i

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "i 1 1 1.1....................... 1 1.1.1............................ 1 1.1.2................... 4 1.1.3....................... 5 1.2.................."

Transcription

1 2014 3

2 i VEP VEP VEP VEP VEP VEP VEP

3 ii VEP VEP

4 iii VEP F 2F VEP

5 ,,,,,.,..,, ,,,,,,, [1].,,,,,, 25% [2]. (Neuron) (Glia), 1000 [3][4]. 1,,,.,, [3][4]. Fig. 1.1., (Retina), (Lateral geniculate nucleus: LGN), (Visual cortex)., µm [5]. 3 3, Helmholtz 3,,, 3 (Young-Helmholtz ) [5]. 3, 3 (Cone), (Rod) 4 [5][6][7][8] , 530, 430 nm, L, M, S, [5][6][7][8].,, 500 nm [6]. 4

6 1 2 Fig. 1.1: Visual information process, 5, [6]., 0.35 S [5][6][9]., S 6%, L M 1:1-17:1 [6]., 1.25, 20 [6]., Retinal, [5]. Fig (Bipolar cell), (Retinal ganglion cell) [5][6][7][8]. 1, 1 [8]., [2][5][10]. 80% Midget, 10% Parasol Bistratified, [2]. Parasol, L M,, [5][10][11].,,, [5][10][11]. Midget L M,, L ( ), M ( ) [5][11]. Parasol,,, [5][11]. Bistratified, 3, S

7 1 3 ( ), L M ( ) [2][8][12]., Midget [2][12]., ( : Optic nerve) (LGN), LGN (Primary visual cortex: V1) [2][5][10][11]., ( ), ( ). [5][7][8]. LGN 6, 4 (Magnocellular layer), 2 (Parvocellular layer), (Koniocellular layer) (Fig. 1.1)[8]. Parasol LGN V1 4Cα, Midget LGN V1 4Cβ, Bistratified LGN V1 2/3 blob [2][5]., V1,, 3 [13], [14]. V1 2 (V2). V2 (Thick stripe), (Interstripe), (Thin stripe) 3 (Fig.1.1) [5]. V1 4Cα, 4B V2 5 /MT (Dorsal pathway)., V1 2/3 blob V2, V1 2/3 interblob V2 4 (V4) (Ventral pathway) [5][10][11]., [5][10][11]. Fig. 1.2: Diagram of visual information processing

8 ,,.,, [3][4]., Fig. 1.3,.,,,,. (Electroencephalogram: EEG) [3][4][15].,, [4]. Fig. 1.3, (Cerebrospinal fluid),,, (Meninges), (Skull) (Scalp) [1]. 4, ( )[16]. 80 1, mv µv. Fig. 1.3: Generation and conduction of electroencephalogram, [5].,.,, [5]

9 1 5.,,, [13][14][17][18][19][20][21]., [5][7][22].,, (Magnetoencephalogram: MEG), (Electroretinogram: ERG)., (MRI), (PET), (SPECT), MRI (fmri), (NIRS). fmri PET, NIRS, [23][24][25][26][27],,. MEG,,, [15][22].,,,,, (Visual evoked potential: VEP), [2],.,,, (time-locked) (event related) [28]. VEP, (Somatosensory evoked potentials: SEP), (Auditory evoked potentials: AEP) [28]. Berger 1929, Dawson [16]. Dawson, [16]. VEP 1964 Cigarek Gastaut [11][16], 1970 Halliday VEP [11][16],.

10 VEP,., VEP, VEP ,,,., / [16]., Fig [30]. VEP, Halliday (Queen Square ) [4][11][16][31], [32]. 2. 2, 1 (Reference derivation), 1 (Bipolar derivation).,,,., (Fig. 1.4 A1, A2),,, [16]..,,,, ERG, [4].,.,, δ (0.5-4 Hz), θ (4-8 Hz), α (8-13 Hz), β (13 Hz -) [4][16]., 25-65, 25, 65 [16]., VEP, VEP. µv, µv - µv [29]. VEP, , [4][16].,

11 1 7 Fig. 1.4: International system, Dawson, [4][16][33].,,. Fig. 1.5, (Segment 1, Segment 2,...) (Trigger) [33][34].,,., ,,,., LGN,

12 1 8 Fig. 1.5: Averaging method [11]. VEP, checkerboard grading.,,,,, [11][29].,.,, [11]. VEP, ( ) transient VEP steady-state VEP 2 (Fig. 1.6)[2][11]. transient VEP, VEP, 1 Hz (Fig. 1.6 (a)). VEP, ( ) 75 ms (N75), 100 ms (P100), 145 ms (N145) [2][11]., transient VEP [2][11]., N75 V1

13 1 9 4C, P100 V1 2/3, N145 V1 - V3 [2][11]. 3.5 Hz, 1,,. VEP steady-state VEP (Fig. 1.6 (b)). steady-state VEP,, (First harmonic: 1F) 2 (Second harmonic: 2F) (Fig. 1.6 (c)), [2][11]., [35][36][37]. Complex demodulation Wavelet [38][39][40]., steady-state VEP, transient VEP [2][11]., transient VEP steady-state VEP, [2], transient VEP steady-state VEP [2]. Fig. 1.6: transient VEP and steady-state VEP

14 VEP.,., VEP, VEP VEP,,,, [16][29]., VEP [41][42]., [43]. VEP P100, P100. VEP,, [16][29], 3 [16][29]., P100, 60 [29]., P100, [29]. Fig. 1.7 ERG VEP [2]. ERG (Flash ERG) (Retinal dysfunction), ERG (Pattern ERG) (Optic Neuropathy or Maculopathy). VEP (Full-field VEP), (Prechiasmatic Lesion). CT MRI, VEP [2]. VEP (Hemi-field VEP), (Retrochiasmatic Lesion),. VEP, VEP (Multimodality VEP) ,,.,, VEP, VEP [44].

15 1 11 Fig. 1.7: Algorithm of sequential steps which process visual function[2], checkerboard VEP, [42]. ( ) VEP,., Regan Celesia [39][46][48][45].[49][50]. Regan, steady-state VEP, 10 Hz, 16 Hz, Hz 3 [39][46][48]. 3 steady-state VEP,,.,, 1F 10 Hz, 2F 5 Hz VEP, [45]. Celesia, steady-state VEP (critical frequency of photic driving: CFPD),,,, [49][50].,, VEP [48][51][52],, VEP ERG, VEP VEP [51].,,,,,, / / VEP [53][54].,, ( / ) ( /, / ) [55],,.

16 , VEP., VEP,., VEP, VEP,., VEP,., VEP,, VEP, ( ),, VEP.,,, α.,,.,, VEP., VEP,.,,,., VEP, VEP, VEP 1,.,,, VEP, (Dominant rhythm) 10 Hz α, [4]., VEP [4].,, [61], [62][63][64], VEP [65][66][67]. VEP, VEP,. VEP,,,

17 1 13,., VEP,.,,,., VEP,,, VEP,., VEP, VEP VEP, VEP,, VEP,., VEP,,. 1.5, VEP,,, VEP, VEP., Fig. 1.8, VEP, VEP, VEP, 3. VEP, VEP,.,,, [68][69][70][71][72][73][74][75], VEP,. 2, [76]. VEP, VEP., [77], [78][79],,,

18 , [80], VEP,., [81][82]. 3,,, [83]. 4, 3, [84]. VEP, VEP,. 5, 6, VEP,.,, VEP. (simusoidal modulated light) [45][46][48][56][57], [53][54].,,., [19], ERG [58]. VEP, [59][60], 10 Hz,. 5,, VEP [85]. 6,, VEP, VEP [86]. 7, VEP,,,.

19 1 15 Fig. 1.8: Structure of thesis

20 (visual evoked potential: VEP),, [2]. VEP,,, [43]. VEP,, ( ),,. VEP,,. VEP,, VEP [11].,,,.,,. VEP,,, VEP.,,, [87], [68], [88][69][89], [70][71][72], [90][73][91][92].,, [74], [75], [68][69][70][71][72][73][74][75].,, VEP [93],, [94][95]., VEP,,., VEP,

21 2 17, [96]., VEP,, VEP. VEP,, VEP.,, α.,,,., VEP 10,. 2.2 VEP VEP VEP,, Fig VEP (conventional VEP recording), (measurement equipment) (subject) (visual stimuli), (EEG)., (stimulus genera-tor), (biological amplifier), (signal analyzer).,, LED,.,, VEP. VEP (recorded EEG and VEP), (medical doctor or medical technologist)., VEP, VEP, (instruction)., VEP,,. (real-time evaluation system), Fig. 2.1., (EEG data and recording condition), VEP,.,, VEP., VEP,.,,. VEP, VEP (state of VEP appearance) (state of subjects). VEP, VEP (averaged waveform and power spectrum), VEP (characteristic parameters)

22 2 18 Fig. 2.1: The concept of conventional VEP recording (broken line) and proposed structure of VEP recording including real-time evaluation system..,, (comparison with data base)., VEP, (blink artifacts) (EMG artifacts), α (posterior alpha wave) 3,., VEP, VEP VEP,,. VEP, [85],., VEP., VEP FFT.,, VEP., (1F ), 2, 3, 4 (2F, 3F, 4F ),, S(f, 1), S(f, 2), S(f, 3), S(f, 4), S(f, a), (= S(f, 1) + S(f, 2) + S(f, 3) + S(f, 4))., f [Hz]., 1F, 2F, 1F 4F VEP, A(f, 1) = 4 S(f, 1), A(f, 2) = 4 S(f, 2), A(f, a) = 4 S(f, a) [85]. VEP, 1F 2F VEP [%]

23 2 19, R(f, 1) = S(f, 1)/S(f, a) 100 [%], R(f, 2) = S(f, 2)/S(f, a) 100 [%]., VEP.,,., VEP, ,.,. VEP,, VEP. [95], VEP.., x, 5 Hz 2. Fig. 2.2.,, t f, t p, t b. 3, A f B(x, t p ), A b B(x, t p ) [µv], D f B(x, t p ), D b B(x, t p ) [s]., (A f B(x, t p ))/(D f B(x, t p )). A f B(x, t p ) 30 [µv] (2.1) A b B(x, t p ) 40 [µv] (2.2) D f B(x, t p ) + D b B(x, t p ) 0.52 [s] (2.3) (A f B(x, t p ))/(D f B(x, t p )) 200 [µv/s] (2.4), (2.1) - (2.4), t p.

24 2 20 Fig. 2.2: Parameters on blink artifacts detection.,. 1 T [s], N B, R B = N B /T (2.5). (2.5), θ B R B θ B (2.6),. α, α ( ). VEP,, α,.,,,.,,. α, complex demodulation (CD) [97]. CD,,,. CD, f 0 [Hz], f c [Hz], f 0 ± f c [Hz]. α 8-13 [Hz], 8 [Hz] 13 [Hz] 10.5 [Hz] f 0, α

25 [Hz] f c., CD, [98], 2., CD x t α, A α (x, t) [µv]. α,., 7 [µv] 3 α [4],, A α (x, t) 0.3 [s] 10 [µv], α. α, α. 1 T [s], α T α [s],, α R α = T α /T 100 [%] (2.7)., α R α θ α, α. R α θ α (2.8),., VEP (2F, 3F, 4F ),. CD,., VEP, [Hz]., CD 40 [Hz], 10 [Hz]. α, x t A E (x, t) [µv].,, A E (x, t) 0.05 [s] 10 [µv],. α, x 1 T [s] T E (x) [s],. R E (x) θ E R E (x) = T E (x)/t 100 [%] (2.9) R E (x) θ E (2.10),.

26 , [85] VEP., 2, 6-18 [Hz] 14, 50 [s] [30] 10 (Oz, Pz, Cz, Fz, O1, O2, P3, P4, T5, T6),, 200 [Hz], 0.53 [Hz], 60 [Hz], VEP. 10 ( A - J, 21-24, ), 1, 90.,,,., Fz, α Oz,., θ B = 0.2, α θ α = 30 [%], θ E = 30 [%].,, α,,,., (dynabook satellite T31 186C/5W, ) AD (CBI-3133B, Interface), C (Visual C++, Microsoft). VEP, (VSGThree, Cambridge Research System), (HM903D B1, iiyama), (Neurofax EEG-4524, ).,, AD 200 [Hz]. Fig. 2.3., 2. VEP ( :, : ),,

27 2 23.,, α,,.,, α,.,,,. Fig. 2.3: An example of screenshot of real-time evaluation system VEP Fig. 2.4, 1 ( J, 21 ) VEP,. Fig. 2.4 (a) VEP, (b) 1F, (c) 2F.,,,, 9., VEP,. Fig. 2.4,,, 1,

28 2 24., 3 ( VEP, 1F, 2F ) 1., VEP,. Fig. 2.4: Characteristic parameters of VEP vs. temporal frequency. Amplitudes of VEP for (a) whole component, (b) 1F component and (c) 2F component , 1, Fig Fig. 2.5, I (24 ),, 6-18 [Hz]. Fig. 2.5 (a),, α, 3, (2.5), (2.7), (2.9).,,

29 2 25., 1 1 ( 50 [s]),.,,. Fig. 2.5 (a), 6, α 33.1 [%], ( ). 7, ( ).,, 8.8,. Fig. 2.5 (b), (c), (d),, α,. Fig. 2.5 (b), (c) 6 7, Fig. 2.5 (d) 4., 1 50 [s],,, α,., Fig. 2.5 (a),,., Fig. 2.5 (b) α, Fig. 2.5 (c). Fig. 2.5 (d),, (b), (c) VEP, VEP,. Fig. 2.6 (a), G (21 ) 12 [Hz],. Fig. 2.6 (a-1),, VEP (1F, 2F ),, α,. Fig. 2.6 (a-2) VEP, (a-3), 2., α 33 [%],,., (, 12 [Hz]), Fig. 2.6 (b). Fig. Fig. 2.6 (a).fig. 2.6 (b-1),, VEP 1F 4.9 [µv], 1.7 [µv]. 2F 0.45 [µv] 0.33 [µv], Fig. 2.6 (a-3) (b-3), 2F. Fig. 2.6 (b-2), VEP, (b-3),.

30 2 26,, VEP. 1,, VEP VEP,,.,. VEP,,,.,.,,,., VEP,.,. VEP,,.,,. 1,, VEP.,, VEP.,. Fig. 2.5, VEP,.,,,. Fig. 2.6,, VEP,.,, VEP,., VEP., VEP,., VEP,,

31 2 27,,.,, VEP, , Bradnam [93], VEP,. de Beer [94],,.,., VEP,, α, 3, , 3,.,,,.,,,., VEP,, α, 3,,,,,,.,,., 3, ,, AD,.,, USB,. Bradnam [93],,, VEP 1 PC VEP.,,,.

32 , [85] ( 4 [Hz] steady state VEP), VEP. VEP, 1-2 [Hz] pattern reversal VEP flash VEP. VEP transient VEP,, N75, P100, N145., VEP, VEP.,,,,. α,.,.,,,,., VEP,,.,, VEP. 2.5 VEP,., VEP.,,, α VEP, VEP.,, VEP.

33 2 29 Fig. 2.5: Real-time evaluation of state of subject during VEP recording (Subject I, 24 y. o., Male). (a) shows parameters for evaluating the state of subject. (b), (c) and (d) correspond the detail results of detected segments for each evaluation item.

34 2 30 Fig. 2.6: Comparison of VEP responses between (a) before taking rest and (b) after taking rest. (a-1) parameters, (a-2) averaged waveform of VEP and (a-3) power spectrum for the data before taking rest. (b-1), (b-2) and (b-3) correspond same ones for the data after taking rest.

35 (visual evoked potential: VEP), [2],, [2][33]. VEP,,.,,., ( ). [61], [62] VEP [65]., VEP [16]., VEP,,., VEP,., jitter [99], [77]. [77],,. VEP, [100], [78], [79].,., [80], VEP [101][102]., [101][102],,.

36 VEP [33] VEP Fig. 3.1., (Fig. 3.1(a)), (Fig. 3.1(b) ), (Fig. 3.1(c) ). 3.5 [Hz] steady-state VEP, f s [Hz] 1F, 2 2F, (Fig. 3.1(c) ) VEP [2]. Fig. 3.1: Outline of conventional analysis method for estimating VEP amplitude. [33],, VEP., flash VEP [11],, ( ).,

37 3 33 VEP., VEP,., (Fig. 3.1(b) ), (Fig. 3.1(d)). [103],, VEP., (f s [Hz] 2f s [Hz]), VEP, VEP,.,,, VEP , Fig. 3.1(d), ( )[80] VEP, ( ),,.,,.,., VEP., 1, 1,. g (f) = K { 0.25 t ( σ ξ ) 2 k k=1 1 + (γ k ) 2 2γ k cos 2π t(f m k ) ) t ( σ ξ } k 1 + (γ k ) 2 2γ k cos 2π t(f + m k ) + t(σ v ) 2 (3.1).g(f) f [Hz], m k, γ k 1, σ ξ k, σv, t., m k, Fig Fig. 3.2 (a) f s [Hz] VEP

38 3 34., K (m k, γ k, σ ξ k σv ). f s [Hz] VEP (Fig. 3.2 (b)), (Fig. 3.2 (c)) (Fig. 3.2(d)), VEP. Fig. 3.2: Estimation of VEP and dominant rhythm component by EEG model , m k, γ k, σ ξ k, σv ( ) K., Fletcher-Powell [104], [80]. K AIC (Akaike information criterion) [105][106],.,,., k

39 3 35 f p k H k, S k 3. VEP 1, VEP 1 (k = 1), 2 (k = 2). VEP, f p 1 f s [Hz], H 1. S 1, f s ± 0.5 [Hz]. waxing-and-wanning[4], 1 [Hz].,,.,, f p 2, α (8-13 [Hz]) f p 2 = f h 2 / f j=f l 2 P (j f)j f f / f f h (3.2) 2 / f P (j f) f j=f2 l/ f. f, P (j f), f l, f h, 8-13 [Hz]., f s ± 0.5 [Hz] VEP,. H 2 (3.2) f p 2 [Hz], S [Hz], S 1., (m k, γ k, σ ξ k, σv ) [80]. m k = f p k (3.3) γ k = H k S k t (3.4) H k + S k t σ ξ k = 4S k Hk t (3.5) H k + S k t σ v = 1 (3.6), Fletcher-Powell. VEP,, 1., 3 (k = 3), f p 3, H 3, S 3., 2 f p 2 ± 1.0 [Hz],.,,. α 8-13 [Hz],. S 3. (3.2), f p 3

40 3 36 H 3.,. S 2, S 3. 2 (k = 2, 3), 1 (k = 2) AIC, AIC (k = 4), ,., VEP,. VEP, VEP,, 2 2 = 4., α,. VEP, 1,., i yi V (t) = a V i sin{2πf V i (t i 1 f s )} ( i 1 f s 0 (t < i 1 f s t i 1 f s + 1 f V i, i 1 f s + 1 f V i ) < t), VEP (3.7) I E(t) = yi V (t) (3.8) i=1. a V i ā V, σ a, f V i, f s, σ f. ( ), [80]. x α (n t) = a α (n t) sin(2πm α n t) + v(n t) (3.9) a α ((n + 1) t) = γ α a α (n t) + ξ α (n t) (3.10), (3.9) a α (n t), (3.10) 1. n, m α, t, γ α 1, v(n t) ξ α (n t) ( 0 σ ξ α σv ).,. VEP f s 8, 9, 10, 11, 12 [Hz] 5, ā V = 4 [µv]. σ a σ f

41 3 37, σ a = σ f = 0, σ a = 2.0 [µv], σ f = 1.0 [Hz]., m α = 10.0 [Hz], γ α = 0.98, σ ξ α = 22.9, σ v = 10.0.,,.,, (3.9) 1,. t = 5 [ms], [s] 10., Fig. 3.1(c) (d), Fig. 3.1(c), Fig. 3.1(d) 3 VEP,., VEP S, 4 S [80]., VEP f s ± 0.5 [Hz], α VEP., (3.7) VEP,, VEP. (3.10), (3.9),., A τ Â, ε = Â A τ A τ 100 [%] (3.11)., 10, Fig VEP (estimated VEP amplitude), (estimated amplitude of posterior dominant rhythm). 2 (high amplitude background activity), 1 (C1) VEP (VEP without variability), 2 (C2) VEP (VEP with variability). 2 (C3), (C4), (low amplitude background activity), VEP 2., ( ) ( ).,, (true value), (proposed), (stimulus locked averaging),

42 3 38 (power spectrum averaging).,,,,.,,., 2 100, 3 100, 4,. VEP,, VEP (C2) 2.8 ± 4.7 [%]. (C2) 10 [Hz],,., VEP., VEP (C3), 1.2 ± 4.4 [%], VEP (C4) 12 ± 3.6 [%],. (C2) 10 [Hz], (C1) VEP., VEP,, VEP.,, (C1), (C2), 10 [Hz]. (C4), 2.8 ± 4.1 [%], VEP., (C1), (C2), 3.9 ± 1.8 [%] 4.1 ± 1.9 [%]., VEP., VEP,,. 10,.,. 3.5,, VEP. VEP, VEP.

43 3 39 Fig. 3.3: Estimated amplitudes and error rate of VEP component (upper part) and posterior dominant rhythm (lower part) for simulation data (21, ) 1, 57 [cm] 30. 8, 9, 10, 11, 12 [Hz] 5, [30], Oz, 200 [Hz], 0.53 [Hz], 60 [Hz].,,., Fig. 3.4 VEP. Fig. 3.3, VEP,, (closed eye state), (open eye state). 3,. VEP,,,, VEP., 10, 11, 12 [Hz] 3,. 3,,, VEP

44 3 40.,,., VEP.,,.,,,. Fig. 3.4: Estimated amplitudes of VEP component (upper part) and posterior dominant rhythm (lower part) for actual data ,, steady-state VEP.,, VEP, 2., [62], [65]. [16], VEP,.

45 , α.,, θ β., [4] θ, δ, β.,., VEP,,.,.,., jitter[99].,, jitter VEP,. 3.7 VEP.,,., VEP.

46 (Visual evoked potentials: VEPs),, [2]. VEP [33]., VEP,.,, ( )., (α ),,., [63], VEP [65]. VEP,,. 3, [80], VEP [83].,. 9, VEP (21-25, ), 57 [cm] 30. 8, 9, 10, 11, 12 [Hz] [30], Oz, 200 [Hz], 0.53 [Hz], 60 [Hz].,,., [s] 10.,

47 4 43 (FFT),,. Fig.4.1 (a), 10 [Hz].. Fig.4.1 (a). Fig.4.1 (b). (10 [Hz]) 1F, 2 (20 [Hz]) 2F. Fig. 4.1: Recorded raw VEP and its power spectrum VEP [83], Fig.4.1(b), ( )[80] VEP,,,.,,.,., 1, 1,.

48 4 44 g (f) = K { 0.25 t ( σ ξ ) 2 k k=1 1 + (γ k ) 2 2γ k cos 2π t(f m k ) ) t ( σ ξ } k 1 + (γ k ) 2 2γ k cos 2π t(f + m k ) + t(σ v ) 2 (4.1). g(f) f [Hz], m k, γ k 1, σ ξ k, σv, t. Fig. 4.2: Estimation of VEP and dominant rhythm component by EEG model. m k Fig.4.2 Fig.4.2 (a) f s [Hz] VEP

49 4 45 K (m k γ k σ ξ k σv ) f s [Hz] VEP (Fig.4.2 (b)) (Fig.4.2 (c)) (Fig. 4.2(d)) VEP, (m k γ k σ ξ k σ v ) K., Fletcher-Powell [104], [80]. K AIC (Akaike Information Criterion)[106],. [83] k f p k H k S k 3 VEP 1 VEP 1 (k = 1) 2 (k = 2) VEP f p 1 f s [Hz] H 1 S 1 f s ± 0.5 [Hz] f p 2 α (8-13 [Hz]) f p 2 = f h 2 / f j=f l 2 P (j f)j f f / f f h (4.2) 2 / f P (j f) f j=f2 l/ f f P (j f) f l f h 8-13 [Hz] f s ± 0.5 [Hz] VEP H 2 (4.2) f p 2 [Hz] S [Hz] S 1 (m k γ k σ ξ k σv ) [80] m k = f p k (4.3) γ k = H k S k t (4.4) H k + S k t σ ξ k = 4S k Hk t (4.5) H k + S k t σ v = 1 (4.6)

50 4 46 Fletcher-Powell AIC, AIC [83]., k = 1 VEP, VEP,., VEP S, 4 S [80]., VEP f s ± 0.5 [Hz], α VEP. 4.3 Fig ( D, 21, ), VEP. (i), (power spectrum), (ii) VEP (separated VEP component), (iii) (posterior dominant ryhthm). Fig.4.3 (a) 8 Hz, (proposed), (power spectrum averaging)., VEP, VEP,. Fig.4.3 (b) 9 Hz. (b-ii) VEP,., (b-iii),. Fig.4.4 9, VEP. (a) VEP (Amplitude of VEP component), (b) (Amplitude of posterior dominant rhythm). (temporal frequency), (amplitude), (power spectrum averaging), (proposed). Fig.4.4 (a) VEP, 9 Hz., 9, 10 Hz, t (p 0.05),., Fig.4.4 (b), 9 Hz,,,, (p 0.1).

51 4 47 Fig. 4.3: Comparison between proposed method and conventional method ,., Fig.4.3 (b) VEP, VEP,.,,. Fig.4.4, VEP,,,

52 4 48 Fig. 4.4: Estimation of VEP and dominant rhythm component by EEG model.., [83],,.,, VEP α., θ β.,.,. 4.5 VEP, VEP., VEP VEP [83]., VEP.

53 (visual evoked potential: VEP),, [2]. VEP, 1 Hz (transient VEP), 3.5 Hz (steady-state VEP) [47][49]. VEP,,, [2]. transient VEP (N75), (P100), (N175), [2], [107]. steady-state VEP, (first harmonic: 1F), 2 (second harmonic: 2F),, [2]., 1F [45][48][54], 2F [108]., [54]., ( ), ( ),.,,, 2, VEP,. 9 VEP,.,,.

54 (, ),,, VEP.,, VSG Three (Cambridge Research System, U. K.), 12, 87.7 cd/m 2, 1.19 cd/m 2, 57 cm. 2, 1., 6, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 15, 18 Hz s, Oz 200 Hz, 0.3 s (0.53 Hz), 60 Hz., ( 0.2 ) , VEP s (1024 ) 1, 50 s, 3 1, 30., 1 VEP. VEP (FFT),. VEP,,, 1F 4F VEP., 3F, 4F 1F, 2F,,., (sub harmonic),,. 1F 4F, 1F - 4F VEP, VEP,.,,,., VEP, ±0.5 Hz, 1F 4F S(p, f, h) [µv]

55 p, s ( ), r ( ). f, h 1F - 4F VEP (a ). f [Hz] VEP, 1F 4F, S(p, f, a) = S(p, f, 1) + S(p, f, 2) + S(p, f, 3) + S(p, f, 4) [µv 2 ] (5.1)., f Hz 1F, 2F, VEP A(p, f, h) = 4 S(p, f, h) (h = 1, 2, a) [µv] (5.2)., VEP 1F 2F. R(p, f, h) = S(p, f, h) 100 (h = 1, 2) [%] (5.3) S(p, f, a) 5.2.4, D A (f, h) =., A(s, f, h) A(r, f, h) 100 [%] (5.4) max A(s, f, h), A(r, f, h) D R (f, h) = R(s, f, h) R(r, f, h) 100 [%] (5.5) max R(s, f, h), R(r, f, h). D A (f, h), D R (f, h), %,, ,,,

56 ,., n, Ã(p, f, h) Ã(p, f, h) = A(p, f, h) 1 A(p, f, h) (5.6) n f., VEP 1 ( E, 21 ) Fig Hz, 10 Hz, 12 Hz, 1 s, 0 30 Hz.,.,. 1F 2F., 6 Hz, 1F, 2F. 10 Hz, 1F, 2F. 12 Hz, 1F, 2F Fig.5.2,,.,,,., ( 1F, 2F, VEP ), ( 1F, 2F, VEP )., 1F, 2F, VEP. Fig.5.2 (a-1 ) (a-2 ) VEP, 11 Hz., Fig.5.2 (a-1) (a-2) 1F, 11 Hz, 2F, 6 Hz. Fig.5.2 (a-1) (a-1 ), VEP 1F, 7 Hz 11 Hz., Fig.5.2 (a-2) (a-2 ),. Fig.5.2 (a-1), 1F 2F, 1F., Fig.5.2 (a-2), 6 Hz 2F, 7 Hz, 1F. 1F 2F.

57 5 2 53, Fig.5.2 (b-1), 9 Hz 1F, 9-11 Hz,. 2F. Fig.5.2 (b-2), 6-15 Hz 1F, 2F, 9 Hz 11 Hz 2F Fig.5.3 (5.4), (5.5). 1F, 2F, VEP,,.,,., Fig.5.3 (a-i) 1F, 6, 10.5, 11, 18 Hz,. Fig.5.3 (a-ii) 2F,. Fig.5.3 (a-iii) VEP, 6 Hz (a-i) 1F., Fig.5.3 (b-i) 1F, Hz, 11 Hz. Fig.5.3 (b -ii) 2F, 12, 15 Hz. 1F 2F, 11 Hz , VEP,., 1F 4F, 0.5 Hz.,,,., A(p, f, h) R(p, f, h) 2., [54][108]., VEP., VEP 1F, 2F, [108],. 1F,, VEP.

58 , 5.4, 5.5 D A (f, h), D R (f, h). [54],,. Fig.5.3, 2, VEP Regan[45], 1F, 10 Hz.,, 1F, Yamasaki [54] 9 Hz, Pieh [108] 12.5 Hz., Fig.5.2 (a-1) (a-2) 1F 11 Hz,., Fig.5.2 (b-1), 6-8 Hz ( ) Hz ( ), 8-12 Hz ( ) 1F. Fig.5.3 (a), 1F, 2F, VEP,,., VEP,, Fig.5.2 (a-1 ), (a-2 ),. Fig.5.3 (a),.,,.,,.,.,,,, F 2F 1F 2F Pieh [108],, 7.5 Hz 2F. 2F,

59 F, 2F., Fig.5.2 (a-2) 6 Hz 2F., Fig.5.2 (a-1) 1F,. Fig.5.2 (b-2), 2F,., 2F VEP, α VEP Pigeau [65], VEP, α, α., flash VEP, Lazarev [66], VEP, Birca [67], VEP, α., α VEP, Fig.5.2 (a-1) (a-2), 1F.,,. α VEP, α. Fig.5.2 (a-1) (b-1), 1F 9-12 Hz., Fig.5.3 (a-i) (a-iii), α. VEP Hz,,, α,. 5.5,.,.,., 2F, 2F,.

60 Fig. 5.1: VEP waveform (left hand side) and their periodograms (right hand side) for temporal frequency of 6 Hz (upper part), 10 Hz (middle part) and 12 Hz (lower part).

61 Fig. 5.2: Relationship between temporal frequency and the characteristics of (a) VEP amplitude (left hand side) and (b) ratio (right hand side) for sinusoidal pattern (upper part) and square pattern (lower part) stimuli.

62 Fig. 5.3: Differences of response between sinusoidal pattern and square pattern.

63 (visual evoked potential: VEP),, ( ) [2]. 3.5 Hz steady-state VEP, (1F) 2 (2F), [2]. VEP,, [2]. VEP, VEP [48][51][52], VEP [45][53][54][109][110]., / 2F 5 Hz [109][110], /, / 1F 10 Hz, 2F 5 Hz [45].,, (V1) ( / ) ( /, / ) [53][54][55]. [45][53][54][109][110], [53][54] [45][109][110]., VEP [85], VEP. V1,,, 3 [13]., [13],, VEP [45][53][54][109][110]., ( / ), ( / ), 2, 4 VEP,. 11 VEP

64 6 2 60,,,, 3, (, ),,, VEP.,, VSG Three (Cambridge Research System, U. K.), 12, 87.7 cd/m 2, CIE x = 0.620, y = ( ), x = 0.166, y = ( ), x = 0.290, y = ( ), 57 cm., ( 0.2 )., / (R/B), / (R/G) 2,., (Sin.) (Sq.) 2., / (R/B-Sin.), / (R/B-Sq.), / (R/G-Sin.), / (R/G-Sq.) 4. 4, 5, 6, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 15, 18 Hz 16, 50 s, Oz 200 Hz, 0.53 Hz, 60 Hz steady-state VEP, (1F ), (2F, 3F, 4F ), VEP., 1F, 2F, 1F 4F VEP 3. VEP, [85] VEP, 2, 2, 2 2 = 4. ( 1, 2),. f [Hz] 1 VEP A 1 (f) [µv], 2

65 A 2 (f) [µv]. (4 18 Hz) A 1 (f) A 2 (f) A max, 2 D(f) = A 1(f) A 2 (f) A max 100 [%] (6.1). (6.1), 1, 2,. A max,, VEP Fig. 6.1 (a)., R/B-Sin., R/G-Sin., R/B-Sq., R/G-Sq., VEP (Whole), 1F (1F), 2F (2F), (Temporal frequency), (µv). VEP, R/B-Sin. 9 Hz, R/G-Sin. 9.5 Hz, R/B- Sq. R/G-Sq. 4 Hz. 1F, R/B-Sin. 10 Hz, R/B-Sq Hz, R/G-Sin. R/G-Sq. 9.5 Hz, R/B R/G. 2F, R/B-Sin. R/G-Sin. 5 Hz, R/B-Sq. R/G-Sq. 4 Hz., Sin. Sq. VEP 1F 7-10 Hz, Sq. VEP 2F 4-6 Hz.,, R/G R/B, VEP 1F Hz Fig. 6.1 (b),, (6.1). R/B Sin. Sq. (R/B-Sin. vs. R/B-Sq.), R/G (R/G-Sin. vs. R/G-Sq.). Fig. 6.1 (a), (6.1). (6.1), 10 %., VEP 2F, 4, 5 Hz Sq.. R/B VEP, 9, 9.5 Hz, 1F, Hz Sin.

66 , t (p < 0.1) Fig. 6.1 (c),,, Sin. R/B R/G (R/B-Sin. vs. R/G-Sin.), Sq. (R/B-Sq. vs. R/G-Sq.). Sin. VEP 1F, Hz R/B. Sq. VEP 11.5, 12Hz, 1F Hz R/B., Sq. 1F, Hz R/G., t Fig. 6.1 (a), 1F, Sin. Sq Hz. [85],, Sin. Sq.. Sin.,, 7 10 Hz., Sq.,,. Fig. 6.1 (a), Sin. 2F, 5 Hz. Regan[45] /, Fiorentini [109] Porciatti [110] /,. Fig. 6.1 (b), 2F, 4, 5 Hz Sq.. [85], 2F Sq. Sin.. Pieh [108],, 7.5 Hz 2F 1F, 2F, Sq. 2F. steady-state VEP,, [111]., 2F., 2F,, 5 Hz.

67 F, Fig. 6.1 (c) 12 Hz R/B, Fig. 6.1 (a) R/B R/G. Gouras[51], VEP, VEP,, V1. Crewther [52], P100., 2 ( ), V1, R/G R/B., R/B R/G, V1, R/G. [53] Yamasaki [54], 24 cd/m 2 Sq.,, Hz, R/B 9 Hz, R/G 12 Hz.,.,,., [85], Fig. 6.1 (b), R/B VEP 1F, 9 Hz Sin., R/G Sin. Sq..,., Sq. Sin. [58], Sin. Sq., V1. [85], 10 Hz Sin.., Sin.,. R/B, Sin., V1,. R/G, Sin. Sq.. [54], R/G, Sin., Sq.. Fig. 6.1 (c), Sq. 1F, Hz R/G, Sin. R/B R/G., S, L, M [9],

68 R/B R/G. VEP [53], ( 1 4 5) V1 ( 6 3 1), 1 1, V1,., Sin., V1., Sin. R/B R/G, Sq. R/G R/B , 2.,,. /,.

69 Fig. 6.1: Relationship between temporal frequency and characteristics of VEPs for (a) amplitude, (b) difference between stimulus patterns, and (c) difference between color combinations.

70 66 7,., VEP,,, VEP, VEP.. 1,,, VEP,. 2, VEP, [76]., VEP.,,, α 3,,. 10 VEP,, VEP,. 3,, VEP [83],, VEP,.. 4, 3, VEP, 9 VEP [84].,, VEP, 3., VEP. 5, [85].. 9,. 6, 2, 5 2

71 7 67 [86]. 11,,., 5 6,,,,,,. VEP,,, VEP., ,.,.,, 1, VEP. 6, ,, 1 30,., VEP., VEP.,, VEP,,. 3, 4,., VEP, VEP, VEP. steady-state VEP 1., steady-state VEP,. 5, 6 VEP, 1,.,,.,, 1,, 1..,

72 7 68. VEP,.,,.,,.,, steady-state VEP, VEP transient. VEP,. VEP,.,, VEP,,. VEP,. VEP,,., VEP,., VEP,,., VEP,. VEP, VEP, VEP,.,,., VEP,.

73 69,,,,.,,.,.,..,,,..,,.

74 70 [1], :,,, [2] S. Tobimatsu, G. G. Celesia: Studies of human visual pathophysiology with visual evoked potentials. Clin Neurophysiol. 117, 1414/1433, [3] : :, 33(4), 221/230, [4] : 5.,, [5] : I,,, [6] :,,, [7] :,,, [8] :,,, 2010 [9] C. A. Curcio, A. A. Kimberly, K. R. Sloan, L. L. Connie, J. B. Hurley, I. B. Klock, A. H. Milam: Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J Comp Neurol 312, 610/624, [10] M. S. Livingstone, D. Hubel: Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740/749, 1988 [11], : (VEPs):, 36(4), 257/266, 2008 [12] S. H. Hendry, R. C. Reid: The koniocellular pathway in primate vision. Ann Rev Neurosci 23, 127/153, 2000 [13] E. N. Johnson, M. J. Hawken, R. Shapley: The spatial transformation of color in the primary visual cortex of the macaque monkey, Nature Neurosci 4(4), 409/416, [14] A. Hanazawa, H. Komatsu, I. Murakami: Neural selectivity for hue and saturation of colour in the primary visual cortex of the monkey. European Journal of Neuroscience 12, 1753/1763, 2000

75 71 [15],,, :. 40(1), 8/18, [16], :.,, 2008 [17] A. M. Derrington, J Krauskopf, P Lennie: Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol 357, 241/265, [18] P. Lennie, J. Krauskopf, G. Sclar: Chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience 10(2), 649/669, [19] J. Kremers, B. B. Lee, J. Polorny, V. C. Smith: Responses of macaque ganglion cells and human observers to compound periodic waveforms. Vision Res 33(14), 1997/2011, [20] R. L. De Valois, R. T. Marrocco: Single cell analysis of saturation discrimination in the macaque. Vision Res 13, 701/711, 1973 [21] H. Komatsu, Y. Ideura, S. Kaji, S. Yamane: Color selectivity of neurons in the inferior temporal cortex of the awake macaque monkey. J Neurosci 12, 408/424, [22], 36(3), 114/121, 2008 [23] K. T. Mullen, B. Thompson, R. F. Hess: Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: An fmri Study, J Vision 10(13), 1/19, [24] J. Liu, B. A. Wandell: Specialization for chromatic and temporal signals in human visual cortex. J Neurosci 25(13), 2459/2468, [25] T. Yamasaki, Y. Goto, Y. Ohyagi, A. Monji, S. Munetsuna, M. Minohara, K. Minohara, J. Kira, S. Kanda and S. Tobimatsu: Selective impairment of optic flow perception in amnestic mild cognitive impairment: Evidence from event-related potentials, Journal of Alzheimer s Disease 28, 695/708, [26] M. A. Pastor, M. Valencia, J. Artieda, M. Alegre, J. C. Masdeu: Human cerebral activation during steady-state visual-evoked responses. The Journal of Neuroscience 23(37), 11621/11627, [27] S. P. Koch, J. Steinbrink, A. Villringer, H. Obrig: Synchronization between background activity and visually evoked potential is not mirrored by focal hyperoxygenation: Implications for the interpretation of vascular brain imaging. The Journal of Neuroscience 26(18), 4940/4948, 2006.

76 72 [28] : (1), 47(9), 573/583, [29] : (2), 47(10), 638/648, [30] G. H. Klem, H. O. Luders, H. H. Jasper, C. Elger: The ten-twenty electrode system of the International Federation. In: Deuschl G and Eisen A eds. Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology, Elsevier, Amsterdam, 3/6, [31], ;.,, [32] G. F. A. Harding, J. V. Odom, W. Spileers, H. Spekreijse: Standard for visual evoked potentials Vision Res 36(21), 3567/3572, [33] G. D. Dawson: A summation technique for the detection of small evoked potentials. Electroencephalogr Clin Neurophysiol 6, 65/84, 1954 [34], : Averaging (1), 4(2), 233/237, [35] Y. Goto, T. Taniwaki, K. Yamashita, N. Kinukawa, S. Tobimatsu: Interhemispheric functional desynchronization in the human vibratory, Brain Research 980, 249/254, 2003 [36] Y. Goto, T. Taniwaki, N. Kinukawa, S. Tobimatsu: Interhemispheric function synchronization at the first step of visual information processing in humans. Clinical Neurophysioligy 115, 1409/1416, [37],, :, 33(1), 13/20, 2005 [38] M. M. Muller, S. Hillyard: Concurrent recording of steady-state and transient eventrelated potentials as indices of visual-spatial selective attention. Clinical Neurophysioligy 111, 1544/1552, [39] D. Regan: Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine, New York, Elsevier, [40] M. detommaso, S. Stramaglia, J. M. Schoffelen, G. Marco, G. Libro, L. Losito, V. Sciruicchio, M. Sardarp, M. Pellicoro, F. M. Puca: Steady-state visual evoked potentials in the low frequency range in migraine: a study of habituation and variability phenomena. International Journal of Phychophysiology 49, 165/174, 2003.

77 73 [41],,,,, :, 51(12), 737/746, [42],, :, 51(12), 713/720, [43] : (VEP) :. 36(4), 267/277, [44] : (9), 572/583, [45] D. Regan: Chromatic adaptation and steady-state evoked potentials, Vision Res 8, 149/158, [46] D. Regan: A high frequency mechanism which underlies visual evoked potentials. Electroenceph Clin Neurophysiol 25, 231/237, [47] D. Regan: Steady-state evoked potentials. J. Opt. Soc. Am. (A) 67, 1475/1489, [48] D. Regan: Human visual evoked potentials. In Picton T. W. ed, Human event-related potentials. Hand-book of Electroencephalography and clinical neurophysiology, revised series, Vol. 3, Elsevier, Amsterdom, 159/243, [49] G. G. Celesia: Visual evoked responses. In: Owen JH, Davis H, editors, Evoked potential testing. Grune and Stratton, Orlando, FL, 1/54, [50] G. G. Celesia: Steady-state and transient visual evoked potentials in clinical practice. Ann N. Y. Acad Sci 388, 290/305, [51] P. Gouras: Progress in Human Visual Evoked Responses, J Clin Neurophysiol 1(1), 77/82, [52] D. P. Crewther, S. G. Crewther: Different temporal structure for form versus surface cortical color systems - Evidence from chromatic non-linear VEP. PLOS one, vol. 5 no. 12, e15266, [53],,, :,, , 41/44, [54] T. Yamasaki, Y. Goto, N. Kinukawa, S. Tibimatsu: Neural basis of photo/chromatic sensitivity in adolescence. Epilepsia, 49(9), 1611/1618, 2008.

78 74 [55] M. S. Livingstone, D. H. Hubel: Anatomy and physiology of a color system in the primate visual cortex, J Neurosci 4 309/356, [56] D. G. Green: Sinusoidal flicker characteristics of the color-sensitive mechanisms of the eye. Vision Res 9, 591/601, [57] C. E. Sternheim, C. R. Cavonius: Sensitivity of the human ERG and VECP to sinusoidally modulated light. Vision Res 12, 1685/1695, [58] M. Kondo, P. A. Sieving: Post-photoreceptoral activity dominates primate photopic 32-Hz ERG for sine-, square- and pulsed stimuli. IOVS 43(7), 2500/2507, [59] F. Teng, Y. Chen, A. M. Choong, S. Gustafson, C. Reichley, P. Lawhead, D. Waddell: Square or sine: Finding a waveform with high success rate of eliciting SSVEP. Computational Intelligence and Neuroscience 2011, , [60] D. S. Nicol, R. Hamilton, U. Shahani, D. L. McCulloch: Monocular and binocular steady-state flicker VEPs: frequency-response functions to sinusoidal and squarewave luminance modulation. Doc Ophthalmol 122, 63/70, [61] W. G. Walter: The convergence and interaction of visual, auditory, and tactile responses in human nonspecific cortex. Ann N.Y. Acd Sci 112, 320/361, [62],, : α,. J88-A(4), 480/489, [63] T. Kawaguchi, H. Jijiwa, S. Watanabe: The dynamics of phase relationship of alpha waves during photic driving, Electroenceph Clin Neurophysiol 87, 88/96, [64] T. Fukami, K. Hayashi, T. Shimada, T. Akatsuka, Y. Saito: Influence of visual stimulus on amplitude and phase of alpha wave as measured by multi-channel EEG. IEICE Trans Inf and Syst E86-D(11), 2444/2451, [65] R. A. Pigeau, A. M. Frame: Steady-state visual evoked responses in high and low alpha subject. Electroencephalogr Clin Neurophysiol, 84(2), 101/109, [66] V. V. Lazarev, D. M. Simpson, B. M, Schubsky, L. C. deazevedo: Photic driving in the electroencephalogram of children and adolescents: harmonic structure and relation to the resting state. Braz J Med Biol Res 34, 1573/1584, 2001 [67] A. Birca, L. Carmant, A. Lortie, M. Lassonde: Interaction between the flash evoked SSVEPs and the spontaneous EEG activity in children and adults, Clin Neurophysiol 117, 279/288, 2006

79 75 [68] R. Agarwal, J. Gotman, D. Flanagan, B. Rosenblatt: Automatic EEG analysis during long-term monitoring in the ICU. Electroencephalogr Clin Neurophysiol 107(1), 44/58, [69] H. Kuwahara, H. Higashi, Y. Mizuki, S. Matsunari, M. Tanaka, K. Inanaga: Automatic real-time analysis of human sleep stages by an interval histogram method. Electroencephalogr Clin Neurophysiol. 70, 220/229, 1988 [70] G. W. Harding: An automated seizure monitoring system for patients with indwelling recording electrodes. Electroencephalogr Clin Neurophysiol. 86, 428/437, [71] I. Osorio, M. G. Frei, S. B. Wilkinson: Real-time automated detection and quantitative analysis of seizures and short-term predication of clinical onset. Epilepsia 39(6), 615/627, [72] M. E. Saab, J. Gotman: A system to detect the onset of epileptic seizures in scalp EEG. Clin Neurophysiol. 116, 427/442, [73] M. A. Black, R. D. Jones, G. J. Carroll, A. A. Dingle, I. M. Donaldson, P. J. Parkin: Real-time detection of epileptiform activity in the EEG: a blinded clinical trial. Clin Electroencephalogr. 31(3), 122/130, [74] M. Nakamura, Q. Chen, T. Sugi, A. Ikeda, H. Shibasaki: Technical quality evaluation of EEG recording based on electroencephalographers knowledge. Med Eng Phys 27, 93/100, [75] P. J. Durka, H. Klekowicz, K. J. Blinowska, W. Szelenberger, S. Niemcewicz: A simple system for detection of EEG artifacts in polysomnographic recoedings. IEEE Trans Biomed Eng. 50(4), 526/528, [76],,,,,,, :, 50(5), 433/442, 2012 [77],, : 35(7), 130/137, [78] T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, T. J. Sejnowaki: Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol. 111, 1745/1758, [79] D. Iyer, G. Zouridakis: Single-trial evoked potential estimation; Comparison between independent component analysis and wavelet denoising. Clin Neurophysiol. 118, 495/504, 2007.

80 76 [80],, :. 24(1), 8/14, [81],,,,, :. 35(4), 392/399, [82],,,, :, 43(3), 447/455, [83],,,,,,, :, 50(6), 599/606, [84] K Goto, T Sugi, Y Matsuda, S Goto, H Fukuda, Y Goto, T Yamasaki and S Tobimatsu: Chracteristic Analysis of Visual Evoked Potentials and Posterior Dominant Rhythm by Use of EEG Model th International Conference on Control, Automation and Systems, MB-02, 233/236, (Gwangju) Oct [85],,,,, : 2. 39(1), 10/17, [86],,,,,,, :. 41(1), 1/6, 2013 [87] M. Nakamura, T. Sugi, A. Ikeda, R. Kakigi, H. Shibasaki: Clinical application of automatic integrative interpretation of awake background EEG: quantitative interpretation, report making, and detection of artifacts and reduced vigilance level. Electroencephalogr Clin Neurophysiol 98, 103/112, [88] J. R. Smith, I. Karacan, M. Yang: Automated analysis of the human sleep EEG. Waking Sleeping 2, 75/82, [89] S. Charbonnier, L. Zoubek, S. Lesecq, F. Chapotot: Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging. Comput Biol Med 41, 380/389, [90] S. B. Wilson, C. A. Turner, R. G. Emerson, M. L. Scheuer: Spike detection II: automatic, perception-based detection and clustering. Clin Neurophysiol 110, 404/411, 1999.

81 77 [91] T. Sugi, M. Nakamura, A. Ikeda, H. Shibasaki: Adaptive EEG spike detection: determination of threshold values based on conditional probability. Front Med Biol Eng 11(4), 261/277, [92] Z. Ji, T. Sugi, S. Goto, X. Wang, A. Ikeda, T. Nagamine, H. Shibasaki, M. Nakamura: An automatic spike detection system based on elimination of false positives using the large-area context in the scalp EEG. IEEE Trans Biomed Eng. 58(9), 2478/2488, [93] M. S. Bradnam, A. L. Evans, D. M. I. Montgomery, D. Keating, B. E. Damato, A. Cluckie, D. Allan: A personal computer-based visual evoked potential stimulus and recording system. Doc Opthalmol. 86, 81/93, [94] N. A. de Beer, M. von de Velde, P. J. Cluitmans: Clinical evaluation of a method for automatic detection and removal of artifacts in auditory evoked potential monitoring. J Clin Monit. 11(6), 381/391, [95],,,, :. 38(1), 33/41, [96],,,,, :. 23 (CD-ROM).,, [97] P. Bloomefield: Fourier Analysis of Time Series: An Introduction. Wiley, New York, 118/150, [98] S. Noachtar, C. Binnie, J. Ebersole, F. Mauguiere,A. Sakamoto, B Westmoreland: A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. In: Deuschl G and Eisen A eds. Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology, Elsevier, Amsterdam, 21/41, [99] O. Rompelman, H. H. Ros: Coherent averaging technique: a tutorial review part 2: trigger jitter, overlapping responses and non-periodic stimulation. J Biomed Eng. 8, 30/35, [100] P. Comon: Independent component analysis, - a new concept?. Signal Proc. 36, 287/314, [101] T. Sugi, S. Tsuchiya, S. Nishida, Y. Goto, S. Tobimatsu, N. Nakamura: Decomposition of VEP and dominant rhythm components during photic stimulation by

82 78 use of EEG model, 2009 IEEE/ICME International Conference on Complex Medical Engineering (CD-ROM). ICME. Arizona, [102],,,,,, :. 21.,, 21, [103], :.,, 106/121, [104] R. Fletcher, M. J. D. Powell: A rapidly convergent descent method for minimization, The Computer Journal 6, 163/168, [105],, : A-5-4,,, 127/142, [106] H. Akaike: A new look at the statistical model identification, IEEE Trans Automat Contr 19, 716/723, [107] S. Tobimatsu, G. G. Celesia, S. B. Cone: Effects of pupil diameter and luminance changes on pattern electroretinograms and visual evoked potentials, Clin Vision Sci 2, 293/302, [108] C. Pieh, D. L. McCulloch, U. Shahani, H. Mactier, M. Bach: Maturation of steadystate flicker VEPs in infants: fundamental and harmonic temporal response frequencies. Doc Ophthalmol 118(2), 109/119, [109] A. Fiorentini, V. Porciatti, M. C. Morrone: Temporal characteristics of colour vision: VEP and psychophysical measurements. In: Valberg A, Lee BB eds, From pigments to perception: advances in understanding visual processes, New York, Plenum Press, 139/149, [110] V. Porciatti, F. Sartucci: Retinal and cortical evoked responses to chromatic contrast stimuli, Brain 119, 723/740, [111] P. Turner: Critical flicker fusion frequency and its modification by a conditioning stimulus of flickering light. J Physiol, vol. 171, 6/8, 1964.

83 79 A. ( ) [1],,,,,, : ERP, 37 6, 432/ [2],,,,, : 2, 39 1, 10/17, 2011 [3],,,,,,, :, 50 5, 433/442, 2012 [4],,,,,,, :, 50 6, 599/606, 2012 [5],,,,,,, :, 41 1, 1/6, 2013 B. [1] K Goto, T Sugi, T Maekawa, K Ogata, Y Goto, S Tobimatsu and M Nakamura: Quantitative Analysis between Visual Mismatch Negativity and Psychopathology Scale for Schizophrenia, ICROS-SICE International Joint Conference 2009, 1B16-6, 119, (Fukuoka) August 2009 [2] K Goto, T Sugi, Y Goto, T Yamasaki, S Tobimatsu and M Nakamura: Quantitative analysis of VEP on difference between sinusoidal pattern and rectangular pattern, 29th International Congress of Clinical Neurophysiology, P1-4, S101, (Kobe) October 2010

84 80 [3] K Goto, T Sugi, S Goto, Y Goto, T Yamasaki and S Tobimatsu: Topography Estimation of Visual Evoked Potential by Combinational Use of Mathematical Models, the 2011 IEEE/ICME International Conference on Complex Medical Engineering, MP1-3(1), 205/210, (Harbin) May 2011 [4] K Goto, T Sugi, Y Matsuda, S Goto, H Fukuda, Y Goto, T Yamasaki and S Tobimatsu: Real-time Evaluation System for Accurate VEP Recording and Analysis, the 2012 ICME International Conference on Complex Medical Engineering, TP1-4, 429/434, (Kobe) June 2012 [5] K Goto, T Sugi, Y Matsuda, S Goto, H Fukuda, Y Goto, T Yamasaki and S Tobimatsu: Analysis of Visual Evoked Potentials for Different Stimuli: Effects of Color Combination and Patterns. 35th Annual International Conference of the IEEE Engineering in Medical and Biology Society, Short Papers No. 3012, (Osaka) July 2013 [6] Y Sueyoshi, K Goto, T Sugi, Y Matsuda, S Goto, H Fukuda, Y Goto, T Yamasaki and S Tobimatsu: Physiological State Evaluation of VEP Recording by Combination of Image and EEG. 35th Annual International Conference of the IEEE Engineering in Medical and Biology Society, Short Papers No. 3078, (Osaka) July 2013 [7] K Goto, T Sugi, Y Matsuda, S Goto, H Fukuda, Y Goto, T Yamasaki and S Tobimatsu: Chracteristic Analysis of Visual Evoked Potentials and Posterior Dominant Rhythm by Use of EEG Model th International Conference on Control, Automation and Systems, MB-02, 233/236, (Gwangju) October 2013 C. (Book chapter) [1] T Sugi, K Goto, S Goto, Y Goto, T Yamasaki and S Tobimatsu: Topography estimation of visual evoked potentials using a combination of mathematical models. In Jinglong Wu: Biomedical Engineering and Cognitive Neuroscience for Healthcare: Interdisciplinary Applications. Medical Science, 129/141, 2013 D. [1],,,,,, :, 20 2C4, 59, ( )

85 81 [2],,,,, :, 39, O1-D-04, 337, ( ) [3],,,,, : 2, 21 2A3, 11, ( ), [4],,,,, :, 29, 103A5, 179, ( ), [5],,,,, :, 22, 5, 27, ( ) [6],,,,, :, 50, O2-5-1, ( ) [7],,,,, :, 23, 07-1A-06, 48, ( ) [8],,,,, :, 41, P1-55, 423, ( ) [9],,,,, : 2, 23, 1B3, 22, ( ) [10],,,,,, : :, 51, O1-08-2, ( ) [11],,,,,,, :, 2012, , ( ) [12],,,,,,, :, 24, P1-48, 477, ( )

86 82 [13],,,,,,, :, 24, 1A1, 23, ( ) [14],,,,,,,,, :, 24, 1A2, 24, ( ) [15],,,,,,, :,, Vol. 112, No. 417, MBE , 1-6, ) [16],,,,,,, :, 2013, , ( ) [17],,,,,,, : :, 25, P2-90, ( ), [18],,,,,, :, 25, P2-51, ( ), [19],,,,,,, :,, vol. 113, no. 409, MBE , pp ( ) [20],,, : STN-DBS, 53, O5-1. ( ) [21],,,,,,,, :, 26, 2C2. ( ), [22],,,,,,,, :, 26, 2C3. ( ),

Perrett et al.,,,, Fig.,, E I, 76

Perrett et al.,,,, Fig.,, E I, 76 Attempting to Express Strong-impression Face Images from Features of Spatial Frequency: A Consideration of Billiken Statues and Bijin-ga Sakura Torii abstract It is difficult to express the psychological

More information

untitled

untitled 1 YERP 2007 7 14 15:00 18:00 518 PD 25 1 YERP YERP YERP event-related brain potential, ERP ERP YERP ERP 3 1 2 3 ERP YERP ERP 1 1. PD 2. 3. DC1 4. DC1 2 SN ERP ERP (1) ERP (2) (3) 3 ERP 1 0.5 ERP CRT 100

More information

Vol.-ICS-6 No.3 /3/8 Input.8.6 y.4 Fig....5 receptive field x 3 w x y Machband w(x =

Vol.-ICS-6 No.3 /3/8 Input.8.6 y.4 Fig....5 receptive field x 3 w x y Machband w(x = DOG(Difference of two Gaussians 8 A feedback model for the brightness illusion Shoji Nodasaka and Asaki Saito We consider mechanism of the Hermann grid. The mechanism is usually explained by effects of

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

14 Visual Spatial-Frequency-Tuned Channels Separated by a Shape of Luminous Impulse Response Functions 1055111 2003 2 23 1 (IRFs) IRFs IRFs 2 2 IRFs IRFs IRFs i ISI (Inter Stimulus Interval) Burr and

More information

75 Author s Address: Possibility of Spatial Frequency Analysis of the Three-dimensional Appearance and Texture of Facial Skin

75 Author s  Address: Possibility of Spatial Frequency Analysis of the Three-dimensional Appearance and Texture of Facial Skin 75 Author s E-mail Address: torii@shoin.ac.jp Possibility of Spatial Frequency Analysis of the Three-dimensional Appearance and Texture of Facial Skin in Male Portraits TORII Sakura Faculty of Human Sciences,

More information

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int SOA 1 1 1 1 (HNS) HNS SOA SOA 3 3 A Service-Oriented Platform for Feature Interaction Detection and Resolution in Home Network System Yuhei Yoshimura, 1 Takuya Inada Hiroshi Igaki 1, 1 and Masahide Nakamura

More information

untitled

untitled 11-19 2012 1 2 3 30 2 Key words acupuncture insulated needle cervical sympathetick trunk thermography blood flow of the nasal skin Received September 12, 2011; Accepted November 1, 2011 I 1 2 1954 3 564-0034

More information

SFCJ2-MisaGrace

SFCJ2-MisaGrace A New Cognitive Model for Oral Reading Processes: Results of Studying Eye Movement Characteristics of a Phonological Dyslexic Patient Kwok, Misa Grace Misa Grace Kwok / Doctoral Program, Graduate School

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

理学療法科学シリーズ臨床運動学第6版サンプル

理学療法科学シリーズ臨床運動学第6版サンプル μ μ μ μ μ α μ 1) Appell HJ: Skeletal muscle atrophy during immobilization. Int J Sports Med 7: 1-5, 1986. 2) Bohannon RW: Make tests and break tests of elbow flexor muscle strength.

More information

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6) 1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology

More information

Clustering in Time and Periodicity of Strong Earthquakes in Tokyo Masami OKADA Kobe Marine Observatory (Received on March 30, 1977) The clustering in time and periodicity of earthquake occurrence are investigated

More information

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2 Curved Document Imaging with Eye Scanner Toshiyuki AMANO, Tsutomu ABE, Osamu NISHIKAWA, Tetsuo IYODA, and Yukio SATO 1. Shape From Shading SFS [1] [2] 3 2 Department of Electrical and Computer Engineering,

More information

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori Proposal and Characteristics Evaluation of a Power Generation System Utilizing Waste Heat from Factories for Load Leveling Pyong Sik Pak, Member, Takashi Arima, Non-member (Osaka University) In this paper,

More information

Fig. 1 Schematic diagram of LVAD, its automatic controlled drive unit and circulatory system Fig. 2 Interface between the proposed simulator and the d

Fig. 1 Schematic diagram of LVAD, its automatic controlled drive unit and circulatory system Fig. 2 Interface between the proposed simulator and the d Fig. 1 Schematic diagram of LVAD, its automatic controlled drive unit and circulatory system Fig. 2 Interface between the proposed simulator and the digital controller of the drive unit of LVAD a) SYSTOLIC

More information

ブック

ブック ARMA Estimation on Process of ARMA Time Series Model Sanno University Bulletin Vol.26 No. 2 February 2006 ARMA Estimation on Process of ARMA Time Series Model Many papers and books have been published

More information

01-04-原口健-401

01-04-原口健-401 VISION Vol. 23, No. 1, 1 18, 2011 *, ** *** * 410 2392 570 ** *** 240 8501 79 7 2009 8 18 2010 9 22 Quantitative Analysis of Eye Attraction in Visual Search Takeshi HARAGUCHI*, ** and Katsunori OKAJIMA***

More information

暑熱順化の形成過程に関する研究 : サーモグラフィ装置によるヒト発汗部皮膚温測定

暑熱順化の形成過程に関する研究 : サーモグラフィ装置によるヒト発汗部皮膚温測定 NAOSITE: Nagasaki University's Ac Title 暑 熱 順 化 の 形 成 過 程 に 関 する 研 究 : サーモグラフィ 装 置 によるヒト 発 汗 部 皮 膚 温 測 定 Author(s) 大 渡, 伸 ; 小 坂, 光 男 ; 土 屋, 勝 彦 ; 井 元, 孝 章 ; 藤 原, Citation 熱 帯 医 学 Tropical medicine 25(1).

More information

CWContinuous Wave CW 1.1.2 XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2

CWContinuous Wave CW 1.1.2 XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2 1.1 1.1.1 RadarRadio Detection and Ranging 1960 1 10 1 CWContinuous Wave CW 1.1.2 XCT(Computed Tomography) MRI Magnetic Resonance Imaging)PET(Positron Emission Tomography) XCT 2 3 XCTMRI XCTMRI XCT /10

More information

NotePC 8 10cd=m 2 965cd=m 2 1.2 Note-PC Weber L,M,S { i {

NotePC 8 10cd=m 2 965cd=m 2 1.2 Note-PC Weber L,M,S { i { 12 The eect of a surrounding light to color discrimination 1010425 2001 2 5 NotePC 8 10cd=m 2 965cd=m 2 1.2 Note-PC Weber L,M,S { i { Abstract The eect of a surrounding light to color discrimination Ynka

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

J53-01

J53-01 53 Bulletin of Hiroshima Jogakuin University : 126Dec. 2003 1 TAT 200310 Object relations in TAT analysis Kyoko YAMASHITA Abstract I carried out TAT with 54 female university students as subjects, and

More information

日本感性工学会論文誌

日本感性工学会論文誌 pp.343-351 2013 Changes in Three Attributes of Color by Reproduction of Memorized Colors Hiroaki MIYAKE, Takeshi KINOSHITA and Atsushi OSA Graduate School of Science and Engineering, Yamaguchi University,

More information

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973) Journal of the Geodetic Society of Japan Vol. 27, No. 3, (1981), pp. 183-191 Research on Fault Movement by means of Aero-Triangulation ( T) (An experiment on the earthquake fault of the Izu-Oshima Kinkai

More information

1 Department of Legal Medicine, Toyama University School of Medicine 2 3 4 5 6 7 8 Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama VEGF Key words

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

3 1 Table 1 1 Feature classification of frames included in a comic magazine Type A Type B Type C Others 81.5% 10.3% 5.0% 3.2% Fig. 1 A co

3 1 Table 1 1 Feature classification of frames included in a comic magazine Type A Type B Type C Others 81.5% 10.3% 5.0% 3.2% Fig. 1 A co 1 2 3 3 1 Hough 0.9 0.7 0.9 A Study on Frame Corner Detection of Comic Image Daisuke Ishii, 1 Kei Kawamura, 2 Keiichiro Hoashi, 3 Yasuhiro Takishima 3 and Hiroshi Watanabe 1 In this paper, we propose and

More information

02[021-046]小山・池田(責)岩.indd

02[021-046]小山・池田(責)岩.indd Developing a Japanese Enryo-Sasshi Communication Scale: Revising a Trial Version of a Scale Based on Results of a Pilot Survey KOYAMA Shinji and IKEDA Yutaka Toward exploring Japanese Enryo-Sasshi communication

More information

„´™Ÿ/’£flö

„´™Ÿ/’£flö 48 144 2006 206-213 Journal of the Combustion Society of Japan Vol. 48 No. 144 (2006) 206-213 ORGNAL PAPER * * An Approach to Combustion Diagnostics of Premixed Flame by Chemiluminescence of OH * and CH

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

(Microsoft Word - 1-02\226{\223c.docx)

(Microsoft Word - 1-02\226{\223c.docx) 先 進 的 統 合 センシング 技 術 平 成 19 年 度 採 択 研 究 代 表 者 H23 年 度 実 績 報 告 本 田 学 ( 独 ) 国 立 精 神 神 経 医 療 研 究 センター 神 経 研 究 所 疾 病 研 究 第 七 部 部 長 脳 に 安 全 な 情 報 環 境 をつくるウェアラブル 基 幹 脳 機 能 統 合 センシングシステム 1. 研 究 実 施 体 制 (1) 国 立

More information

プラズマ核融合学会誌11月【81‐11】/小特集5

プラズマ核融合学会誌11月【81‐11】/小特集5 Japan Atomic Energy Agency, Ibaraki 311-0193, Japan 1) Kyoto University, Uji 611-0011, Japan 2) National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan 3) Central Research

More information

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F(

Vol1-CVIM-172 No.7 21/5/ Shan 1) 2 2)3) Yuan 4) Ancuti 5) Agrawal 6) 2.4 Ben-Ezra 7)8) Raskar 9) Image domain Blur image l PSF b / = F( Vol1-CVIM-172 No.7 21/5/27 1 Proposal on Ringing Detector for Image Restoration Chika Inoshita, Yasuhiro Mukaigawa and Yasushi Yagi 1 A lot of methods have been proposed for restoring blurred images due

More information

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc 1,a) 1,b) Obstacle Detection from Monocular On-Vehicle Camera in units of Delaunay Triangles Abstract: An algorithm to detect obstacles by using a monocular on-vehicle video camera is developed. Since

More information

2

2 TECHNICAL DOCUMENT AES TECHNICAL COUNCIL Document ESTD1001.0.01-05 Multichannel surround sound systems and operations AES TC-MBAT Information Document: Multichannel Su rround Sound Systems and Operations.

More information

untitled

untitled 2M5-24 SM311 SM332 3 4 e30mm 5 e30mm [2M5-24] 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25

More information

JSAE Annual Party( 技 術 者 交 流 会 ) 5 月 24 日 ( 木 )17:30 ~ 19:00 会 議 センター 303+304 / 3F 参 加 費 正 会 員 学 生 会 員 賛 助 会 員 3,000 円 ( 消 費 税 込 ) 参 加 申 込 方 法 事 前 申 込 (オンライン 参 加 登 録 ) 事 前 申 込 (オンライン 参 加 登 録 )で, 学 術 講

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

Fig. 1 Structure of a Sebaceous Follicle (Ref.1).

Fig. 1 Structure of a Sebaceous Follicle (Ref.1). Importance and Countermeasures for Sebum Control in Application of Makeup Cosmetics Koichi NOMURA POLA Chemical Industries, Inc., R&D Planning Department 27-1, Takashimadai, Kanagawa-ku, Yokohama 221-0833,

More information

第 16 回 助 成 研 究 発 表 会 要 旨 集 ( 平 成 16 年 7 月 ) 発 表 番 号 23(31) 電 位 ノイズ 法 を 用 いた 製 塩 プラント 局 部 腐 食 モニタリング 技 術 への 極 値 統 計 解 析 手 法 の 適 用 に 関 する 基 礎 的 研 究 助 成 研 究 者 : 井 上 博 之 ( 大 阪 府 立 大 学 大 学 院 工 学 研 究 科 ) 近 年

More information

21 David Marr Marr Marr Marr 3 1. 1

21 David Marr Marr Marr Marr 3 1. 1 21 David Marr Marr Marr Marr 3 1. 1 2 2. 2.1. 3.1.1. 3 (1) (2) () (4) (5) 3.1.2. 3.1.4. 1970 1984 Doya K. What are the computations of the cerebellum, the basal ganglia, and the cerebral cortex. Neural

More information

ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc

ICT a) Caption Presentation Method with Speech Expression Utilizing Speech Bubble Shapes for Video Content Yuko KONYA a) and Itiro SIIO 1. Graduate Sc VOL. J98-A NO. 1 JANUARY 2015 本 PDFの 扱 いは 電 子 情 報 通 信 学 会 著 作 権 規 定 に 従 うこと なお 本 PDFは 研 究 教 育 目 的 ( 非 営 利 )に 限 り 著 者 が 第 三 者 に 直 接 配 布 すること ができる 著 者 以 外 からの 配 布 は 禁 じられている ICT a) Caption Presentation Method

More information

Japan Academy of Health Science J Jpn Health Sci Vol.14 No

Japan Academy of Health Science J Jpn Health Sci Vol.14 No .The Journal of Japan Academy of HealthSciences,47:=Wt! p.32-39 Development of display program that visualizes the process of medical image registration Takeshi Itou1, Hiroyuki Shinoharal, Takeyuki Hashimoto

More information

1..FEM FEM 3. 4.

1..FEM FEM 3. 4. 008 stress behavior at the joint of stringer to cross beam of the steel railway bridge 1115117 1..FEM FEM 3. 4. ABSTRACT 1. BackgroundPurpose The occurrence of fatigue crack is reported in the joint of

More information

Accuracy Improvement by Compound Discriminant Functions for Resembling Character Recognition Takashi NAKAJIMA, Tetsushi WAKABAYASHI, Fumitaka KIMURA,

Accuracy Improvement by Compound Discriminant Functions for Resembling Character Recognition Takashi NAKAJIMA, Tetsushi WAKABAYASHI, Fumitaka KIMURA, Journal Article / 学 術 雑 誌 論 文 混 合 識 別 関 数 による 類 似 文 字 認 識 の 高 精 度 化 Accuracy improvement by compoun for resembling character recogn 中 嶋, 孝 ; 若 林, 哲 史 ; 木 村, 文 隆 ; 三 宅, 康 二 Nakajima, Takashi; Wakabayashi,

More information

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6 JSPE-54-04 Factor Analysis of Relationhsip between One's Visual Estimation and Three Dimensional Surface Roughness Properties on Belt Sanded Surface Motoyoshi HASEGAWA and Masatoshi SHIRAYAMA This paper

More information

Course-1: Measurement of brain activity by a magneto-encephalography (MEG) system Capacity: 5 students Department: Rehabilitation Sciences Lecturer: M

Course-1: Measurement of brain activity by a magneto-encephalography (MEG) system Capacity: 5 students Department: Rehabilitation Sciences Lecturer: M 1 5 3159 hosiyama@met.nagoya-u.ac.jp 9 magnetoencephalogram, MEG MEG MRI Course-1: Measurement of brain activity by a magneto-encephalography (MEG) system Capacity: 5 students Department: Rehabilitation

More information

The Annual Report of Educational Psychology in Japan 2008, Vol.47, 148-158 Qualitative Research in Action:Reflections on its Implications for Educational Psychology Yuji MORO (GRADUATE SCHOOL OF COMPREHENSIVE

More information

J. Soc. Cosmet. Chem. Japan. Vol. 22, No. 4 1989

J. Soc. Cosmet. Chem. Japan. Vol. 22, No. 4 1989 A psychophysiolosical esthetic facial massage study on SHISEIDO the relaxation effect of SHISEIDO esthetic facial massage Tsuneyuki Abe Yukari Suzuki Yuko Hirata The psychophysiological mechanism underlying

More information

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015)

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015) 65 62015 224 228 ** Journal of The Japan Institute of Light Metals, Vol. 65, No. 6 (2015), 224 228 2015 The Japan Institute of Light Metals Investigation of heat flow behavior on die-casting core pin with

More information

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem 1 1 1 Posture Esimation by Using 2-D Fourier Transform Yuya Ono, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Recently, research fields of augmented reality and robot navigation are actively investigated. Estimating

More information

( ) ATR

( ) ATR NAIST-IS-MT1151006 2013 2 7 ( ) ATR ,,,,, NAIST-IS-MT1151006, 2013 2 7. i Communication Robot for Expressing User s Physically Aggressive Behavior Maiko Adachi Abstract This thesis investigates how to

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

Examining the relationship between ego developmental crisis state and finger pulse waves in University students 大 学 生 の 自 我 発 達 上 の 危 機 状 態 と 指 尖 脈 波

Examining the relationship between ego developmental crisis state and finger pulse waves in University students 大 学 生 の 自 我 発 達 上 の 危 機 状 態 と 指 尖 脈 波 2 115 124 大 学 生 の 自 我 発 達 上 の 危 機 状 態 と 指 尖 脈 波 との 関 連 性 を 検 証 する 辻 野 順 子, 宇 惠 弘, 乾 原 正 Examining the relationship between ego developmental crisis state and finger pulse waves in University students Junko

More information

空力騒音シミュレータの開発

空力騒音シミュレータの開発 41 COSMOS-V, an Aerodynamic Noise Simulator Nariaki Horinouchi COSMOS-V COSMOS-V COSMOS-V 3 The present and future computational problems of the aerodynamic noise analysis using COSMOS-V, our in-house

More information

(1 ) (2 ) Table 1. Details of each bar group sheared simultaneously (major shearing unit). 208

(1 ) (2 ) Table 1. Details of each bar group sheared simultaneously (major shearing unit). 208 2463 UDC 621.771.251.09 : 621.791.94: 669.012.5 Improvement in Cold Shear Yield of Bar Mill by Computer Control System Koji INAZAKI, Takashi WASEDA, Michiaki TAKAHASHI, and Toshihiro OKA Synopsis: The

More information

110 B U N S E K I K A G A K U Vol Fig. 1 system Schematic diagram of the plasma measurement Fig. 2 Photograph of a time-resolved obserbation

110 B U N S E K I K A G A K U Vol Fig. 1 system Schematic diagram of the plasma measurement Fig. 2 Photograph of a time-resolved obserbation BUNSEKI KAGAKU Vol. 63, No. 2, pp. 109-117 2014 2014 The Japan Society for Analytical Chemistry 109 ICP 1 1 1 1 0.1 1 nl ICP ICP ICP He-ICP 3.4 khz Ar-ICP 17.3 khz He-ICP 24 ms Ar-ICP 130 ms He-ICP 3000

More information

Grund.dvi

Grund.dvi 24 24 23 411M133 i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi...........................

More information

Vol.24 No.3

Vol.24 No.3 June 1978 Effect of acupuncture on scalp potential evoked by electric tooth pulp stimulation Hiroshi FUJIMOTO Second Department of Oro- maxillo- facial Surgery, School of Dentistry, Aichigakuin University

More information

Fig. 1. Example of characters superimposed on delivery slip.

Fig. 1. Example of characters superimposed on delivery slip. Extraction of Handwritten Character String Superimposed on Delivery Slip Data Ken-ichi MATSUO, Non-member, Katsuhiko UEDA, Non-member (Nara National College of Technology), Michio UMEDA, Member (Osaka

More information

1 2 3 X-Rite, Incorporated 1998 ALL RIGHTS RESERVED

1 2 3  X-Rite, Incorporated 1998 ALL RIGHTS RESERVED 1 2 3 www.x-rite.com X-Rite, Incorporated 1998 ALL RIGHTS RESERVED 1 1 The Color Guide and Glossary input 2 Color Communication 3 The Color Guide and Glossary 4 Color Communication 5 The Color Guide and

More information

obtained for the liniarization, and was found to have a remarkably wider dynamic range (order of approximately 103) than that of conventional screen/f

obtained for the liniarization, and was found to have a remarkably wider dynamic range (order of approximately 103) than that of conventional screen/f II Resolution Property in a Digital Radiography with Photostimulable Phosphors II. Measurements of Digital Characteristic Curve and Presampling MTF Hiroshi FUJITA, Katsuhiko UEDA, Tsuyoshi FUJIKAWA and

More information

220 INTERRELATIONSHIPS AMONG TYPE OF REINFORCEMENT, ANXIETY, GSR, AND VERBAL CONDITIONING Koji Tamase Department of Psychology, Nara University of Education, Nara, Japan This investigation examined the

More information

Fig. 1 Relative delay coding.

Fig. 1 Relative delay coding. An Architecture of Small-scaled Neuro-hardware Using Probabilistically-coded Pulse Neurons Takeshi Kawashima, Non-member (DENSO CORPORATION), Akio Ishiguro, Member (Nagoya University), Shigeru Okuma, Member

More information

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( ) 1,a) 2 4 WC C WC C Grading Student programs for visualizing progress in classroom Naito Hiroshi 1,a) Saito Takashi 2 Abstract: To grade student programs in Computer-Aided Assessment system, we propose

More information

189 2015 1 80

189 2015 1 80 189 2015 1 A Design and Implementation of the Digital Annotation Basis on an Image Resource for a Touch Operation TSUDA Mitsuhiro 79 189 2015 1 80 81 189 2015 1 82 83 189 2015 1 84 85 189 2015 1 86 87

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

Vol. No. Honda, et al.,

Vol. No. Honda, et al., A Study of Effects of Foot Bath before Exercise on Fall Prevention Yoko Honda Yoko Aso Aki Ibe Megumi Katayama Tomoko Tamaru Key Words fall prevention, foot bath, elderly, fall prevention programs Honda,

More information

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11

Fig. 1. Relation between magnetron anode current and anode-cathod voltage. Fig. 2. Inverter circuit for driving a magnetron. 448 T. IEE Japan, Vol. 11 High Frequency Inverter for Microwave Oven Norikazu Tokunaga, Member, Yasuo Matsuda, Member, Kunio Isiyama, Non-member (Hitachi, Ltd.), Hisao Amano, Member (Hitachi Engineering, Co., Ltd.). Recently resonant

More information

Adult Attachment Projective AAP PARS PARS PARS PARS Table

Adult Attachment Projective AAP PARS PARS PARS PARS Table PARS PARS PARS PARS IWM IWM SATSAT Adult Attachment Projective AAP PARS PARS PARS PARS Table PARS PARS PARS PARS PARS AAP George, West, & Pettem Bowlby Bowlby George et al.,, Pp. - Geroge & West, PARS

More information

電子部品はんだ接合部の熱疲労寿命解析

電子部品はんだ接合部の熱疲労寿命解析 43 Evaluation for Thermal Fatigue Life of Solder Joints in Electronic Components Haruhiko Yamada, Kazuyoshi Ogawa 2 63Sn- 37Pb 95Pb-5Sn Si Cu Si 63Sn-37Pb Since automotive electronic components are used

More information

Medical Journal of Aizawa Hospital Medical Journal of Aizawa Hospital Vol. 8 (2010) Key words Neuropsychopharmacology Neuroscientist Curr Opin Neurol Clin Rehabil J Neurol Neurosurg Psychiatry

More information

特-3.indd

特-3.indd Development of Automation Technology for Precision Finishing Works Employing a Robot Arm There is demand for the automation of finishing processes that require technical skills in the manufacturing of

More information

i I

i I Brain Computer Interface 2009 2 i 1 1 1.1.................................. 1 1.2............................... 2 1.3................................. 3 2 4 3 12 3.1 I.....................................

More information

15 1970 Bransford, Barclay, & Franks, 1972; Mani & Johnson-Laird, 1982 3 Kintsch, Welsch, Schmalhofer, & Zimny, 1990 16 Kintsch, 1988; Kintsch, 1998; van Dijk & Kintsch, 1983 3 3 Glenberg, Meyer, and Lindem

More information

Fig. 1 Clinical findings and extent of inflammation area in female urethrocystitis Fig. 2 Classification and distribution of female patients with blad

Fig. 1 Clinical findings and extent of inflammation area in female urethrocystitis Fig. 2 Classification and distribution of female patients with blad Key words: Female with bladder irritability, Subjective symptoms, Pyuria, Bacteriuria Fig. 1 Clinical findings and extent of inflammation area in female urethrocystitis Fig. 2 Classification and distribution

More information

Influence of Material and Thickness of the Specimen to Stress Separation of an Infrared Stress Image Kenji MACHIDA The thickness dependency of the temperature image obtained by an infrared thermography

More information

(C) 1. () () y(θ) = sin(θ): sin, log () y = e x : e() A = B T : T () () t =1.0[s]: () 2. (SI) [] () () 10[s] (10(sec) ) () (SI) (D) () 1. 1 1 1 1 ( )

(C) 1. () () y(θ) = sin(θ): sin, log () y = e x : e() A = B T : T () () t =1.0[s]: () 2. (SI) [] () () 10[s] (10(sec) ) () (SI) (D) () 1. 1 1 1 1 ( ) 1 1.1 (A) 1. () (computer integrated manufacturing) 2. () CIM(Computer Integrated Manufacturing) 3. (-er ) (3 ) () (B) 1. () () 2. () () () () () 3. () () ( ) ( ) 4. () () () 1 (C) 1. () () y(θ) = sin(θ):

More information

2

2 Copyright 2008 Nara Institute of Science and Technology / Osaka University 2 Copyright 2008 Nara Institute of Science and Technology / Osaka University CHAOS Report in US 1994 http://www.standishgroup.com/sample_research/

More information

untitled

untitled The Impact of Digitization on Music Production: From a Perspective of Modularity 51 2 pp. 87-108 2003 12 I 21 3 Information and Communication Technology, ICT 0 1 1 20 1 199820012000 1 MP3 CD 2 3 II CD

More information

untitled

untitled 2007 55 2 235 254 c 2007 1 2 3 3 2007 6 12 2007 11 1 20 8 2 1. 2004 Sakata et al. 2004 1 610 0394 1 3 2 176 8525 2 42 1 3 525 8577 1 1 1 236 55 2 2007 2003 2004 Camurri et al. 1999 2002 2005 CG 1987 1

More information

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h 23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation (lijiang@sekine-lab.ei.tuat.ac.jp), (kazuki@sekine-lab.ei.tuat.ac.jp), (takahashi@sekine-lab.ei.tuat.ac.jp), (tamukoh@cc.tuat.ac.jp),

More information

kut-paper-template.dvi

kut-paper-template.dvi 14 Application of Automatic Text Summarization for Question Answering System 1030260 2003 2 12 Prassie Posum Prassie Prassie i Abstract Application of Automatic Text Summarization for Question Answering

More information

1) Tatelman M: The angiographic evaluation of cerebral arteriosclerosis. Radiology 70: 801-810, 1958. 2) Elkeles A: A comparative study of calcified 8) Limpert JD, Vogelzang RL, Yao JST: Computed tomography

More information

橡

橡 CO2 Laser Treatment of Tinea Pedis Masahiro UEDA:,' Kiyotaka KITAMURA** and Yukihiro GOKOH*** Table I Specifications 1. Kind of Laser 2. Wavelength of Lasers. Power of Laser. Radiation Mode. Pulse Duration.

More information

Fig. 1. Eigen values of the closed loop system in the z-plane: 110MW ( ~) and 330 MW ( ). Fig. 2. Simple heat exchanger model. 776 T. IEE Japan, Vol.

Fig. 1. Eigen values of the closed loop system in the z-plane: 110MW ( ~) and 330 MW ( ). Fig. 2. Simple heat exchanger model. 776 T. IEE Japan, Vol. Application of Nonlinear System Identification Method to Thermal Power Plants Yukihiro Toyoda, Member (Bailey Japan Co., Ltd.), Kiyoshi Wada, Member (Kyushu University) Electric power companies will pay

More information

2 94

2 94 32 2008 pp. 93 106 1 Received October 30, 2008 The purpose of this study is to examine the effects of aerobics training class on weight loss for female students in HOKURIKU UNIVERSITY. Seventy four female

More information

4 4 2 RAW 4 4 4 (PCA) 4 4 4 4 RAW RAW [5] 4 RAW 4 Park [12] Park 2 RAW RAW 2 RAW y = Mx + n. (1) y RAW x RGB M CFA n.. R G B σr 2, σ2 G, σ2 B D n ( )

4 4 2 RAW 4 4 4 (PCA) 4 4 4 4 RAW RAW [5] 4 RAW 4 Park [12] Park 2 RAW RAW 2 RAW y = Mx + n. (1) y RAW x RGB M CFA n.. R G B σr 2, σ2 G, σ2 B D n ( ) RAW 4 E-mail: hakiyama@ok.ctrl.titech.ac.jp Abstract RAW RAW RAW RAW RAW 4 RAW RAW RAW 1 (CFA) CFA Bayer CFA [1] RAW CFA 1 2 [2, 3, 4, 5]. RAW RAW RAW RAW 3 [2, 3, 4, 5] (AWGN) [13, 14] RAW 2 RAW RAW RAW

More information

Microsoft Word - Meta70_Preferences.doc

Microsoft Word - Meta70_Preferences.doc Image Windows Preferences Edit, Preferences MetaMorph, MetaVue Image Windows Preferences Edit, Preferences Image Windows Preferences 1. Windows Image Placement: Acquire Overlay at Top Left Corner: 1 Acquire

More information

S-5.indd

S-5.indd Development and pplication of Ultrasonic Noise B-scan nalysis ( I-CLT ) Creep Damage ssessment for Fossil-Fuel Boiler Piping precise creep damage assessment method has been required for boiler plants using

More information

( )

( ) NAIST-IS-MT1051071 2012 3 16 ( ) Pustejovsky 2 2,,,,,,, NAIST-IS- MT1051071, 2012 3 16. i Automatic Acquisition of Qualia Structure of Generative Lexicon in Japanese Using Learning to Rank Takahiro Tsuneyoshi

More information

2010 T1L ( ) T1L T1L I ,4,5 35 T1L II ,4,5 36 T1L T1L T1L1

2010 T1L ( ) T1L T1L I ,4,5 35 T1L II ,4,5 36 T1L T1L T1L1 2010 2010 syll mksyltex Ver 2.25(2010-11-26) by Yas T1Y016001 2.0 1 5 3 T1Y016002 2.0 1 5 3 T1Y016003 2.0 1 5 4 T1Y016004 2.0 1 5 5 T1Y016005 2.0 1 5 UEDA EDILSON SHINDI 5 T1L001001 2.0 1 2 6 T1L002001

More information

ec6

ec6 Yamagata Journal of Health Sciences, Vol. 8, 2005 Chikako SAITOU, Miharu NISHIWAKI This study has been undertaken to make clear the relationship of menstruation pattern to self-awareness, premenstrual

More information

2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S

2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S 2010 M0107189 2010 : M0107189 3DCG 3 (3DCG) 3DCG 3DCG 3DCG S 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1............................ 5 2.2.............................

More information

<4D F736F F F696E74202D2093AE89E682DA82E282AF82CC91AA92E895FB96404D C6926D8A6F82B382EA82BD93AE89E682DA82E282AF82CC918A8AD682C982C282A282C42E707074>

<4D F736F F F696E74202D2093AE89E682DA82E282AF82CC91AA92E895FB96404D C6926D8A6F82B382EA82BD93AE89E682DA82E282AF82CC918A8AD682C982C282A282C42E707074> 動 画 ぼやけ 測 定 方 法 MPRTと 知 覚 された 動 画 ぼやけの 相 関 について 染 谷 潤 三 菱 電 機 先 端 技 術 総 合 研 究 所 大 画 面 ディスプレイ 開 発 プロジェクトグループ 27/3/9 FPD 人 間 工 学 シンポジウム27 1 表 示 特 性 静 的 な 表 示 特 性 輝 度, コントラスト, 視 野 角, ムラ, 色 再 現 範 囲... 動 的

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

pp 427 438 2006 Dimensional Change Card Sort ****** ** 2005 9 30 2004 8 2002 4 Zelazo, P. D., Carter, A., Reznick, J. S. & Frye, D. 1997 10 2003 Zelaz

pp 427 438 2006 Dimensional Change Card Sort ****** ** 2005 9 30 2004 8 2002 4 Zelazo, P. D., Carter, A., Reznick, J. S. & Frye, D. 1997 10 2003 Zelaz Title 幼 児 の 実 行 機 能 の 発 達 過 程 : Dimensional Change C を 用 いたルールの 理 解 とその 使 用 に 関 する 検 討 Author(s) 浮 穴, 寿 香 ; 橋 本, 創 一 ; 出 口, 利 定 Citation 東 京 学 芸 大 学 紀 要. 総 合 教 育 科 学 系, 57: 427-438 Issue Date 2006-02-00

More information

- (20 ) 400 () 3DCG No.51 No.61 No.62 No.11 P 2 16

- (20 ) 400 () 3DCG No.51 No.61 No.62 No.11 P 2 16 - (20 ) 226-8503 1974 6 10 29 4259 Tel:045-924-5050 Fax:045-924-5016 E-mail:hase@hi.pi.titech.ac.jp Tel: Fax: E-mail: Tel:03-3786-5650 Tel:090-6036-8520 P 1 16 - (20 ) 400 () 3DCG No.51 No.61 No.62 No.11

More information