( )

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "( )"

Transcription

1 NAIST-IS-MT

2 ( )

3 4 Fast ICA, NAIST-IS- MT8511, i

4 ,,, Fast ICA, ii

5 Organization of Concentric Receptive Fields in the Primary Visual Cortex by Using Independent Component Analysis Takayoshi Aoki Abstract Previous experimental studies showed that neurons in the primary visual cortex (V1) have four firing properties to represent visual information. Four firing properties are named luminance gabor, oriented double-opponent, concentric single-opponent, and concentric double-opponent receptive fields. Previous theoretical studies demonstrated that redundancy compressions like independent component analysis (ICA) and sparse coding can derive basic functions corresponding to luminance gabor and oriented double-opponent receptive fields from natural images. On the other hand, emergences of basic functions corresponding to two concentric receptive fields via redundancy compression of natural images have not been reported. In this study, I propose a low pass filtering function of neurons in lateral geniculate nucleus (LGN) is important to derive concentric basic functions in addition to redundancy compression. Neurons in LGN project their axons to neurons in V1. Therefore, it is plausible that LGN contributes to form receptive fields of V1. I show that the concentric double-opponent basis function can be obtained by applying the low pass filtering and Fast ICA to natural images in a computer simulation. However, the concentric single-opponent basis function cannot be not obtained. This reason is thought that the concentric doubleopponent basis function functionally includes the concentric single-opponent basis Master s Thesis, Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, NAIST-IS-MT8511, February 5, 21. iii

6 function from the view point of redundancy compression. I also clarify how shapes of basic functions depend on ones of learning images, and how color components of basic functions depend on a color distribution of learning images. Keywords: Concentric Double-Opponent, Single-Opponent, Redundancy compressions, Fast ICA, Low-pass filter iv

7 PCA PCA Fast ICA v

8 A. 61 B. 62 C. 63 D. 63 E. 64 vi

9 Hz Hz Hz Hz Hz Hz vii

10 25 5.7Hz Hz Hz Hz Hz viii

11 (Photon) (Retina) (Cone) ( ) ( ) ( ) ( ) ( ) ( ) (Retinal Ganglion Cells RGCs) ( 1) L M Photon S Retina Cone Retina Luminance R-G B-Y RGCs 1 (Photon) (Retina) (Cone) (Retinal Ganglion Cells RGCs) L M S (Luminance) (R-G) (B-Y) 3 1

12 2 1 L nm M nm S nm [5] 3 [5] S ( ) nm( ) M ( ) nm( ) L ( ) nm( ) ( 2) [2]

13 A -(L+M+S) B +(L+M+S) -M +L C -S + : Excitatory - : Inhibitory +(L+M) D E F +(L+M+S) -(L+M+S) -M +L +(L+M) -S Luminance Channel Red-Green Opponent Channel Blur-Yellow Opponent Channel 3 (A) (C) (D) (F) (A) (D) (B) (E) (C) (F) L M S + (Excitatory) (Inhibitory) (Luminance) (R-G) (B-Y) 3 ( 3) 3A D 3A 3

14 ( 1) S 3B E 3B ( ) L M 3C F L M (L+M) [2] (Lateral Geniculate nucleus LGN) [2] [9] (Primary Visual Cortex V1) 4

15 A B -(L+M+S) +(L+M+S) -(L+M+S) M- L+ L+ M- C D M+ L- M- L+ M+ L+ L- M- M+ L+ L+ M- M- M+ L- 4 (A) (B) (C) (D) [1] ( 4) 4A B C D 4A C 4B D 2 [6] 2 5

16 1 (Single-Opponent) (Concentric Double-Opponent) (Retina) (LGN) (Primary Visual Cortex V1) (Luminance Gabor) (Oriented Double-Opponent) Luminance Gabor Single-Opponent Oriented Double-Opponent Concentric Double-Opponent Retina LGN V1 ( 1) [2] 6

17 ON ON OFF OFF Single-Opponent Eye Lateral geniculate nucleus ON ON ON Single-Opponent OFF OFFOFF Primary visual cortex Luminance Gabor 5 ON OFF ( 5) ( ) 7

18 ON OFF ON OFF Single-Opponent Eye Lateral geniculate uncleus OFF ON ON ON OFF OFF Single-Opponent M+ L- Primary visual cortex L+ M- M+ L- L+ M- Oriented Double-Opponent 6 ON OFF ( 6) 8

19 Single-Opponent ON ON OFF OFF ON ON ON Eye Lateral geniculate uncleus OFF OFF OFF ON OFF ON OFF OFF Single-Opponent ON OFF ON OFF OFF ON ON Primary visual cortex L+ M- M+ L- M+ L- L+ M- Concentric Double-Opponent 7 ON OFF ( 7) [3] ( ) 9

20 2 1 [11][18] ( 1) ( ) = ( 1) ( 1) + ( 2) ( 2) +... (1) 1 ( ) Q bit/sec R bit/sec R Q Q R 1 bit/sec R Q 1

21 4 ( 4A) ( 4B) ( 4C) ( 4D) (Independent Component Analysis ICA) ( A) ICA ICA Olshausen ( A C) [15] ( 8 ) ( 8 ) [16] K( f ) 11

22 8 192 (16 16) [15] ( 2) ( ) 4 f K( f ) = High( f )Low( f ) = f exp (2) f f =2(cycles/picture) High( f ) Low( f ) K( f ) 2 12 f

23 A B K(f) 1 1 fy f fx 9 (A) f K(f) (B)XY f x X f y Y 1 [16] Olshausen Dharmesh ICA [21] C

24 図 1 先行研究において 独立成分分析で得られた基底関数 学習にはカラーの 自然画像を用い 得られた 18 個の基底関数 (6 6 3) の内半分を表示した 各画 素の色は 赤 緑 青 3 色の組み合わせより表現される 赤 緑 青はそれぞ れ実数値を持つ 黒色は赤 緑 青の全てが の値であることを示す + は正 の値を持つ領域を は負の値を持つ領域を示す つまり 1 つの基底関数を正 負に分けて表示している これらの基底関数は 初期視覚野にある白黒ガボール 型及び二重反対色ガボール型の受容野特性を持つ 図は [21] より引用した I 行 4 列内において + 行の基底関数には 輝度を示す白線がある それに隣 接して 行も白線がある つまり 白黒ガボール型の基底関数であった V 行 3 列の基底関数は 赤と緑色が存在し 赤緑型の二重反対色ガボール型の基底関 数であった IV 行 2 列において 青と黄色が存在し 青黄型の二重反対色ガボー ル型の基底関数であった 14

25 2 Olshausen et al.[15] Dharmesh et al.[21] This study Filter Contrast filter Low-pass filter Redundancy compressions Sparse coding ICA Fast ICA Luminance gabor Oriented double-opponent Single-opponent Concentric double-opponent Olshausen Dharmesh ( 2) Dharmesh Olshausen 1.3 Elizabeth ( B) [1] ( 11A) ( ) 15

26 A 6 B 3 Spikes/sec 3 Spikes/sec Spatial freq (c/deg) Spatial freq (c/deg) 11 (A) (B) [1] ( 11B) [4][19] 11A B 1.4 Fast ICA 2 16

27 Fast ICA

28 2. 材料と方法 本研究では google 画像検索を用いてランダムに選んだ 2 枚のカラー自然画像 を学習サンプルとして用いた (図 12) 電気生理学実験に基づいたローパスフィル ターを学習サンプルに掛けた (図 14) また アルゴリズムを簡単化するために 画 像サンプルの各画素値における平均を 分散を 1 とする標準化を行った 大きく 分散の異なる変数に対して そのまま主成分分析 (Principal Component Analysis PCA) や ICA を適用すれば その結果は分散の大きな変数の影響を強く受け 変 数間の関係を正しく得られない可能性があるからである 計算時間と 図 12 本研究において学習サンプルとして用いた 2 枚のカラー自然画像 18

29 PCA ( 15) PCA 1 ICA Aapo Hyvarinen Fast ICA [8][1] 2.1 ( ) 3 8bit 13 ( ) ( ) ( ) m m 3 (m m ) X R X G X B X = {X R X G X B } 3 x R 1,1 x R 1,m X R =..... x R m,1 x R m,m (3) X R

30 Purple Red 255 Black (,,) Blue 255 Yellow Aqua White (255,255,255) 255 Green mm 1,Hz 5Hz / Hz 5Hz (1/128) = 3.9Hz (4) Hz ( ) 2

31 5.7Hz(3.9Hz 13) Hz 11.7Hz 2.3 X R X G X B x r = x r E[X R ] s x g = x g E[X G ] s x b = x b E[X B ] s (5) x r x g x b ( 6) E[X] E[X] = 1 x r,g,b (6) N r N N = R + G + B s ( 7) s = 1 N g b (x r,g,b E[X]) 2 (7) r g xr x g x b b 21

32 2.4 ˆx n ( 14) ˆx n ˆX ˆX A B pixel Low-pass filter C Standardization D pixel 1 Red Plane Green Plane Blue Plane E E E (A) (B) (C) (D) (16 16 ) 22

33 2.5 PCA PCA ˆX = {ˆx n } n = 1,..., N ˆx n D PCA M < D ( 15) 1 (M = 1) D u 1 u 1 u T 1 u 1 = 1 T ˆx n u T 1 ˆx n u T 1 x x 1 N N {u T 1 ˆx n u T 1 x}2 = 1 N n=1 = 1 N = 1 N N {u T 1 (ˆx n x)} 2 n=1 N {u T 1 (ˆx n x)}{u T 1 (ˆx n x)} n=1 N {u T 1 (ˆx n x)}{(ˆx n x) T u 1 } n=1 = u T 1 Su 1 (8) S S = 1 N N (ˆx n x)(ˆx n x) T (9) u T 1 x u 1 n=1 u 1 u T 1 u 1 = 1 λ 1 ( D ) E(u 1 ) = u T 1 Su 1 + λ 1 (1 u T 1 u 1) (1) E( ) u 1 23

34 1 Input Data X^ 1 Basis Function 1 1 F , PCA Reduction 15, Eigen Value Decomposition ICA 768 ED 1/2 Restoration M=25 PCAed Data M M=25 M Z* Independent Component s 15 (PCA) (Input Data) (PCAed Data) (ICA) (Independent Component) (ED 1/2 ) (Basis Function) Su 1 = λ 1 u 1 (11) u 1 S u T 1 ut 1 u 1 = 1 24

35 u T 1 Su 1 = λ 1 (12) u 1 λ 1 1 M S M λ 1,..., λ M M u 1,..., u M PCA x S S M M D = 768 PCA 25 (M = 25) M D ˆx n = (ˆx T n u a )u a + (ˆx T n u a )u a (13) a=1 a=m M z n = (ˆx T n u a )u a (14) a=1 z n 1 M M (Z = (z 1... z n ) T ) M=D=768 25

36 2.6 PCA Z = (z 1... z n) T E[z iz j] = δ i j (15) z i 1 I E{z z T } = I 1 PCA n ˆx Z Z = Vˆx (16) V V ˆx V = D 1/2 E T (17) D = diag(d 1 d n ) C x E = (e 1 e n ) C x = E{ˆxˆx T } 1 C x E ˆx PCA ( 9 12) E E T E = EE T = I D C x = EDE T Z E[Z Z T ] = VE[ˆxˆx T ]V T = D 1/2 E T EDE T ED 1/2 = I (18) Z Z (ED 1/2 )Z = ˆx (19) Z ˆx 26

37 2.7 Fast ICA Z = (z 1... z R) T s = (s 1... s R ) T Z = As (2) A z r A s r s = A 1 Z (21) A 1 W s y = (y 1 y 2... y r ) y = WZ (22) y y r [7][17] [7][17] Fast ICA J(y) y H(y) = p(y) log p(y)dy (23) J(y) = H(y gauss ) H(y) (24) y gauss y y J(y) 27

38 y Z [7][17] 2.8 J(y) y y y r ( ) [14] J(y r ) 1 12 E{y3 r} kurt(y r) 2 (25) kurt 4 kurt ( ) y r = E{y 4 r } 3 [ E{y 2 r } ] 2 = E{y 4 r } 3 (26) y r 1 4 y 3 r y4 r G i E{G i (y 3 r)} 2 G 1 G 2 G 1 G 2 J(y r ) k i (E{G 1 (y r )}) 2 + k 2 (E{G 2 (y r )} E{G 2 (ν)}) 2 (27) k 1 k 2 ν 1 y r

39 G 1 (y r ) = y 3 r G 2 (y r ) = y 4 r ( 25) 2 G 2 G J(y r ) [ E{G (y r )} + E{G (µ)} ] 2 (28) G G G [8] G (y r ) = 1 log (cosh y r ) (29) a [8] Fast ICA W w Fast ICA w w T Z J(w T Z ) E{(w T Z ) 2 } = w 2 = 1 ω ( D ) J(w T Z ) = [ E{G ( w T Z ) } + E{G (µ)} ] 2 + ω( w 2 1) (3) w 29

40 J(w T Z ) w = [ E{G(w T Z )} ] 2 + 2E{G(µ)} E{G(wT Z )} + ω wwt w w w = 2E{G(w T Z )}E{Z g(w T Z )} + 2E{G(µ)}E{Z g(w T Z )} + 2ωw = 2 [ E{G(w T z)} + E{G(µ)} ] E{Z g(w T Z )} + 2ωw = 2γE{Z g(w T Z )} + 2ωw (31) w = w/ w (32) γ E{G(w T z)} + E{G(µ)} 32 w w T Z w w g G( 29) γ 33 w = E{Z g(w T Z )} (33) 33 [8] 29 α w (1 + α)w = E{Z g(w T Z )} + αw (34) E{(w T Z ) 2 } = w 2 = 1 E{G(w T Z )} ( D ) F = (1 + α)w = E{Z g(w T Z )} + αw = (35) w α 35 ( E ) w F F w = E{Z Z T g (w T Z )} + αi (36) 3

41 g ( ) g( ) 36 1 E{Z Z T g (w T Z )} E{Z Z T }E{g (w T Z )} = E{g (w T Z )}I (37) F ŵ = w [ E{g (w T Z )} + α ] 1 [ E{Z g(w T Z )} + αw ] (38) 38 E{g (w T Z )} + α ˇw = E{Z g(w T Z )} E{g (w T Z )}w (39) Fast ICA 1 w PCA ED 1/2 M = (F) ( 15) 31

42 Dharmesh 2 ( 16A) ( 16B C) 16B 16C B C Dharmesh ( 1) Hz 11.7Hz ( 17 21) ( ) ( ) A B 22.8Hz 17A B ( 17C D) 32

43 18A B 11.4Hz 17B 18B ( 18C) ( 18D) 19A B 5.7Hz 19B 18B ( ) ( ) ( 19C D) ( ) 2A B 35.1Hz 2B 19B ( ) ( ) ( 2C D) 21A B 11.7Hz 2B 21B ( ) ( ) ( ) ( 21C D) ( 17 21)

44 A B + C - 16 (A) (B) (C) 34

45 A B C + D Hz (A) (C) 16 35

46 A B C + D Hz (A) (C)

47 A B C D Hz (A) (C) 16 37

48 A B C D Hz (A) (C) 16 38

49 A B C + D Hz (A) (C) 16 ( ) ( ) ( ) 39

50 A 22B 22B 22C 22D 22B 5.7Hz 22B 22D 22B 22E 22C 22E 3.4 Fast ICA ( 23) ( 23A) 1( 23B) 2( 23C) 3 B C ( ) ( 1 2) 23A C 2 ( ) ( 23D F) ( 23D)

51 A B C D E 22 (A) (B) (C)B (D) 5.7Hz (E)D 2 1 ( 23E) ( 23D) 2 ( 23F) ( 23D F) ( 23A C) 41

52 A B C D E F 23 (A) (C) (D)A 2 (E)B 1 2 (F)C ( 24 29)

53 1 4 ( ) 3 (13) 3 ( ) 24A ( ) 3 24C ( ) 25C 26C 3 ( ) C 28C 29C C 25C 26C 24C 26C 26B 25C ( 24C 26C) ( 25C) ( )=( ) (Purple) 24C 25C 26C 24C 43

54 24B 25C 25B 25C 26C ( 24C 25C) ( 26C) 13 ( )=( ) (Yellow) 3.2 ( ) 44

55 A +B -R C G +G Blue.5 B +R B -5-5 Green Number Blue -5-5 Green Hz (A) (B)2 (C)B XY 45

56 A +R -G C B +B Red.6 B Number +G R -5-5 Blue 5 5 Red -5-5 Blue Hz (A) (C) 24 46

57 A +G -B C R +R Green.5 B +B G -5-5 Red Number.6 5 Green -5-5 Red Hz (A) (C) 24 47

58 A +G +R C B +B Green 1 B Number -R G -5-5 Blue 5 5 Green -5-5 Blue Hz (A) (C) 24 48

59 A B Number -G 1 4 +B -R +R -B +G Blue C Red Blue -5-5 Red Hz (A) (C) 24 49

60 A B Number -B 1 4 +R -G +G -R +B Red C Green Red -5-5 Green Hz (A) (C) 24 5

61 3.6 ( ) ( 3) 1 ( ) ( ) 3.2 3A (1 2 3) =( ) 6 3B 3 3B ( ) 2 ( ) 3 ( ) (1 2 3) =( ) 3.5 ( 31) 3 ( 31A ) ( 31A C D E F G ) 31A 24C 24C 31A 31A 24C 3B (Aqua) (13)

62 A B Axis (1, 2, 3) Basis Function Axis (1, 2, 3) Basis Function (R, G, B) (B, R, G) (R, B, G) (G, R, B) (B, G, R) (G, B, R) 3 (A) (1 2 3) (R G B) (1 2 3) =(R G B) ( 13 ) (B) 31B ( 13) 52

63 Blue A 1 4 B Red C 5 5 Green D 5 5 Blue Green.6 Blue E 5 Green 5 Red F 5 Red 5 Red Blue -5-5 Green 5 31 R G B (1 2 3)=( ) (1 2 3)=( ) (A) (B) (C) (D) (E) (F) 53

64 Fast ICA ( 18 2) ( 22) ( 23) ( 21) ( 24 29) ( 3 31) PCA ( 14 15) ( ) PCA ED 1/ ( 16 21)

65 3 ( ) (Layer) [1] Layer Single-Opponent (n = 13) Double-Opponent (n = 51) 4/13, 31% 19/51, 37% /13, % 1/51, 2% 1/13, 8% 9/51, 18% /13, % 3/51, 6% 1/13, 8% 2/51, 4% 4/13, 31% 6/51, 12% 3/13, 23% 11/51, 22% ( 3) ( ) 1 4 ( ) 3 7 [12] 55

66 4.2 1 [1] ( ) ( 3) 2 1 ( ) [2] 56

67 5. ( ) ( ) Fast ICA 57

68 58

69 [1] [2] 2., [3] Bevil R. Conway and Margaret S. Livingstone. Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J. Neurosci., 26(42): , 26. [4] A. M. Derrington and P. Lennie. Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. J. Physiol, 357:219 24, [5] Karl R. Gegenfurtner and Daniel C. Kiper. Color vision. Annu. Rev. Neurosci., 26:181 26, 23. [6] Hubel D. H. and Wiesel T. N. Receptive fields, binocular interaction and functional architecture in the cat s visual cortex. J. Physiol, 195: , [7] Aapo Hyvarinen. Survey on independent component analysis. Neural Computing Surveys, 2:94 128, 1999a. [8] Aapo Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks, 1(3): , 1999b. [9] L. Iwai and H. Kawasaki. Molecular development of the lateral geniculate nucleus in the absence of retinal waves during the time of retinal axon eye-specific segregation. Neuroscience, 159: , 29. [1] Elizabeth N. Johnson, Michael J. Hawken, and Robert Shapley. The orientation selectivity of color-responsive neurons in macaque v1. J. Neurosci., 28. [11] Avi Karni and Dov Sagi. Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Neurobiology, 88: ,

70 [12] Carole E. Landisman and Daniel Y. Color processing in macaque striate cortex: Relationships to ocular dominance, cytochrome oxidase, and orientation. J. Neurophysiol, 87: , 22. [13] D. Luenberger. Optimization by Vector Space Methods, Wiley, [14] Jone M. and Sibson R. What is projection pursuit? J. of the Royal Statistical Society, ser. A, 15:1 36, [15] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381:67 69, [16] Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Res., 37(23): , [17] Comon P. Independent component analysis - a new concept? Signal Processing, 36: , [18] D. R. Peeples and D. Y. Teller. Colour vision and brightness discrimination in two-month-old human infants. Science, 189: , [19] Shapley R and Lennie P. Spatial frequency analysis in the visual system. Rev. Neurosci., 8: , [2] E. Sernagor, S. Eglen, B. Harris, and R. Wong. Retinal development. 26. [21] Dharmesh R. Tailor, Leif H. Finkel, and Gershon Buchsbaum. Color-opponent receptive fields derived from independent component analysis of natural images. Vision Research, 4: , 2. 6

71 A. I(a, b) a b I(a, b) a b a b a i I(a, b) = a i ϕ i (a, b) (4) i ϕ i (a, b) i 192 n n Î(a, b) = a i ϕ i (a, b) (41) I(a, b) Î(a, b) [ E 1 = ] 2 n I(a, b) Î(a, b) = I(a, b) a i ϕ i (a, b) a,b a,b i i E 1 ϕ i (a, b) a i a i 2 (42) 61

72 a i 42 E 2 n E 2 = I(a, b) a i ϕ i (a, b) a,b i 2 + λ n i [ log 1 + ( ai ) 2 ] σ σ a i λ E 2 ϕ i (a, b) a i ϕ i (a, b) E 2 a i (43) E 2 = ϕ i (a, b)i(a, b) ϕ i (a, b)ϕ j (a, b)a j λ 1 + a i σ 2 a i a,b j a,b 1 + ( ) a 2 (44) i σ ϕ i (a, b) ϕ i (a, b) ϕ i (a, b) = η [ a ] i I(a, b) Î(a, b) (45) η < > a i 44 1 ϕ i (a, b) , B. Elizabeth

73 1 ( ) ( 11A) ( 11B) C. Olshausen , [15] Dharmesh , ICA [21] D. y k J(y k )( 28) min J(y k ), subject to K i (w) =, (i = 1,..., p) (46) 63

74 K i (w) = y k L(y k, λ 1,..., λ k ) = J(y k ) + k λ i H i (y k ) (47) λ 1,..., λ p (47) ( 46) L(y k, λ 1,..., λ k ) y k λ i L(y k, λ 1,..., λ k ) λ i K i (y k ) K i (y k ) = L(w, λ 1,..., λ k ) w J(w) w + k i=1 i=1 λ i H i (w) w = (48) E. ( ) J(w) (2.7 ) J(w) w [ ] T J(w) J(w ) = J(w) + (w w) + 1 w 2 (w w) T 2 J(w) (w w) +... (49) w 2 J(w) w J(w) w w = w 64

75 [ ] T J(w) J(w ) J(w) = w J(w) w 2 wt w (5) w 2 w 5 w (J(w ) J(w)) w = J(w) w J(w) w + w 2 [ ] = J(w) w = J(w) w 2 2 J(w) w w 2 ( ) 2 T J(w) w w J(w) w 2 w (51) 2 J(w) w 2 51 [ ] 2 1 J(w) J(w) w = w 2 w (52) J(w) w [ ] w 2 1 J(w) J(w) = w w 2 w (53) w 53 [13] 2 1 Fast ICA ICA 65

76 1 66

Vol.-ICS-6 No.3 /3/8 Input.8.6 y.4 Fig....5 receptive field x 3 w x y Machband w(x =

Vol.-ICS-6 No.3 /3/8 Input.8.6 y.4 Fig....5 receptive field x 3 w x y Machband w(x = DOG(Difference of two Gaussians 8 A feedback model for the brightness illusion Shoji Nodasaka and Asaki Saito We consider mechanism of the Hermann grid. The mechanism is usually explained by effects of

More information

NotePC 8 10cd=m 2 965cd=m 2 1.2 Note-PC Weber L,M,S { i {

NotePC 8 10cd=m 2 965cd=m 2 1.2 Note-PC Weber L,M,S { i { 12 The eect of a surrounding light to color discrimination 1010425 2001 2 5 NotePC 8 10cd=m 2 965cd=m 2 1.2 Note-PC Weber L,M,S { i { Abstract The eect of a surrounding light to color discrimination Ynka

More information

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s 1 1 1, Extraction of Transmitted Light using Parallel High-frequency Illumination Kenichiro Tanaka 1 Yasuhiro Mukaigawa 1 Yasushi Yagi 1 Abstract: We propose a new sharpening method of transmitted scene

More information

paper.dvi

paper.dvi 23 Study on character extraction from a picture using a gradient-based feature 1120227 2012 3 1 Google Street View Google Street View SIFT 3 SIFT 3 y -80 80-50 30 SIFT i Abstract Study on character extraction

More information

( )

( ) NAIST-IS-MT1051071 2012 3 16 ( ) Pustejovsky 2 2,,,,,,, NAIST-IS- MT1051071, 2012 3 16. i Automatic Acquisition of Qualia Structure of Generative Lexicon in Japanese Using Learning to Rank Takahiro Tsuneyoshi

More information

日本感性工学会論文誌

日本感性工学会論文誌 pp.343-351 2013 Changes in Three Attributes of Color by Reproduction of Memorized Colors Hiroaki MIYAKE, Takeshi KINOSHITA and Atsushi OSA Graduate School of Science and Engineering, Yamaguchi University,

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

Perrett et al.,,,, Fig.,, E I, 76

Perrett et al.,,,, Fig.,, E I, 76 Attempting to Express Strong-impression Face Images from Features of Spatial Frequency: A Consideration of Billiken Statues and Bijin-ga Sakura Torii abstract It is difficult to express the psychological

More information

1 Department of Legal Medicine, Toyama University School of Medicine 2 3 4 5 6 7 8 Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama VEGF Key words

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

2007-Kanai-paper.dvi

2007-Kanai-paper.dvi 19 Estimation of Sound Source Zone using The Arrival Time Interval 1080351 2008 3 7 S/N 2 2 2 i Abstract Estimation of Sound Source Zone using The Arrival Time Interval Koichiro Kanai The microphone array

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i

SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i 20 SOM Development of Syllabus Vsualization System using Spherical Self-Organizing Maps 1090366 2009 3 5 SOM SOM(Self-Organizing Maps) SOM SOM SOM SOM SOM SOM i Abstract Development of Syllabus Vsualization

More information

Web Basic Web SAS-2 Web SAS-2 i

Web Basic Web SAS-2 Web SAS-2 i 19 Development of moving image delivery system for elementary school 1080337 2008 3 10 Web Basic Web SAS-2 Web SAS-2 i Abstract Development of moving image delivery system for elementary school Ayuko INOUE

More information

( ) ATR

( ) ATR NAIST-IS-MT1151006 2013 2 7 ( ) ATR ,,,,, NAIST-IS-MT1151006, 2013 2 7. i Communication Robot for Expressing User s Physically Aggressive Behavior Maiko Adachi Abstract This thesis investigates how to

More information

1..FEM FEM 3. 4.

1..FEM FEM 3. 4. 008 stress behavior at the joint of stringer to cross beam of the steel railway bridge 1115117 1..FEM FEM 3. 4. ABSTRACT 1. BackgroundPurpose The occurrence of fatigue crack is reported in the joint of

More information

202

202 201 Presenteeism 202 203 204 Table 1. Name Elements of Work Productivity Targeted Populations Measurement items of Presenteeism (Number of Items) Reliability Validity α α 205 α ä 206 Table 2. Factors of

More information

GIS GIS http : //gyokai-search.com/3-cafe.html

GIS GIS http : //gyokai-search.com/3-cafe.html GIS GIS GIS Abstract A geographic information system (GIS) can be used to digitize map information and statistical data onto a map and thus perform complex spatial analysis. In addition, GIS can be used

More information

58 10

58 10 57 Multi-channel MAC Protocol with Multi-busytone in Ad-hoc Networks Masatoshi Fukushima*, Ushio Yamamoto* and Yoshikuni Onozato* Abstract Multi-channel MAC protocols for wireless ad hoc networks have

More information

IT i

IT i 27 The automatic extract of know-how search tag using a thesaurus 1160374 2016 2 26 IT i Abstract The automatic extract of know-how search tag using a thesaurus In recent years, a number of organizational

More information

4 i

4 i 22 Quantum error correction and its simulation 1135071 2011 3 1 4 i Abstract Quantum error correction and its simulation Hiroko Dehare Researches in quantum information theory and technology, that mix

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

Title 社 会 化 教 育 における 公 民 的 資 質 : 法 教 育 における 憲 法 的 価 値 原 理 ( fulltext ) Author(s) 中 平, 一 義 Citation 学 校 教 育 学 研 究 論 集 (21): 113-126 Issue Date 2010-03 URL http://hdl.handle.net/2309/107543 Publisher 東 京

More information

2797 4 5 6 7 2. 2.1 COM COM 4) 5) COM COM 3 4) 5) 2 2.2 COM COM 6) 7) 10) COM Bonanza 6) Bonanza 6 10 20 Hearts COM 7) 10) 52 4 3 Hearts 3 2,000 4,000

2797 4 5 6 7 2. 2.1 COM COM 4) 5) COM COM 3 4) 5) 2 2.2 COM COM 6) 7) 10) COM Bonanza 6) Bonanza 6 10 20 Hearts COM 7) 10) 52 4 3 Hearts 3 2,000 4,000 Vol. 50 No. 12 2796 2806 (Dec. 2009) 1 1, 2 COM TCG COM TCG COM TCG Strategy-acquisition System for Video Trading Card Game Nobuto Fujii 1 and Haruhiro Katayose 1, 2 Behavior and strategy of computers

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: matsunagah@murase.m.is.nagoya-u.ac.jp, {ide,murase,hirayama}@is.nagoya-u.ac.jp,

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

ÿþ

ÿþ Abstract The aim of this paper is to describe 1. how media, especially mobile phones, have been utilized in childrearing practices, and 2. how the process of adoption influences the placement of techno-social

More information

A Study on Traffic Characteristics in Multi-hop Wireless Networks 2010 3 Yoichi Yamasaki ( ) 21 Local Area Network (LAN) LAN LAN LAN (AP, Access Point) LAN AP LAN AP AP AP (MWN, Multi-hop Wireless Network)

More information

2 22006 2 e-learning e e 2003 1 4 e e e-learning 2 Web e-leaning 2004 2005 2006 e 4 GP 4 e-learning e-learning e-learning e LMS LMS Internet Navigware

2 22006 2 e-learning e e 2003 1 4 e e e-learning 2 Web e-leaning 2004 2005 2006 e 4 GP 4 e-learning e-learning e-learning e LMS LMS Internet Navigware 2 2 Journal of Multimedia Aided Education Research 2006, Vol. 2, No. 2, 19 e 1 1 2 2 1 1 GP e 2004 e-learning 2004 e-learning 2005 e-learning e-learning e-learning e-learning 2004 e-learning HuWeb 2005

More information

平成○○年度知能システム科学専攻修士論文

平成○○年度知能システム科学専攻修士論文 A Realization of Robust Agents in an Agent-based Virtual Market Makio Yamashige 3 7 A Realization of Robust Agents in an Agent-based Virtual Market Makio Yamashige Abstract There are many people who try

More information

昭和恐慌期における長野県下農業・農村と産業組合の展開過程

昭和恐慌期における長野県下農業・農村と産業組合の展開過程 No. 3, 169-180 (2002) The Family in Modern Japan: its Past, Present and Future An Essay at Restoring Love as the Basis of Family Ties YAMANE Naoko Nihon University, Graduate School of Social and Cultural

More information

The Japanese Journal of Experimental Social Psychology. 2003, Vol. 42, No. 2, 146-165 Discoursive Strategy for the Commitment to Adoption with Infants Who Had Been Reared at Residential

More information

,.,.,,.,. X Y..,,., [1].,,,.,,.. HCI,,,,,,, i

,.,.,,.,. X Y..,,., [1].,,,.,,.. HCI,,,,,,, i 23 Experimental investigation of Natural Use Profiles of Pen Pressure, Tilt and Azimuth 1120230 2012 3 1 ,.,.,,.,. X Y..,,., [1].,,,.,,.. HCI,,,,,,, i Abstract Experimental investigation of Natural Use

More information

SketchPoint Pie-Menu On/Off 3 Pie-Menu 8 6 On/Off 8 5 2 SketchPoint i

SketchPoint Pie-Menu On/Off 3 Pie-Menu 8 6 On/Off 8 5 2 SketchPoint i 15 1040328 2004 2 27 SketchPoint Pie-Menu On/Off 3 Pie-Menu 8 6 On/Off 8 5 2 SketchPoint i Abstract SketchPoint is a system for creating the memorandum in case of the pen-input situation or informal presentation.

More information

ABSTRACT The movement to increase the adult literacy rate in Nepal has been growing since democratization in 1990. In recent years, about 300,000 peop

ABSTRACT The movement to increase the adult literacy rate in Nepal has been growing since democratization in 1990. In recent years, about 300,000 peop Case Study Adult Literacy Education as an Entry Point for Community Empowerment The Evolution of Self-Help Group Activities in Rural Nepal Chizu SATO Masamine JIMBA, MD, PhD, MPH Izumi MURAKAMI, MPH Massachusetts

More information

cover

cover 旭 川 医 科 大 学 研 究 フォーラム (2015.2) 15,1:83-86. 平 成 24 25 年 度 独 創 性 のある 生 命 科 学 研 究 個 別 研 究 課 題 22) 断 片 文 字 認 知 メカニズムのモデル 化 高 橋 龍 尚 22) 断 片 文 字 認 知 メカニズムのモデル 化 研 究 代 表 者 高 橋 龍 尚 研 究 の 背 景 と 目 的 ヒトは 図 形 の 一

More information

平成14年度 本態性多種化学物質過敏状態の調査研究 研究報告書

平成14年度 本態性多種化学物質過敏状態の調査研究 研究報告書 226 227 µ 228 Ω 229 230 0 ppb 2000ppb DG subthreshold (µa) 91 ± 59 86 ± 68 max stim. (µa) 755 ± 287 n=37 678 ± 300 max PS (mv) 8.7 ± 3.9 7.7 ± 4.3 n=61 CA1 subthreshold (µa) 36 ± 26 32 ± 13 max stim. (µa)

More information

29 28 39 1936 Acquiring technique and forming character in physical education after 1936 Analysis of articles of Kenji Shinozaki FUJIKAWA Kazutoshi The United Graduate School of Education Tokyo Gakugei

More information

) 2) , , ) 1 2 Q1 / Q2 Q Q4 /// Q5 Q6 3,4 Q7 5, Q8 HP Q9 Q10 13 Q11

) 2) , , ) 1 2 Q1 / Q2 Q Q4 /// Q5 Q6 3,4 Q7 5, Q8 HP Q9 Q10 13 Q11 2009 0612001. 1) 2) 2 2009 3 2009 8, 10 1 3, 12 50 4) 1 2 Q1 / Q2 Q3 910203040 5060708090 Q4 /// Q5 Q6 3,4 Q7 5,6711 123 4 Q8 HP Q9 Q10 13 Q11 , A 5 2 3 3 3 3 3 2 8 5 3 3 4 A C B 1 1 KJ 1 9 1 12 12 15

More information

[1] SBS [2] SBS Random Forests[3] Random Forests ii

[1] SBS [2] SBS Random Forests[3] Random Forests ii Random Forests 2013 3 A Graduation Thesis of College of Engineering, Chubu University Proposal of an efficient feature selection using the contribution rate of Random Forests Katsuya Shimazaki [1] SBS

More information

75 Author s Address: Possibility of Spatial Frequency Analysis of the Three-dimensional Appearance and Texture of Facial Skin

75 Author s  Address: Possibility of Spatial Frequency Analysis of the Three-dimensional Appearance and Texture of Facial Skin 75 Author s E-mail Address: torii@shoin.ac.jp Possibility of Spatial Frequency Analysis of the Three-dimensional Appearance and Texture of Facial Skin in Male Portraits TORII Sakura Faculty of Human Sciences,

More information

2 122

2 122 32 2008 pp. 121 133 1 Received November 4, 2008 The aim of this paper is to clarify some profound changes in the language used in the visual media, especially in TV news programs in Japan, and show what

More information

II

II No. 19 January 19 2013 19 Regionalism at the 19 th National Assembly Elections Focusing on the Yeongnam and Honam Region Yasurou Mori As the biggest issue of contemporary politics at South Korea, there

More information

06_学術.indd

06_学術.indd Arts and Sciences Development and usefulness evaluation of a remote control pressured pillow for prone position 1 36057 2 45258 2 29275 3 3 4 1 2 3 4 Key words: pressured pillow prone position, stomach

More information

untitled

untitled E- Blended Learning * ** Maritime English Training for Practical Communicative Competence ~Blended Learning of Onboard Training through English and E-Learning~ Masahiro SUGIMOTO, Fumio YOSHIDOME Abstract

More information

これわかWord2010_第1部_100710.indd

これわかWord2010_第1部_100710.indd i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv

More information

パワポカバー入稿用.indd

パワポカバー入稿用.indd i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84

More information

これでわかるAccess2010

これでわかるAccess2010 i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77

More information

Microsoft PowerPoint - ’Ý„v„¤‰ƒ›ï.ppt

Microsoft PowerPoint - ’Ý„v„¤‰ƒ›ï.ppt 1 http://www.tytlabs.co.jp/office/library/review/rev371j.html 2 -First Order Analysis- 3 4 CAE TOYOTA s CAR LISTS (66 cars) 5 6-10 years ago - CAE 1,2,3, 7 -CAE - -Now and Future - 8 /CAE /CAE /CAE CAE

More information

Izard 10 [1]Plutchik 8 [2] [3] Izard Neviarouskaya [4][5] 2.2 Hao [6] 1 Twitter[a] a) Shook Wikipedia

Izard 10 [1]Plutchik 8 [2] [3] Izard Neviarouskaya [4][5] 2.2 Hao [6] 1 Twitter[a] a)  Shook Wikipedia 1 2 2 2 Visualization for Spatiotemporal Distribution of People's Rich Emotions KIYOHISA TAGUCHI 1 KAZUO MISUE 2 JIRO TANAKA 2 To grasp spatiotemporal changes of rich emotions for a large number of people,

More information

When creating an interactive case scenario of a problem that may occur in the educational field, it becomes especially difficult to assume a clear obj

When creating an interactive case scenario of a problem that may occur in the educational field, it becomes especially difficult to assume a clear obj PBL PBL Education of Teacher Training Using Interactive Case Scenario Takeo Moriwaki (Faculty of Education, Mie University) Yasuhiko Yamada (Faculty of Education, Mie University) Chikako Nezu (Faculty

More information

Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i

Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i 21 Stock price forecast using text mining 1100323 2010 3 1 Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i Abstract Stock price forecast using text

More information

第三学年  総合的な学習の指導案(国際理解・英語活動)

第三学年  総合的な学習の指導案(国際理解・英語活動) NAT NAT NAT NAT NAT NAT All English NAT 20 One One One One One Show Time Silent Night Are You Sleeping? NAT NAT NAT NAT NAT What color do you like? ( NA ( ) Good afternoon, boys & girls. Good afternoon,

More information

Vol.9, 30-40, May ) ) ) ) 9), 10) 11) NHK Table Table 1 分 類 回 答 ( 抜 粋 ) 1マスメデ

Vol.9, 30-40, May ) ) ) ) 9), 10) 11) NHK Table Table 1 分 類 回 答 ( 抜 粋 ) 1マスメデ Vol.9, 30-40, May 2012 COGNITION ANALYSIS OF THE NUCLEAR ENERGY INDUSTRY PUBLIC RELATIONS STAFF WITH REGARDS TO THEIR ACTIVITIES TOWARD THE MASS MEDIA DURING ORDINARY TIMES 1 2 1 (E-mail:tsuchida.tatsuro@jaea.go.jp)

More information

2 2 1 2 1 2 1 2 2 Web Web Web Web 1 1,,,,,, Web, Web - i -

2 2 1 2 1 2 1 2 2 Web Web Web Web 1 1,,,,,, Web, Web - i - 2015 Future University Hakodate 2015 System Information Science Practice Group Report Project Name Improvement of Environment for Learning Mathematics at FUN C (PR ) Group Name GroupC (PR) /Project No.

More information

,, 2024 2024 Web ,, ID ID. ID. ID. ID. must ID. ID. . ... BETWEENNo., - ESPNo. Works Impact of the Recruitment System of New Graduates as Temporary Staff on Transition from College to Work Naoyuki

More information

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6) 1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology

More information

K06_アウトライン前.indd

K06_アウトライン前.indd CT 画 像 を 用 いた 肺 の 呼 吸 機 能 の 定 量 化 * ** * Quantification of the Respiratory Activity of the Lung using CT Images Takayuki HASHIMOTO* Caihua WANG**,and Jun MASUMOTO* Abstract We have developed a system to

More information

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )

2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( ) 1,a) 2 4 WC C WC C Grading Student programs for visualizing progress in classroom Naito Hiroshi 1,a) Saito Takashi 2 Abstract: To grade student programs in Computer-Aided Assessment system, we propose

More information

平成18年版 男女共同参画白書

平成18年版 男女共同参画白書 i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45

More information

III

III III 1 1 2 1 2 3 1 3 4 1 3 1 4 1 3 2 4 1 3 3 6 1 4 6 1 4 1 6 1 4 2 8 1 4 3 9 1 5 10 1 5 1 10 1 5 2 12 1 5 3 12 1 5 4 13 1 6 15 2 1 18 2 1 1 18 2 1 2 19 2 2 20 2 3 22 2 3 1 22 2 3 2 24 2 4 25 2 4 1 25 2

More information

iii iv v vi vii viii ix 1 1-1 1-2 1-3 2 2-1 3 3-1 3-2 3-3 3-4 4 4-1 4-2 5 5-1 5-2 5-3 5-4 5-5 5-6 5-7 6 6-1 6-2 6-3 6-4 6-5 6 6-1 6-2 6-3 6-4 6-5 7 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 8 8-1

More information

ï\éÜA4*

ï\éÜA4* Feature Article Imaging of minuscule amounts of chemicals, Scannimg Chemical Microscope --- Increasing analysis information through imaging --- Abstract We have developed a Scanning Chemical Microscope

More information

untitled

untitled 11-19 2012 1 2 3 30 2 Key words acupuncture insulated needle cervical sympathetick trunk thermography blood flow of the nasal skin Received September 12, 2011; Accepted November 1, 2011 I 1 2 1954 3 564-0034

More information

...

... m cm ... ..... A.B..C..D. MOOK 18 ,.. p........................................ .... ............................ Joy Vision p p............ p p p........ ... The Significance of Near Vision Visual Acuity

More information

( )

( ) NAIST-IS-MT9951117 2001 2 9 ( ) 3 CG, VR.,,,.,,,,,.,, 2, 3 3,.,, 2, 3.,,,,,.,,,.,,.,,, 3, NAIST-IS- MT9951117, 2001 2 9. i Intaractive terrain generation within Immersive Modeling System 3 Ryutarou Morimoto

More information

<30315F985F95B65F90B490852E696E6464>

<30315F985F95B65F90B490852E696E6464> Modeling for Change by Latent Difference Score Model: Adapting Process of the Student of Freshman at Half Year Intervals Kazuaki SHIMIZU and Norihiro MIHO Abstract The purpose of this paper is to present

More information

Support Vector Machine (SVM) 4 SVM SVM 2 80% 100% SVM SVM SVM 4 SVM 2 2 SVM 4

Support Vector Machine (SVM) 4 SVM SVM 2 80% 100% SVM SVM SVM 4 SVM 2 2 SVM 4 Analysis of Groove Feelings of Drums Plays 47 56340 19 1 31 Support Vector Machine (SVM) 4 SVM SVM 2 80% 100% SVM SVM SVM 4 SVM 2 2 SVM 4 1 1 1.1........................................ 1 1.1.1.............................

More information

P2P P2P peer peer P2P peer P2P peer P2P i

P2P P2P peer peer P2P peer P2P peer P2P i 26 P2P Proposed a system for the purpose of idle resource utilization of the computer using the P2P 1150373 2015 2 27 P2P P2P peer peer P2P peer P2P peer P2P i Abstract Proposed a system for the purpose

More information

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6 JSPE-54-04 Factor Analysis of Relationhsip between One's Visual Estimation and Three Dimensional Surface Roughness Properties on Belt Sanded Surface Motoyoshi HASEGAWA and Masatoshi SHIRAYAMA This paper

More information

16_.....E...._.I.v2006

16_.....E...._.I.v2006 55 1 18 Bull. Nara Univ. Educ., Vol. 55, No.1 (Cult. & Soc.), 2006 165 2002 * 18 Collaboration Between a School Athletic Club and a Community Sports Club A Case Study of SOLESTRELLA NARA 2002 Rie TAKAMURA

More information

_念3)医療2009_夏.indd

_念3)医療2009_夏.indd Evaluation of the Social Benefits of the Regional Medical System Based on Land Price Information -A Hedonic Valuation of the Sense of Relief Provided by Health Care Facilities- Takuma Sugahara Ph.D. Abstract

More information

02[021-046]小山・池田(責)岩.indd

02[021-046]小山・池田(責)岩.indd Developing a Japanese Enryo-Sasshi Communication Scale: Revising a Trial Version of a Scale Based on Results of a Pilot Survey KOYAMA Shinji and IKEDA Yutaka Toward exploring Japanese Enryo-Sasshi communication

More information

三税協力の実質化 : 住民税の所得税閲覧に関する国税連携の効果

三税協力の実質化 : 住民税の所得税閲覧に関する国税連携の効果 Kwansei Gakuin University Rep Title 三 税 協 力 の 実 質 化 : 住 民 税 の 所 得 税 閲 覧 に 関 する 国 税 連 携 の 効 果 Author(s) Suzuki, Ushio, 鈴 木, 潮 Citation 経 済 学 論 究, 65(4): 175-197 Issue Date 2012-03-20 URL http://hdl.handle.net/10236/9133

More information

A Study on Food Cost Viewed in Relation to Nutrition (Part 1) Fluctuations in Food Costs by Month Yasuko IZUSHI Kimiko MATSUDA No satisfactory way had been found to apprehend the food cost from the viewpoint

More information

2 194

2 194 32 2008 pp. 193 210 1 Received October 31, 2008 The Japanese auxiliary verbs in benefactive construction can be classified in terms of the following two semantic functions: ones that only represent the

More information

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C)

(4) ω t(x) = 1 ω min Ω ( (I C (y))) min 0 < ω < C A C = 1 (5) ω (5) t transmission map tmap 1 4(a) 2. 3 2. 2 t 4(a) t tmap RGB 2 (a) RGB (A), (B), (C) (MIRU2011) 2011 7 890 0065 1 21 40 105-6691 1 1 1 731 3194 3 4 1 338 8570 255 346 8524 1836 1 E-mail: {fukumoto,kawasaki}@ibe.kagoshima-u.ac.jp, ryo-f@hiroshima-cu.ac.jp, fukuda@cv.ics.saitama-u.ac.jp,

More information

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015)

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015) 65 62015 224 228 ** Journal of The Japan Institute of Light Metals, Vol. 65, No. 6 (2015), 224 228 2015 The Japan Institute of Light Metals Investigation of heat flow behavior on die-casting core pin with

More information

Core Ethics Vol.

Core Ethics Vol. Core Ethics Vol. Core Ethics Vol. . % % % Core Ethics Vol. %, Core Ethics Vol. % % % -. %. Core Ethics Vol. a b : Core Ethics Vol. pp... pp.. pp... pp. pp.. pp...pp.... pp. pp. pp.. pp.. Vol.. pp... pp..

More information

Author Workshop 20111124 Henry Cavendish 1731-1810 Biot-Savart 26 (1) (2) (3) (4) (5) (6) Priority Proceeding Impact factor Full paper impact factor Peter Drucker 1890-1971 1903-1989 Title) Abstract

More information

1 2 4 5 9 10 12 3 6 11 13 14 0 8 7 15 Iteration 0 Iteration 1 1 Iteration 2 Iteration 3 N N N! N 1 MOPT(Merge Optimization) 3) MOPT 8192 2 16384 5 MOP

1 2 4 5 9 10 12 3 6 11 13 14 0 8 7 15 Iteration 0 Iteration 1 1 Iteration 2 Iteration 3 N N N! N 1 MOPT(Merge Optimization) 3) MOPT 8192 2 16384 5 MOP 10000 SFMOPT / / MOPT(Merge OPTimization) MOPT FMOPT(Fast MOPT) FMOPT SFMOPT(Subgrouping FMOPT) SFMOPT 2 8192 31 The Proposal and Evaluation of SFMOPT, a Task Mapping Method for 10000 Tasks Haruka Asano

More information

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2

2003/3 Vol. J86 D II No.3 2.3. 4. 5. 6. 2. 1 1 Fig. 1 An exterior view of eye scanner. CCD [7] 640 480 1 CCD PC USB PC 2 334 PC USB RS-232C PC 3 2.1 2 Curved Document Imaging with Eye Scanner Toshiyuki AMANO, Tsutomu ABE, Osamu NISHIKAWA, Tetsuo IYODA, and Yukio SATO 1. Shape From Shading SFS [1] [2] 3 2 Department of Electrical and Computer Engineering,

More information

総研大文化科学研究第 11 号 (2015)

総研大文化科学研究第 11 号 (2015) 栄 元 総研大文化科学研究第 11 号 (2015) 45 ..... 46 総研大文化科学研究第 11 号 (2015) 栄 租借地都市大連における 満洲日日新聞 の役割に関する一考察 総研大文化科学研究第 11 号 (2015) 47 48 総研大文化科学研究第 11 号 (2015) 栄 租借地都市大連における 満洲日日新聞 の役割に関する一考察 総研大文化科学研究第 11 号 (2015)

More information

untitled

untitled 2007 55 2 235 254 c 2007 1 2 3 3 2007 6 12 2007 11 1 20 8 2 1. 2004 Sakata et al. 2004 1 610 0394 1 3 2 176 8525 2 42 1 3 525 8577 1 1 1 236 55 2 2007 2003 2004 Camurri et al. 1999 2002 2005 CG 1987 1

More information

2. 2.1 Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou

2. 2.1 Lytro [11] The Franken Camera [12] 2.2 Creative Coding Community Creative Coding Community [13]-[19] Sketch Fork 2.3 [20]-[23] 3. ourcam 3.1 ou 情 報 処 理 学 会 インタラクション 2013 IPSJ Interaction 2013 2013-Interaction (3EXB-06) 2013/3/2 ourcam: 1 2 ourcam ourcam: On-Site Programming Environment for Digital Photography RYO OSHIMA 1 YASUAKI KAKEHI 2 In these

More information

橡最終原稿.PDF

橡最終原稿.PDF GIS Simulation analysis of disseminate of disaster information using GIS * ** *** Toshitaka KATADAJunsaku ASADA and Noriyuki KUWASAWA GIS GIS AbstractWe have developed the simulation model expressing the

More information

2

2 2011 8 6 2011 5 7 [1] 1 2 i ii iii i 3 [2] 4 5 ii 6 7 iii 8 [3] 9 10 11 cf. Abstracts in English In terms of democracy, the patience and the kindness Tohoku people have shown will be dealt with as an exception.

More information

ODA NGO NGO JICA JICA NGO JICA JBIC SCP

ODA NGO NGO JICA JICA NGO JICA JBIC SCP ODA NGO NGO JICA JICA NGO JICA JBIC SCP - - NGO NGO NGO NGO NGO NGO Roger A Hart - Potuvil UGM UGM APU NGO APU APU NGO APU NGO NGO APU APU Matara NGO ODA NGO ODA http://www.jica.go.jp/partner/college/index.html#partnership

More information