint - summer_school_for_web_ver2.pptx

Microsoft PowerPoint - summer_school_for_web_ver2.pptx スピン流で観る物理現象 大阪大学大学院理学研究科物理学専攻 新見康洋 スピントロニクスとは スピン エレクトロニクス メモリ産業と深くつなが ている メモリ産業と深くつながっている スピン ハードディスクドライブの読み取りヘッド N 電荷 -e スピンの流れ ピ の流れ スピン流 S 巨大磁気抵抗効果 ((GMR)) from http://en.wikipedia.org/wiki/disk_readand-write_head

More information

Microsoft PowerPoint - 9.菅谷.pptx

Microsoft PowerPoint - 9.菅谷.pptx 超多積層量子ドット太陽電池と トンネル効果 菅谷武芳 革新デバイスチーム 量子ドット太陽電池 電子 バンド3:伝導帯 E23 E13 E12 正孔 バンド2:中間バンド 量子ドット超格子 ミニバンド 量子ドットの井戸型 ポテンシャル バンド1:価電子帯 量子ドット太陽電池のバンド図 量子ドット超格子太陽電池 理論上 変換効率60%以上 集光 A. Luque et al., Phys. Rev. Lett.

More information

Microsoft PowerPoint - 第6回半導体工学

Microsoft PowerPoint - 第6回半導体工学 017 年 11 月 13 日 ( 月 ) 1 限 8:45~10:15 I015 第 6 回半導体工学天野浩 項目 5 章 接合 htt://cheahotovoltaiceergy.blogsot.j/01/07/hotovoltaiccellsgeeratig.html 1/84 接合ダイオードとショットキーバリアダイオードとの違い 接合ダイオード S htt://www.semico.toshiba.co.j/cotact/

More information

三重大学工学部

三重大学工学部 反応理論化学 ( その 軌道相互作用 複数の原子が相互作用して分子が形成される複数の原子軌道 ( または混成軌道 が混合して分子軌道が形成される原子軌道 ( または混成軌道 が混合して分子軌道に変化すると軌道エネルギーも変化する. 原子軌道 原子軌道は3つの量子数 ( nlm,, の組合せにより指定される量子数の取り得る値の範囲 n の値が定まる l の範囲は n の値に依存して定まる m の範囲は

More information

基礎から学ぶ光物性 第9回 蛍光から何がわかるか

基礎から学ぶ光物性 第9回 蛍光から何がわかるか 基礎から学ぶ光物性 第 9 回蛍光から何がわかるか 東京農工大学特任教授 佐藤勝昭 今回の内容 : ルミネッセンス ルミネッセンスの分類 PL, CL, EL, LED ルミネッセンスの機構 バンド間 (BB) 遷移による発光 バンド 不純物準位間 (FB) 遷移による発光 ドナーアクセプタ対 (DAP) 間遷移 励起子 (EX) 発光 : 自由励起子発光 束縛励起子発光 欠陥中心における発光 遷移金属イオン

More information

Microsoft PowerPoint EM2_3.ppt

Microsoft PowerPoint EM2_3.ppt ( 第 3 回 ) 鹿間信介摂南大学工学部電気電子工学科 4.3 オームの法則 4.4 金属の電気抵抗 4.5 ジュール熱 演習 4.3 オームの法則 E 電池 電圧 V 抵抗 電流 I 可変抵抗 抵抗両端の電圧 V [V] と電流 I [A] には比例関係がある V =I (: 電気抵抗 ; 比例定数 ) 大 電流が流れにくい 抵抗の単位 : オーム [Ω] 1[Ω]=1[V/A] 1V の電圧を加えたときに

More information

                                             半導体デバイスの信頼性

                                             半導体デバイスの信頼性 Ⅲ. 1. 光素子の劣化メカニズム 1.1 半導体レーザー (LD) の光学損傷 2.2 受光素子の故障メカニズム 2. 高周波デバイスの劣化メカニズム 2.1 実装後のクラック発生 2.2 H/P FET の熱暴走 2.3 L/N FET の静電気破壊 2.4 AI 配線のエレクトロマイグレーション 12/36 MSRH06-1 光出力 P 光出力 P 1. 光素子の劣化メカニズム 1.1 半導体レーザー

More information

超伝導状態の輸送方程式におけるゲージ不変性とホール効果

超伝導状態の輸送方程式におけるゲージ不変性とホール効果 超伝導状態の輸送方程式におけるゲージ不変性とホール項 輸送方程式について 研究の歴史 微視的導出法 問題点 - 項 超伝導体の 効果の実験 北大 理 物理北孝文 非平衡状態の摂動論 の方法 輸送方程式の微視的導出と問題点 ゲージ不変性とホール項 まとめ バイロイト 月 - 月 カールスルーエ 月 - 月 カールスルーエのお城 モーゼル渓谷 ザルツカンマ - グート ( オーストリア ) バイロイト近郊

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

スライド 1

スライド 1 暫定版修正 加筆の可能性あり ( 付録 ) コイルと磁場 () coil and magnetic field part. ソレノイドコイルのエネルギー. エネルギー密度の比較 : 電場と磁場 3. 磁場のエネルギーとベクトルポテンシャル 4. 相互作用エネルギー : 電場と磁場 5. 資料 : 電源について 注意. 電磁波を記述する マクスウェル方程式 の理解に必要を思われるトピックスに限定. 定常電流が作る磁場

More information

2_R_新技術説明会(佐々木)

2_R_新技術説明会(佐々木) % U: 6.58%, Np, Am:.5%, Pu:.% 5.8% Cs 6.5% Sr %.9%Mo 8.74% Tc.9% TODA C 8 H 7 C 8 H 7 N CH C CH N CH O C C 8 H 7 O N MIDOA C 8 H 7 DOODA NTA + HN(C 8 H 7 ) + H O DCC + SOCl + HN(C 8 H 7 ) + Cl TODA (TODA)

More information

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合

1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合 1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合の実効線 務従事者 区域外の 区域外の 量係数 量係数 の呼吸す 空気中の 水中の濃 る空気中 濃度限度

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

1 c Koichi Suga, ISBN

1 c Koichi Suga, ISBN c Koichi Suga, 4 4 6 5 ISBN 978-4-64-6445- 4 ( ) x(t) t u(t) t {u(t)} {x(t)} () T, (), (3), (4) max J = {u(t)} V (x, u)dt ẋ = f(x, u) x() = x x(t ) = x T (), x, u, t ẋ x t u u ẋ = f(x, u) x(t ) = x T x(t

More information

Microsoft Word

Microsoft Word 第 9 回工学基礎ミニマム物理試験問題.. 日立 水戸 正解は各問の選択肢 (,, ) の中からつだけ選び, その番号をマークシートにマークせよ この際,HBまたはBの鉛筆またはシャープペンシルを使うこと ボールペンは不可 正解が数値の場合には, 選択肢の中から最も近い値を選ぶこと 正解が選択肢の中に無い場合には, 番号ゼロを選択せよ 学生番号, 氏名を指定された方法でマークシートの所定の欄に記入せよ

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information