Ogawa SFC ( ) 1. Fourier (SFC),. SFC Ogawa, [5], [1], [6]. [5], [1], SFC, [6], cross variation., CONS Ogawa cross variation. 2. (B t ) t [0,1] filter

Size: px
Start display at page:

Download "Ogawa SFC ( ) 1. Fourier (SFC),. SFC Ogawa, [5], [1], [6]. [5], [1], SFC, [6], cross variation., CONS Ogawa cross variation. 2. (B t ) t [0,1] filter"

Transcription

1 Ogawa SFC ( ). Fourier (SFC),. SFC Ogawa, [5], [], [6]. [5], [], SFC, [6], cross variaion., CONS Ogawa cross variaion. 2. (B ) [,] filer (Ω, F, (F ) [,], P ) Brown, (e n ) n N L 2 ([, ] ; C) CONS e n,. L 2 ([, ] ; R) CONS (φ m ) m N, sup M φ m φ m(s) ds. L L [,]< 2 ([, ] ; R) 2 M N m= CONS Ogawa ( Ogawa ), Iô, r i- parameer 2 Wiener Sobolev, Skorokhod d B, db, Lr,2 i, δb ([2] Definiion 2.,2.3,2.4 ). X, Y : [, ] L (Ω) cross variaion, X, Y, quadraic variaion X, X, [X]. a L ([, ] Ω ; C), b L (Ω ; L 2 ([, ] ; C)). ( Ogawa SFC) n N, e n a Ogawa. Ogawa d Y = a() d B + b() d, [, ] (e n ) n N Fourier ( Ogawa SFC,, SFC-O ) (e n, d Y ) : (e n, d Y ) := e n () d Y = e n ()a() d B + e n ()b() d., b =, (e n, d Y ) = (e n, a d B) a() SFC-O. 3. Ogawa SFC, (L ([, ] Ω) ) : A = {A L ([, ] Ω) Re A, Im A a.s. }, { } M = f db f L (Ω ; L 2 [, ]), f (F ) [,] -, { } { } W = f δb f L 2,2 + span T K f f L,2, sup K(, ) L 2 [,] <, [,], f L,2, K L 2 ([, ] 2 ), T K f() := K(, s)f(s) ds., A, W. L = A + M + W. su332@edu.osakafu-u.ac.jp

2 a L, : () v : [, ] R, va Ogawa. (2) L 2 - (v n ) n N, l.i.p. v na d φ B =., P((e n, d Y )) n N () := l.i.p. N N n=, d Y = a() d B + b() d, [, ]. n e n(s) ds (e n, d Y ) = Y, [, ],, P cross variaion, SFC-O L e, PC : L e, PC {a = L ([, ] Ω) P((e n, a d B)) n N = a d B, [ ] s } s, [, ] a d B = a(u) 2 du, a d B, B s = a(u) du. 2 A, M, W L e, PC. L e, PC. a() Re a, Im a L e, PC., d Y = a() d B +b() d, [, ] : () a() ((e n, d Y )) n N a() = d d P((en, d Y )) n N, B. (2) Re a, Im a, Re a Im a, (sgn a)a ((e n, d Y )) n N Y = P((e n, d Y )) n N : f, g L e, PC f(s)g(s) ds = f d B, g d B. ) (2) (B ) [,]. 2) ((e n, d Y )) n N SFC (e n, d Y ) (),(2). 3) a() b ((e n, d Y )) n N. 4) a L, a(). [] K. Hoshino, Idenificaion of finie variaion processes from he SFC. MSJ Auumn Meeing, absrac (27) [2] K. Hoshino, T. Kazumi, On he Ogawa inegrabiliy of noncausal Wiener funcionals, o appear, Sochasics (28) [3] D. Nualar, E. Pardoux, Sochasic calculus wih anicipaing inegrands. Probab. Th. Rel. Fields, 78, pp (988) [4] S. Ogawa, The sochasic inegral of noncausal ype as an exension of he symmeric inegrals. Japan J. Appl. Mah. 2, (985) [5] S. Ogawa, H. Uemura, On he idenificaion of noncausal funcions from he SFCs. RIMS Kôkyûroku. 952, (25-6) [6] S. Ogawa, H. Uemura, On he reconsrucion of random funcion from is SFCs defined by an arbirary CONS. Symposium on Probabiliy Theory, absrac (27) sgn z = if arg z < π, sgn z = o/w, z C (arg := ).

3 websie: hps://sies.google.com/sie/ryoichisuzukifinance/ December 9, 28. Locally risk-minimizing (LRM) is a well-known hedging mehod for coningen claims in a quadraic way (see e.g., [2] and [3]). By using Malliavin calculus, we can obain explici represenaions of LRM for incomplee marke models whose asse price process is described by a soluion o a sochasic differenial equaion (SDE) driven by a Lévy process ([]). On he oher hand, here is one imporan derivaive securiy describe by indicaor funcion called digial opion. A digial opion pays a fixed cash amoun if some condiion is realized. Mahemaical represenaion of digial (or binary) opions are given by { for ST K, [K, ) (S T ) = oherwise, where {S } [,T ] is a sock price process and K > is a consan number ha is fixed by he conrac. I is popular and imporan derivaive securiy. Therefore, o sudy digial opions, we consider Malliavin differeniabiliy of indicaor funcions ([4]). In his alk, we firs consider Malliavin differeniabiliy of indicaor funcions on canonical Lévy spaces. By using i, we obain explici represenaions of LRM for digial opions in markes driven by Lévy processes. References [] T. Arai and R. Suzuki. Local risk-minimizaion for Lévy markes. Inernaional Journal of Financial Engineering. vol.2 (25), no. 2, 555, 28 pp. [2] M. Schweizer. A guided our hrough quadraic hedging approaches. Handbooks in Mahemaical Finance: Opion Pricing, Ineres Raes and Risk Managemen. Cambridge Universiy Press, , 2. [3] M. Schweizer. Local risk-minimizaion for mulidimensional asses and paymen sreams. Banach Cener Publicaions. 83 (28), [4] R. Suzuki. Malliavin differeniabiliy of indicaor funcions on canonical Lévy spaces. Saisics and Probabiliy Leers. 37 (28), 83 9.

4 FBSDES ) () Forward-backward sochasic differenial equaions (FBSDEs) ( ) ( ) X() = X() + b s, ω, Θ(s) ds + σ s, ω, Θ(s) dw (s), Y () = φ (X(T )) + T ( ) f s, ω, Θ(s) ds T Z(s) dw (s), Θ (X, Y, Z) (X(), Y (), Z()) [,T ] R l R m R m d W d- Wiener b, f, σ, φ FBSDEs () Y (T ) = φ (X(T )) Sochasic differenial equaions (SDEs), [8] [4] Conracion mapping: T >. The Four Sep scheme:. The mehod of coninuaion: monooniciy. (X, Y, Z) (X n, Y n, Z n ) Newon : φ, b, f, σ ) ) X n+ () = X n+ () + b n (s, ω, Θ n+ (s) ds + σ n (s, ω, Θ n+ (s) dw (s), (2) Y n+ () = φ n (X n+ (T )) + T ) f n (s, ω, Θ n+ (s) ds T Z n+ (s) dw (s). φ n (x) = φ(x n (T )) + x φ(x n (T ))(x X n (T )), x R l b n, σ n, f n () θ = (x, y, z) R l R m R m d ) ( ) ( ) b n (s, ω, θ = b s, ω, Θ n (s) + θ b s, ω, Θ n (s) (θ Θ n (s)), (s, ω, θ) [, T ] Ω R l R m R m d, σ n, f n b n, σ n, f n Θ n (X n, Y n, Z n ) (X n (), Y n (), Z n ()) [,T ] well-defined FBSDEs () [4]. [6] X (Y, Z) decoupled FBSDEs, (3) X() = X() + Y () = φ (X(T )) + b(s, X(s)) ds + T σ(s, X(s)) dw (s), f(s, X(s), Y (s), Z(s)) ds T Z(s) dw (s). Theorem ([6]). b, σ, f, φ (s, ω)-a.e. ( ) T ( ) E X() 2 2 ( ) σ 2 ( ) f 2 + b s, ω, + s, ω, + s, ω,,, ds <,

5 decoupled FBSDEs (3) T b, σ, f C > X () = X() (X, Y, Z ) S 2 l S2 m H 2 (X X n+, Y Y n+, Z Z n+ ) C2 n, n N {}. [5, page 453] [2, Theorem XVI] Vidossich Chaplygin Banach [7, Theorem (.3)] SDEs [3]. decoupled FBSDEs Forward X [] Gronwall Backward (Y, Z) T > m N { [ ] } S 2 m = Y : Ω [, T ] R m coninuous, adaped : Y S 2 m = E sup Y (s) 2 <, s T { [ ] } T H 2 = Z : Ω [, T ] R d adaped : Z H 2 = E Z(s) 2 ds <, Banach S 2 m H 2 S 2 l (Y, Z) 2 = Y 2 S + 2 Z 2 m H 2, X 2 = X 2 S. 2 l α R, [ ] [ ] T (Y, Z) 2 α = E sup e αs Y (s) 2 + E e αs Z(s) 2 ds. s T Kanorovich n N [6] References. Kazuo Amano, A noe on Newon s mehod for sochasic differenial equaions and is error esimae., Proc. Japan Acad., Ser. A 85 (29), no. 3, L Kanorovich, The mehod of successive approximaions for funcional equaions, Aca Mah. 7 (939), Shigeoku Kawabaa and Toshio Yamada, On Newon s mehod for sochasic differenial equaions, Séminaire de probabiliés de Srasbourg, Lecure Noes in Mah., vol. 485, Springer, Berlin, 99, pp Jin Ma, Zhen Wu, Deao Zhang, and Jianfeng Zhang, On well-posedness of forward-backward SDEs a unified approach., Ann. Appl. Probab. 25 (25), no. 4, J M Orega and W C Rheinbold, Ieraive soluion of nonlinear equaions in several variables, Classics in Applied Mahemaics, vol. 3, Sociey for Indusrial and Applied Mahemaics (SIAM), Philadelphia, PA, Dai Taguchi and Takahiro Tsuchiya, Newon-Kanorovich mehod for decoupled forward-backward sochasic differenial equaions, (28). 7. Giovanni Vidossich, Chaplygin s mehod is Newon s mehod, Journal of Mahemaical Analysis and Applicaions 66 (978), no., Jianfeng Zhang, Backward sochasic differenial equaions. From linear o fully nonlinear heory., New York, NY: Springer, 27. QR

6 CONSERVATIVENESS AND FELLER PROPERTY OF DIFFUSION PROCESSES ON RIEMANNIAN MANIFOLDS WITH m-bakry-émery RICCI TENSOR FOR m (K. Kuwae). Laplacian Xiang-Dong Li Laplacian [5], Songzi Li [6]. (M, g) ϕ C 2 (M) C (M) L L := ϕ, µ := e ϕ vol g M ( Lf)gdµ = M f, g dµ =: E(f, g) f, g C (M) L Wien Laplacian Laplacian (E, F) (E, C (M)) L2 (M; µ) (E, F) X = (Ω, X, P x ) (E, F) L 2 (M; µ)- (ϕ C (M) [3, 7.5] ) m ], + ] m-bakry-émery Ric m,n(l) Ric m,n (L)(x) := Ric(x) + Hess ϕ(x) ϕ(x) ϕ(x) m n M K Ric m,n (L)(x) K(x), x M CD(K, m) m = n ϕ Ric m,n (L)(x) = Ric(x) m n K (M, d g, µ) RCD(K, m)- m Laplacian L ([5]) X Feller r p (x) := d g (x, p) m = κ [9]. (Laplacian [5], cf. [9]). x, p M, m Ric m,n (L)(x) (n m)κ(s p (x))e 4ϕ(x) n m Lr p (x) (n m)co κ (s p (x))e 2ϕ(x) n m s p (x) < δ κ κ [, + [ s p (x) { } rp (x) s p (x) = inf e 2ϕ(γ ) n m d γ γ = p, γ rp(x) = x co κ lim s s co κ (s) = Riccai (.) dco κ ds (s) = κ(s) + co κ(s) 2, [, δ κ [ δ κ κ δ κ = + δ κ < lim s δκ (δ κ s) co κ (s) = κ κ co κ (s) = κ cos( κs)/ sin( κs), δ κ = π/ κ +

7 2. ϕ p (r) := inf Br (p) ϕ K [, + [ (K) : (K) : r o dr ( ) = + for some r o >. K e 2ϕ p(r) n m r e 2ϕ p(r) n m (K) p M 2. (X ). p M (K) (2.) Ric m,n (L)(x) K(s p (x))e 4ϕ(x) n m for any x M m ], ] X 2.2 (X Feller ). (K) (2.2) Ric m,n (L)(z) K(s q (z))e 4ϕ(z) n m for any z, q M m ], ] X Feller 2. Grigor yan [2] 2.2 Azenco [] Feller ([4] Laplacian ) m n Laplacian Ric m,n (L)(x) (m )κ(r p (x)) Lr p (x) (m )co κ (r p (x)), r p (x) < δ κ, X Feller (K) r o dr K (r) = + for some r o > ([8, Theorems.4 and.5]) References [] R. Azenco, Behavior of diffusion semi-groups a infiniy, Bull. Soc. Mah. France 2 (974), [2] A. Grigor yan, On sochasically complee manifolds, Dokl. Akad. Nauk. SSSR 29 (986), [3] A. Grigor yan, Hea kernel and analysis on manifolds, AMS/IP Sudies in Advanced Mahemaics, 47. American Mahemaical Sociey, Providence, RI; Inernaional Press, Boson, MA, 29. [4] E. P. Hsu, Sochasic analysis on manifolds, Graduae Sudies in Mahemaics, 38. American Mahemaical Sociey, Providence, RI, 22. [5] K. Kuwae and X.-D. Li, Laplacian comparison heorem on Riemannian manifolds wih CD(K, m)-condiion for m, preprin, 28. [6] K. Kuwae, S.-Z. Li and X.-D. Li, Conservaiveness and Feller propery of diffusion processes on Riemannian manifolds wih m-bakry-émery Ricci ensor for m, 28, preprin. [7] K. Kuwae, S.-Z. Li and X.-D. Li, Liouville heorems and Harnack inequaliies on Riemannian manifolds wih CD(K, m)-condiion for m <, 28, in prepraion. [8] X.-D. Li, Liouville heorems for symmeric diffusion operaors on complee Riemannian manifolds, J. Mah. Pures Appl. (9) 84 (25), no., [9] W. Wylie and D. Yeroshkin, On he geomery of Riemannian manifolds wih densiy, preprin, 26.

8 Geomery of he random walk range condiioned on survival among Bernoulli obsacles Jian Ding (Universiy of Pennsylvania), Rongfeng Sun (Naional Universiy of Singapore), Changji Xu (Universiy of Chicago) Z d Bernoulli (annealed 2 ) (ω, P p ) Z d Bernoulli( p) ({S n } n, P ) d ω = (ω x ) x Z d obsacles O(ω) := {x Z d : ω x = } τ O µ N ( ) := P p P ( τ O(ω) > N) annealed pah measure d 2 Confinemen propery. (Szniman [6], Bolhausen [2] for d = 2, Povel [5] for d 3) d 2, p (, ) ϱ (d, p) > x N (ω) Z d ϵ > ( ) µ N S [,N] B(x N (ω), (ϱ + ϵ)n d+2 ), N. (confinemen) [4] S [,N] B(ω) ( ) N ϵ >, µ d N d+2 S[,N] B(, ϱ ) > ϵ, N. [2] Theorem. Confinemen propery x N ϵ > ( ) µ N S [,N] B(x N (ω), (ϱ ϵ)n d+2 ), N. (covering) Remark. Beresycki Cerf [] (confinemen) (covering) Bolhausen [2] (covering) (confinemen) [] d 3 ryoki@kurims.kyoo-u.ac.jp 2 quenched

9 (confinemen) (covering) log N B(x N (ω), ϱ N d+2 ) Theorem 2. a > ( ) µ N S [,N] N d d+2 (log N) a, N. S [,N] B(x N (ω), ϱ N d+2 ) Hausdorff 99 Szniman References [] N. Beresycki and R. Cerf. The random walk penalised by is range in dimensions d 3. arxiv:8.47. [2] E. Bolhausen. Localizaion of a wo-dimensional random walk wih an aracive pah ineracion. Ann. Probab. 22, , 994. [3] J. Ding, R. Fukushima, R. Sun and C. Xu. Geomery of he random walk range condiioned on survival among Bernoulli obsacles. arxiv: [4] R. Fukushima. Asympoics for he Wiener sausage among Poissonian obsacles. J. Sa. Phys. 33, , 28. [5] T. Povel. Confinemen of Brownian moion among Poissonian obsacles in R d, d 3. Probab. Theory Relaed Fields 4, 77 25, 999. [6] A.-S. Szniman. On he confinemen propery of wo-dimensional Brownian moion among Poissonian obsacles. Comm. Pure Appl. Mah. 44, 37 7, 99. 2

10 A limi heorem for persisence diagrams of random complexes buil over marked poin processes * * 2 Euclid birh deah q = {(x, y) [, ] 2 : x < y } q = = =2 =3 deah 3 birh 2 Čech 2 S F(S) S M Polish κ : F(R d M) [, ] (K), (K2) (K) A B κ(a) κ(b). (K2) ρ : [, ] [, ] < ρ() < (x, m), (y, n) R d M x y ρ(κ({(x, m), (y, n)})) κ (T) x R d κ(t x A) = κ(a). T x F(R d M) T x A = {(y + x, m) : (y, m) A}. : F(R d M) (R) U O(d) κ(r U A) = κ(a). O(d) d R U : F(R d M) F(R d M) R U A = {(Ux, m) : (x, m) A}. π : R M R Ξ F(R d M) π Ξ Ξ = π( Ξ) Ξ F(R d M) π F( Ξ) σ σ F(Ξ) σ = {(x, m ), (x, m ),..., (x q, m q )} R d σ = {x, x,..., x q } {m, m,..., m q } Ξ F(R d M) K( Ξ) = {K( Ξ, )} K( Ξ, ) = {σ Ξ : κ( σ) } * JST CREST JPMJCR5D3 *2 k-suzaki@imi.kyushu-u.ac.jp

11 κ( σ) K( Ξ) σ. K( Ξ) κ- κ ι s r q H q (K( Ξ, )) K( Ξ, ) q r s : H q (K( Ξ, r)) H q (K( Ξ, s)) K( Ξ, r) K( Ξ, s) H q (K( Ξ)) = ({H q (K( Ξ, ))}, {ι s r} r s ) q H q (K( Ξ)) n q H q (K( Ξ)) I(b i, d i ) ([2]) I(b i, d i ) q K( Ξ) = b i b i i= < d i = d i D q ( Ξ) = {(b i, d i ) : i =, 2,..., n q } q D q ( Ξ) ξ q ( Ξ) = (b i,d i ) D q (Ξ) δ (bi,d i ) Radon Φ R d M R d Φ( ) = Φ( M) R d M R d {T x } x R d {R U } U O(d) R d M Φ Φ R d Borel A p E[Φ(A) p ] < L > Λ L = [ L/2, L/2) d M Φ κ- K( Φ ΛL ) = {K( Φ ΛL, )} q ξ q ( Φ ΛL ) ξ q,l. κ (T) Φ R d Φ. q Radon ν q L E[ξ q,l ]/L d v ν q v κ (R) Φ, L L d ξ v q,l ν q [] [] Y. Hiraoka, T. Shirai and K. D. Trinh, Limi heorems for persisence diagrams, Ann. Appl. Probab. 28 (28) [2] A. Zomorodian and G. Carlsson, Compuing persisen homology, Discree Compu. Geom. 33 (25)

12 Flucuaion resuls in Firs-passage percolaion 3 Firs-passage percolaion, opimizaion problem, random environmen Firs-passage percolaion Hammersley Welsh 965 Z d E(Z d ) e E(Z d ) τ e Z d e e k π (π) = k i= τ e i x, y Z d : T (x, y) := inf{(π) : π x y }. τ e e T (, x) x B() = {x R d T (, [x]) } B() Definiion. τ : { pc (d) if τ =, P(τ e = τ) < p c (d) oherwise, τ τ e suppor p c (d), p c (d) d percolaion d oriened percolaion B() Definiion 2. l > Γ R d Γ l = {v Γ d(v, Γ c ) l} and Γ + l = {v R d d(v, Γ) l}, d A, B R d B A : F (A, B) = inf{δ > B δ A B+ δ }. Theorem. F c, C > > Γ R d P(F (B(), Γ) c log ) C exp ( c ). [] Shua Nakajima Divergence of shape flucuaion for general disribuions in firs passage percolaion arxiv: njima@kurims.kyoo-u.ac.jp

218.8.21 1 2, (Theorem 1) (Theorem 2) 1 2, (Theorem 1) (Theorem 2) . (c.f. De Donno and Praelli, 24) (Ω, F, (F ) [,T ], P):, usual condiions, T < P : predicable σ-field on Ω [, T ] H 2 = { } X : (index

More information

○松本委員

○松本委員 CIRJE-J-100 2003 11 CIRJE hp://www.e.u-okyo.ac.jp/cirje/research/03research02dp_j.hml Credi Risk Modeling Approaches 2003 11 17 Absrac This aricle originaes from a speech given by he auhor in he seminar

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

2次Wiener汎関数について

2次Wiener汎関数について .. 2 Wiener 213 9 21 2 Wiener 213 9 21 1 / 18 Plan Plan. 1. 2 2 Wiener F-L. 3 2 Wiener. 4 2 Wiener. 5 Wiener 2 Wiener 213 9 21 2 / 18 1979B4 198M1 Dym-McKean: Fourier series and inegrals Sroock-Varadhan:

More information

CEV(Constant Elasticity of Variance) FE 1

CEV(Constant Elasticity of Variance) FE 1 23 6 1 CEV(Consan Elasiciy of Variance) FE 1 1 (Karazas and Shreve[1998] Carr, Jarrow and Myneni[1992] J. Huang, Subrahmanyam and Yu[1996] ) S 1 ds =(r δ)s d + σ(s )dw,s = x(> ) r δ K T sup E[e rτ (K S

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

Forward Backward Stochastic Differential Equationsに関する一考察

Forward Backward Stochastic Differential Equationsに関する一考察 Forward Backward Sochasic Differenial Equaions Backward Sochasic Differenial EquaionsBSDE s Forward Backward Sochasic Differenial Equaions FBSDE s forward process backward process BSDE s FBSDE s BSDE sfbsde

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

βdxβ r a, < E e uγ r ha d E e r dx e r γd e r βdx 3.2 a = {a} γ = {γ} max E e r dx e r γd e r βdx, 2 s.. dx = qand + σndz, 1 E e r uγ ha d, 3 a arg maxã E e r uγ hã d. 4 3.3 γ = {γ : γ, γ} a = {a : a,

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

デフォルト相関係数のインプライド推計( )

デフォルト相関係数のインプライド推計( ) ,,,.,.,.,,.,,.,,.,,. :,, OU, SUR,.,.,,.,.., 62 1, BIS,.,.,,,,.,,.,.,, [33],,,.,,.,,,,.,,.,,,.. 2,. 3,. 4,,. 5. 2,,.,. 2.1,.,,.,. Giesecke [10] dependen defaul.,,,, GDP,.,,.,...,,,.,.,.,,.,,. Giesecke [10],

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v 12 -- 1 4 2009 9 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 c 2011 1/(13) 4--1 2009 9 3 x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2

More information

prime number theorem

prime number theorem For Tutor MeBio ζ Eite by kamei MeBio 7.8.3 : Bernoulli Bernoulli 4 Bernoulli....................................................................................... 4 Bernoulli............................................................................

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25 .. IV 2012 10 4 ( ) 2012 10 4 1 / 25 1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) 2012 10 4 2 / 25 1. Ω ε B ε t

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

Grushin 2MA16039T

Grushin 2MA16039T Grushin 2MA1639T 3 2 2 R d Borel α i k (x, bi (x, 1 i d, 1 k N d N α R d b α = α(x := (αk(x i 1 i d, 1 k N b = b(x := (b i (x 1 i d X = (X t t x R d dx t = α(x t db t + b(x t dt ( 3 u t = Au + V u, u(,

More information

Chebyshev Schrödinger Heisenberg H = 1 2m p2 + V (x), m = 1, h = 1 1/36 1 V (x) = { 0 (0 < x < L) (otherwise) ψ n (x) = 2 L sin (n + 1)π x L, n = 0, 1, 2,... Feynman K (a, b; T ) = e i EnT/ h ψ n (a)ψ

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

IPSJ SIG Technical Report Vol.2010-CVIM-172 No /5/ Object Tracking Based on Generative Appearance Model 1. ( 1 ) ( 2 ) ( 3 ) 1 3) T

IPSJ SIG Technical Report Vol.2010-CVIM-172 No /5/ Object Tracking Based on Generative Appearance Model 1. ( 1 ) ( 2 ) ( 3 ) 1 3) T 1 2 2 3 1 Objec Tracking Based on Generaive Appearance Model 1. ( 1 ) ( 2 ) ( 3 ) 1 3) Tasuya YONEKAWA, 1 Kazuhiko KAWAMOTO, 2 Asushi IMIYA 2 and Akihiro SUGIMOTO 3 We propose a mehod for racking objecs

More information

jpxwp_032917r3_upload

jpxwp_032917r3_upload : ( ),, CRESTJST 2017 4 28 ( ) 2017 4 28 1/21 (lead-lag).., Hoffman, Rosenbaum and Yoshida (2013) Dobrev and Schaumburg (2015) H. and Koike (2016) (Cross-marke, single-asse analysis) 3 (, Japannex,Chi-XJapan)

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

ADM-Hamiltonian Cheeger-Gromov 3. Penrose ADM-Hamiltonian 1. 2. Cheeger-Gromov 3. Penrose 0. ADM-Hamiltonian (M 4, h) Einstein-Hilbert M 4 R h hdx L h = R h h δl h = 0 (Ric h ) αβ 1 2 R hg αβ = 0 (Σ 3, g ij ) (M 4, h ij ) g ij, k ij Σ π ij = g(k

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

Design of highly accurate formulas for numerical integration in weighted Hardy spaces with the aid of potential theory 1 Ken ichiro Tanaka 1 Ω R m F I = F (t) dt (1.1) Ω m m 1 m = 1 1 Newton-Cotes Gauss

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II Brown Brown

II Brown Brown II 16 12 5 1 Brown 3 1.1..................................... 3 1.2 Brown............................... 5 1.3................................... 8 1.4 Markov.................................... 1 1.5

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W 003 7 14 Black-Scholes [1] Nelson [] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-Wu Nelson e-mail: takatoshi-tasaki@nifty.com kabutaro@mocha.freemail.ne.jp

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

4 5.............................................. 5............................................ 6.............................................. 7......................................... 8.3.................................................4.........................................4..............................................4................................................4.3...............................................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

重力方向に基づくコントローラの向き決定方法

重力方向に基づくコントローラの向き決定方法 ( ) 2/Sep 09 1 ( ) ( ) 3 2 X w, Y w, Z w +X w = +Y w = +Z w = 1 X c, Y c, Z c X c, Y c, Z c X w, Y w, Z w Y c Z c X c 1: X c, Y c, Z c Kentaro Yamaguchi@bandainamcogames.co.jp 1 M M v 0, v 1, v 2 v 0 v

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t) 338 7 7.3 LCR 2.4.3 e ix LC AM 7.3.1 7.3.1.1 m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x k > 0 k 5.3.1.1 x = xt 7.3 339 m 2 x t 2 = k x 2 x t 2 = ω 2 0 x ω0 = k m ω 0 1.4.4.3 2 +α 14.9.3.1 5.3.2.1 2 x

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

untitled

untitled 1 kaiseki1.lec(tex) 19951228 19960131;0204 14;16 26;0329; 0410;0506;22;0603-05;08;20;0707;09;11-22;24-28;30;0807;12-24;27;28; 19970104(σ,F = µ);0212( ); 0429(σ- A n ); 1221( ); 20000529;30(L p ); 20050323(

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

chap1.dvi

chap1.dvi 1 1 007 1 e iθ = cos θ + isin θ 1) θ = π e iπ + 1 = 0 1 ) 3 11 f 0 r 1 1 ) k f k = 1 + r) k f 0 f k k = 01) f k+1 = 1 + r)f k ) f k+1 f k = rf k 3) 1 ) ) ) 1+r/)f 0 1 1 + r/) f 0 = 1 + r + r /4)f 0 1 f

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

untitled

untitled Absra We invesigae onemporaneous and ineremporal relaionship among eess reurns of J-REIT and oher finanial asses, suh as soks and bonds, by using weekly and monhly daa from Sepember 2001 o Oober 2004.

More information

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha 63 KdV KP Lax pair L, B L L L / W LW / x W t, t, t 3, ψ t n / B nψ KdV B n L n/ KP B n L n KdV KP Lax W Lax τ KP L ψ τ τ Chapter 7 An Introduction to the Sato Theory Masayui OIKAWA, Faculty of Engneering,

More information

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,. 1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, 2015. webpage,.,,. 2 1 (1),, ( ). (2),,. (3),.,, : Hashinaga, T., Tamaru, H.: Three-dimensional solvsolitons and the

More information

Anderson ( ) Anderson / 14

Anderson ( ) Anderson / 14 Anderson 2008 12 ( ) Anderson 2008 12 1 / 14 Anderson ( ) Anderson 2008 12 2 / 14 Anderson P.W.Anderson 1958 ( ) Anderson 2008 12 3 / 14 Anderson tight binding Anderson tight binding Z d u (x) = V i u

More information

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x

Shunsuke Kobayashi 1 [6] [11] [7] u t = D 2 u 1 x 2 + f(u, v) + s L u(t, x)dx, L x (0.L), t > 0, Neumann 0 v t = D 2 v 2 + g(u, v), x (0, L), t > 0. x Shunsuke Kobayashi [6] [] [7] u t = D 2 u x 2 + fu, v + s L ut, xdx, L x 0.L, t > 0, Neumann 0 v t = D 2 v 2 + gu, v, x 0, L, t > 0. x2 u u v t, 0 = t, L = 0, x x. v t, 0 = t, L = 0.2 x x ut, x R vt, x

More information