nosenote1.dvi

Size: px
Start display at page:

Download "nosenote1.dvi"

Transcription

1

2 i

3 Fermi-Pasta-Ulam 8. Fermi-Pasta-Ulam Fermi-Pasta-Ulam Fermi-Pasta-Ulam....4 Fermi-Pasta-Ulam....5 FPU

4 (Molecular Dynamics (MD)) Newton Liouville Euler Euler ( Runge-Kutta Runge-Kutta... 38

5 Runge-Kutta Runge-Kutta = Runge-Kutta Runge-Kutta Runge-Kutta MD Verlet leap frog Verlet ( ) (6.8) (6.8) Verlet MD MD MD

6 Car-Parrinello MD Nosé-Hoover Nos e-poincar e Nos e-poincar e Nos e Nos e-poincar e ζ, s Q Q

7 ... C V C V C V T T fitting

8 ....3 Fe Fe O 3 H H = J S i S j (.) {i,j} S i i e Fe 3+ 5/ H I = J {i,j} S iz S jz (.) T c

9 3 T c =0 J j S i S j J j S i S j (.3) T c / M (T c T ) / (.4)..4

10 4 La x Sr x CuO 4 Tc = 38K Tc La Y T c YBa Cu 3 O 7 Tc = 93K..5 )

11 5 CP-PACS GRAPE LSI (Kohn) Car-Parrinello : MD MC ENIAC 948 EDSAC 958

12 6 (LSI 3.5 ) 964 IBM CRAY ( Fermi-Pasta-Ulam 953 Alder

13 7 KdV (963) 970 C(t) = v i (0) v i (t) (.5) 970 Rahman-Stillinger 985 Car-Parrinello ns c.f. Ar ns

14 8 Fermi-Pasta-Ulam. Fermi-Pasta-Ulam Los Alamos No.940(955) Fermi p Fermi-Pasta-Ulam Fermi subsection S(E,V,N) } {{ } = k ln W (E,V,N) } {{ } (.) q p Γ=(p, q) H(q, p) =E( ) p i H(q, p) = m i i } {{ } + Φ(q) } {{ } (.)

15 Fermi-Pasta-Ulam 9.. H = E + E = E (.3) H = E +(E E ), (E E )..3 Fermi.

16 Fermi-Pasta-Ulam 0 x i x 0 x N+ x 0 0, x N+ 0 ẍ n = (x n x n )+(x n+ x n ) = x n+ + x n x n (.4) H = n ẋ n + N+ n= (x n x n ) (.5) y m = N x n = N N n= N m= ( ) nπ x n sin N + m ( ) mπ y m sin N + n (.6) (.7) H = m ω m = sin (ẏ m + ωmym) = A mωm (.8) m mπ, (m =,,,N) (.9) (N +) ÿ m = ω my m (.0) y m = A m cos(ω m t + δ m ) (.)

17 Fermi-Pasta-Ulam x n = N N m= N ( ) mπ sin N + n A m cos(ω m t + δ m ) (.).3 Fermi-Pasta-Ulam U(x) = n (x n x n ) + α 3 (x n x n ) 3 (.3) n + β (x n x n ) 4 4 n + H = n ẋ n + n y m H = m ẏ m + m (x n x n ) + α 3 ω my m + α 3 (x n x n ) 3 (.4) n A k,l,m y k y l y m (.5) k,l,m ÿ m = ωmy m α A k,l,m y k y l k,l } {{ } (.6)

18 Fermi-Pasta-Ulam α H m A mω m (.7).4 Fermi-Pasta-Ulam FPU.5 FPU

19 Fermi-Pasta-Ulam 3.5. ( ) KAM n i ω i 0 (.8) i N = n FPU FPU.5. (solitary wave) (soliton)

20 Fermi-Pasta-Ulam 4 t R =0.44 N 3/ α B t L (.9) B : α : t L = N κ/m =N : (.0) KdV FPU 3 KdV 967 U(x) = N [ e b(x n x n ) + b(x n x n ) ] (.) n= N n= [+ ] b (x n x n ) b3 6 (x n x n ) 3 +

21 A A A A = A + A (3.) A N ( ) δa = (A A ) N (3.) δa A N (3.3) P (A)

22 3 6 Γ =(r, r,, r N, p, p,, p N ) (3.4) f(γ) A = = = dγa(γ)f(γ) daa dγδ(a(γ) A)f(Γ) } {{ } A(Γ) A daap (A) (3.5) A(Γ) =A (E, V, N) (,, ) (3.6) f(γ) =cδ(h(γ) E) (3.7) W = δ(h(γ) E)dΓ (3.8) H(Γ) = i p i m i +Φ(r,, r N ) (3.9)

23 3 7 W (E,V,N) k S(E,V,N) } {{ } = k ln W (E,V,N) (3.0) H(Γ) =E H(Γ) =E 3.. (T,V,N) T F H(Γ) f(γ) =Ce kt (3.) H(Γ) Z = e kt dγ (3.) F = kt ln Z (3.3) f(γ)

24 : Ising 944 Onsager H = J i<j S iz S jz µ B H i A iz (3.4) XY 96 H = J i<j S i S j, S =(S x,s y, 0) (3.5) 6-vertex 967 Lieb 8-vertex 97? Baxter vertex

25 Bethe (Molecular Dynamics (MD)) (E,V,N) 3.4. Monte Carlo method)(mc) i E i E j

26 3 0 E j <E i i + E j E j >E i e kt (E j E i ) 0 ξ ξ e kt (E j E i ) >ξ E i+ = E i e kt (E j E i ) <ξ E i+ = E j. i j j i T ji P i = T ji e E i kt. = Tij e E j kt = Tij P j (3.6) = = 5 N N

27 3 ξ. MD MC E = H C V = (H H ) NkT (3.7) δa(t)δa(j + τ) dτ (3.8) 00

28 3 3. LJ ( (σ ) ( σ ) ) 6 φ(r) =4ɛ r r (3.9) LJ

29 3 4 MD Newton m i d r i dt = F i = Φ r i (4.) 4.. L = K Φ= i m i ṙ i Φ(r, r, ) (4.) S = Ldt = L(ṙ, r, t)dt (4.3) δs =(S + δs) S = δldt ( ) L L = δr + r ṙ δṙ dt ( L = r d ) L δrdt = 0 (4.4) dt ṙ

30 4 4 d L dt ṙ = L r (4.5) 4..3 r i q i Legendre p i = L q i, (p i = m i q i ) (4.6) H(q, p) = i p i q i L(q, q) = i p i pi m i i p i m i +Φ(q) = i p i m i +Φ(q) =E ( ) (4.7) dq i dt = H p i dp i dt = H q i Newton dq i dt = p i m i dp i dt = Φ (4.8) q i m i d q i dt = Φ q i

31 Γ H q q.. q N H H Γ =, p Γ = q N H p.. p N H p N (4.9) dγ dt = } {{ } =J H Γ (4.0) ( ) t ( ) t dh H dt = dγ H Γ dt = J H Γ Γ = ( H q, H p ) ( ) 0 H q = 0 H p ( H q, H ) H p p H q = 0 (4.) 4.3. (q 0, p 0 ) (q(t), p(t)) (q(t), p(t)) t (q 0, p 0 ) (4.)

32 Liouville f(γ) f t + ( ) Γ Γf = 0 (4.3) df dt = f t + Γ f Γ (4.4) f t + Γ f ( ) Γ + Γ Γ f = 0 (4.5) ( ) df dt = Γ Γ f (4.6) Γ Γ = i = i ( df dt = Γ Γ ( qi + ṗ ) i q i p i ( H H ) =0 q i p i p i q i ) f = 0 (4.7)

33 t = t 0 r i (t 0 ), v i (t 0 ) r i (t), v i (t) m d r i dt = F i (5.) y =(y (t),y (t), ) (5.) dy dt = f(y,t) (5.3) dr i dt = p i m, dp i dt = F i t t t n = n t t n = n t y n = y(t n ) (5.4)

34 5 8 y n+ = G(y n+, y n, y n, ) (5.5) G y n+ (explicit) G y n+ (implicit) y n+ = G(y n+, y n ), y n (5.6) y n+ = G(y n+, y n,, y } {{ n k+ ), } k (5.7) k t n y n, y n, y n, (5.8) 5. y(t) y n O(( t) k ) (5.9) k CPU 5.3 self-start

35 5 9 ( t) k Euler Rnge-Kutta 4 Verlet 5 Gear (truncation error) (round-off error) 3 t 5.5 λ>0 λ<0 dx dt = λx (5.0)

36 5 30 dx dt = f(x,t) (5.) x 0 (t) x(t) =x 0 (t)+δx(t) } {{ } (5.) dx dt = dx 0 dt + d(δx) dt = f(x 0 (t)+δx(t),t)=f(x 0,t)+ f δx + (5.3) x 0 d(δ x) dt = f x δx + (5.4) x=x 0 δx f x 0 dδx i dt = λ i δx i (5.5) dx dt = λx (5.6) λ>0 λ <0 dx x = λdt ln x = λt + c x = Ceλt (5.7)

37 Euler x(t + t) =x(t)+ẋ(t) t +ẍ(t) ( t)! + (5.8) ẋ x(t + t) x(t) ẋ(t) = t dx x(t + t) x(t) = f(x, t) dt t = f(x(t),t) Euler x(t + t) =x(t)+ tf(x(t),t) (5.9) x n+ = x n + tf(x n,t) (5.0) x n+ = x n + tλx n =(+λ t)x n x n =(+λ t) n x 0 (5.) t = n t t 0

38 5 3 Euler ok ɛ n =(+λ t) n x 0 e λt x 0 =(+λ t) t/ t x 0 e λt x 0 +λ t =+λ t +! (λ t) +! (λ t) = e λ t! (λ t) ( ( + λ t) t/ t = e λ t! (λ t) ) t/ t = e ( λt ) t/ t! (λ t) e λ t [ ( ] ɛ n = e λt x 0 t/ t! (λ t) e ) λ t [ = e λt x 0 ]! (λ t) e λ t t t + = e λt x 0 ( ) λ te λ t + (5.) t 0 ɛ n 0 dx dt = f(x, t) (5.3) f(x, t) f(y, t) <L x y (5.4) L t 0 f ok f

39 5 33 ɛ n+ = x n+ x(t + t) ɛ n = x n x(t) ɛ n+ = ɛ n +(x n+ x n ) (x(t + t) x(t)) t+ t ( ) dx dx = ɛ n + λ tx n dt dt, = λx dt = ɛ n + λ tx n λ = ɛ n + λ t 0 t t+ t t x(t )dt ( xn x(t + t ) ) dt x(t + t )=x(t)+x (t)t + x (t)t + = ɛ n + λɛ n t λx (t) ( t) + =(+λ t)ɛ n + O ( ( t) ) (5.5) ɛ n+ ( + λ t)ɛ n (5.6) +λ t > +λ t < dx dt = f(x,t) (5.7) ɛ n+ = + t f x 0 λ i λ i < ( + t f ) ɛ n + O( ( ( t) ) (5.8) x 0 Euler + tλ <

40 5 34 x n x(t) x(t) t (5.9) Euler ( + λ t) t/ t e λt e λt ( + λ t) t/ t ok = e λt ( + λ t) t/ t e λt = e tλ t+ t 3 λ3 ( t) (5.30) +λ t < e λ t λ t = x + iy ( + x) + y <e x (5.3) e (λ ɛ)t < ( + λ t) t/ t < e λt e ɛt (5.3) 5.6. Euler dq dt = p, dp dt = q q n+ q n p n+ p n = p n, = q n t t ( ) ( )( ) qn+ t qn = p n+ t p n ( ) ( )n ( ) qn+ t q0 = p n+ t p 0 = ( ( +( t) ) n/ cos nθ sin nθ sin nθ cos nθ )( q0 p 0 ) (5.33)

41 5 35 tan θ = t θ = t 3 ( t)3 + 5 ( t)5 ( ) λ t det =0 t λ ( λ) +( t) =0 λ =± i t = +( t) e ±iθ (5.34) t + t x(t) =x(t + t t) = x(t + t) x t+ t t + x(t + t) =x(t)+x (t + t) t = x(t)+f(t + t, t + t) t dx dt = λx x n+ = x n + f(x n+,t+ t) t, (5.35) x n+ = x n + λx n+ t x n+ = λ t < λ t x n = ( λ t) n x 0 (5.36)

42 dq dt = p, dp dq q n+ q n t = p n, q n+ = q n + p n t p n+ p n t = q (5.37) = q n+ p n+ = p n q n+ t = p n (q n + p n t) t = p n q n t p n ( t) ( ) ( qn+ t = p n+ t ( t) ( ) t det =0 t ( t) )( qn p n ( λ) ( t) ( λ)+( t) =0 λ ( ( t) ) λ +=0 λ = ( ) ( t) ± i t ( t) 4 ( ) cos θ = ( t) θ, sin = t λ = cos θ ± i sin θ = e ±iθ, λ = (5.38) A = q n + tq n p n + ( ( t) ) p n = q 0 + tq 0 p 0 + ( ( t) ) p 0 (5.39) )

43 ( dx dt x n+ x n t x ( t) dx dt x n+ x n t 6 x ( t) x n+ x n t = λx n x 0,x x 0,x 0 x n+ = x n +λ tx n (5.40) x n+ λ tx n x n = 0 (5.4) x n = α n α λ tα =0 α ± = λ t ± +(λ t) x n = Aα+ n + Bα n (5.4) α ± < α + α = α +,α

44 Runge-Kutta 5.7. Runge-Kutta dy dx Runge-Kutta p k i k i = xf(x n,y n ) = f(x, y) (5.43) k j = xf(x n + ν j t, y n + µ j k j ) y n+ = y n + α k + α k + + α p k p (5.44) α,,α p,ν,,ν p,µ,,µ p f ( t) k p k p = k =4 Runge-Kutta 5.7. Runge-Kutta p =4 α = α 4 = 6, α = α 3 = 3 ν = ν 3 =, ν 4 =, µ = µ 3 =, µ 4 = (5.45)

45 5 39 Runge-Kutta k = xf(x n,y n ) ( k = xf x n + x, y n + ) k ( k 3 = xf x n + x, y n + ) k k 4 = xf(x n + x, y n + k 3 ) y n+ = y n + 6 (k +k +k 3 + k 4 ) (5.46) f(x, y) y Runge-Kutta = Runge-Kutta y n+ = y n + α xf(x n,y n ) +α } {{ } xf(x n + ν x, y n + µ k ) } {{ } =k =k dy = f(x, y) dx d y dx = f x + f y d 3 y dx = d 3 dy dx = f x + f y f dx 8f x + f y f)=f xx + f xy f + f yy f + fy f ( = y n + α xf(x n,y n )+α x f(x n,y n )+f x ν x + f y µ k + f xx(ν x) + f xy ν xµ k + ) f yy(µ k ) + + ( = y n +(α + α ) xf +( x) α fx ν + f y µ f ) + ( x)3 α ( fxx ν +f xy ν µ f + f yy µ f ) + (5.47)

46 5 40 y n+ = y n + xf + ( x) (f x + f y f) + ( x)3 (f xx + f xy f + f yy f + fy f)+ (5.48) 6 α + α =, α ν =, α µ = (5.49) ( x) α α = Runge-Kutta α = α, ν = µ = α (5.50) y n+ = y n + x[ f(x n,y n )+f(x n + x, y n + xf(x n,y n )) ] (5.5) α = ( y n+ = y n + xf x n + x, y n + ) xf(x n,y n ) (5.5) Runge-Kutta dy = y Runge-Kutta x =0,y= dx y = e x

47 5 4 k = x = x ( k = xf x n + x, y n + ) ( k = x + x ) k 3 = x (+ ( x + x )) k 4 = x( + k 3 )= x (+ x + ( x) + 4 ) ( x)3 (5.53) y = y (k +k +k 3 + k 4 ) =+ [ ( x + x + x ) 6 + x (+ x + ( x) ( + x + ( x)3 4 + x ) + ( x) 4 )] =+ x + ( x) + 6 ( x)3 + 4 ( x)4 (5.54) y n+ = y n ( + x +! ( x) + 3! ( x)3 + 4! ( x)4 ) (5.55) + x +! ( x) + 3! ( x)3 + 4! ( x)4 < (5.56) R-K Runge-Kutta Runge-Kutta ( x) 5 (local error) x = n x ( x) 4 (global error)

48 Runge-Kutta self-start Runge-Kutta MD 5.8 (Predictor-Corrector Gear MD Nordsieck Nordsieck, Math. Comp.6, (96) Gear Gear: Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall (97) 5.8. dx dt = f(x, t) x(t),x (t),,x (k) (t)

49 5 43 X P (t + t) =P X(t) (5.57) x(t)! x() ( t) X(t) =! x() ( t), P = k! x(k) ( t) k P P ij = j C i, (j i), P ij =0(j<i) x P () (t + t) f ( x P (t + t),t+ t ) (5.58) δ = t [ f ( x P (t + t),t+ t ) x P () (t + t) ] X(t + t) =X P (t + t)+δc (5.59) C 0 C k C C =. (5.60) C 0 C C C 3 C 4 C

50 C 0 C C C 3 C 4 C 5 C X n = x(n t), Y n = tx (n t), Z n = ( t) x (n t) (5.6) X n+ = X n + Y n + Z n + Y n+ = Y n +Z n + C δ C 0 {}}{ C δ Z n+ = Z n + C 3 δ δ = tf(x n + Y n + Z } {{ n,t+ t) (Y } n +Z n ) } {{ } x P (t+ t) = tx P (t+ t) (5.6) C =.0 p = t δx n+ = δx n + δy n + δz n + C (pδx n+ δy n δz n ) (5.63) f X n+ δy n+ = δy n +δz n + C }{{} (pδx n+ δy n δz n )=pδx n+ ( pδx n ) = δz n+ = δz n + C 3 (pδx n+ δy n δz n ) (5.64) δy n = pδx n δy n ( ) ( ) δxn+ δxn = A δz n+ δz n ( + p C A = p C 3 p C p + C (p ) C p + C 3(p ) C p ) (5.65)

51 5 45 e p = exp ( t f x) λi λ i < p =0 λ = ( + p C det(a λe) = det λ + ) C (p ) p C p C 3 p C + C 3(p ) λ =0 p C p ( C p)( λ) +( λ) ( p + C 3 (p ) ) pc 3 = 0 (5.66) λ =+a p + a p + ( =+p + p + p C + C 3 3 ) p 3 6 C 3 + (5.67) p =0 λ =0 p =0 ( λ) C 3 ( λ) =( λ)( λ C 3 )=0 λ =, λ = C 3 =0 C 3 = (5.68) p =0 λ = e P C 3C + C 3 3 =0 3C = = 5 4, C = 5 λ =+p + p + p3 6 + O(p4 ) λ = p 7 44 p p3 + O(p 4 ) (5.69) p =0 0 C 3,C 4, C e P C 4,C 5, C,C

52 dx dt = x t =0,x= x = et,x = e t,x = e t X 0 = t ( t) X P = t = ( t) δ = t ( f(x P (t + t)) x P () (t + t) ) + t + ( t) t( + t) ( t) [ = t + t + ] ( t) ( + t) = ( t)3 5 + t + X = X P + δ = ( t) ( t)3 t ( + t + ( t)) ( ( t) + t) + ( t)+ ( t) + ( 33 3 X = t ( ( t) ( t)+ ( t) x 3 = + (3 t)+ (3 t) }{{} + 4n 3 ( t) ( t) ( t) 3 3 ( t) ( t) ) + 6 ) (3 t) 3 + (5.70) 6 ( t) 3 Gear t = n t ( t) y (p) = f ( y, y (),,y (p q),t ) (5.7) p q (p q) k

53 5 47 y ( t) k+q p p =,q=, ( t) k

54 q n+ = q n + p n t p n+ = p n q n+ t (6.) 6.. Strömer MD Verlet q(t + t) =q(t)+ q t +! q( t) + 3! q(3) ( t) 3 + 4! q(4) ( t) 4 + q(t t) =q(t) q t +! q( t) 3! q(3) ( t) 3 + 4! q(4) ( t) 4 + q(t + t)+q(t t) =q(t)+ q(t)( t) + q(4) ( t) 4 + (δt) q(t) = q(t + t) q(t)+q(t t) ( t) = F m

55 6 49 q(t), q(t t) t + t t q(t + t) =q(t) q(t t)+ F (q(t),t) ( t) (6.) m v(t) = = q(t + t) q(t t) t q(t) q(t + t) + F (q(t),t) t (6.3) t m t =0 q(0), v(0) t q( t) =q(0) v(0) t + F (q(0), 0) ( t) m (6.4) 6..3 Verlet leap frog dq dt = p m, dp dt = F (6.5) ( p t + t ) ( = p t t ) + F ( q(t) ) t q(t + t) =q(t)+ p ( ) t + t t (6.6) m q(t + t) =q(t)+ p ( ) t + t t m q(t) =q(t t)+ p ( ) t t t m

56 6 50 q(t + t) =q(t) q(t t)+ p ( t + t ) ( ) p t t t m =q(t) q(t t)+ F (q(t),t) ( t) (6.7) m v(t) = p ( t + t ) ( ) + p t t m (6.8) 6..4 Verlet ( ) q(t + t) =q(t)+v(t) t + F ( q(t) ) ( t) ( m v(t + t) =v(t)+ t ( ) F q(t) m + F ( )) q(t + t) m ( ) ( ) q(t) q(t + t) v(t) v(t + t) (6.9) 6..5 (Symplectic) dq i dt = H p i, dp i dt = H q i (6.0)

57 6 5 Z(p, q) dz dt = ( Z ṗ p i + Z ) q i i q i i = ( Z H Z ) H p i i p i q i q i {Z, H} ( ) [ ( H = H ) ] Z = D H Z (6.) p i i p i q i q i } {{ } D H dz dt = D HZ, d Z dt = D H(D H Z)=D HZ, Z(t) =e DHt Z(0) = Z(0) + Z (0)t +! Z (0)t + (6.) e DHt H t { t } Z(t) = exp D H (t )dt Z(0) (6.3) 0 Z(t + t) =e DH t Z(t) (6.4) e DH t 6.. e D Ht e D a t e D a t e D ka k t (6.5)

58 6 5 H(p, q) =T (p)+v (q) D H = D T + D V (6.6) e D H t = e (D T +D V ) t e D T t e D V t (6.8) (6.9) (6.7) A, B, C (6.7) (6.8) e D T t e D V t e D T t (6.9) e A e B = e C (6.0) C C = A + B + {[ ] [ ]} [A, B]+ A, [A, B] + [A, B],B + (6.) A, B [A, B] = AB BA Baker-Campbell- Hausdorff 6..3 (6.8) e (D T +D V ) t e D T t e D V t D V = ( V V ) = p i i q i q i p i i D T = ( T T ) = T p i i q i q i p i p i i V q i e D V t D V p i = V q i,d V p i = 0 p i = e D V t p i = ( +D V t + D V ( t) + p i (6.) q i (6.3) ) p i = p i V q i t (6.4)

59 6 53 e D T t q i = e D V t q i = q i, (D V q i = 0) (6.5) p i = e D T t p i = p i, (D T p i = 0) (6.6) q i = e D T t q i = q i + T t (6.7) p i ( D T p i = T ), D p T q i = 0 i p i q i p i (t + t) =p i (t) V q t, (6.8) i t q i (t + t) =q i (t)+ T q t, (6.9) i t+ t e D V t e D T t e D T t e D V t = e D V t e D T t (6.30) Z(p, q )=e D V t Z(p, q) Z(p, q) =e D V t Z(p, q ) (6.3) A(p, q )=e D V t A(p, q)e D V t (6.3) A(p, q )f(p, q )=e D V t A(p, q)e D V t f(p, q ) = e D V t ( A(p, q)f(p, q) ) = A(p, q )f(p, q ) (6.33) A(p, q )e D V t = ( e D V t A(p, q)e D V t ) e D V t = e D V t A(p, q) (6.34) A(p, q) =e D T t

60 (6.8) e D T t e D V t = e D V t e D T t = e D H t (6.35) H H D H = D V + D T + [D V,D T ] t + ( t) {[ D V, [D V,D T ] ] + [ D T, [D T,D V ] ]} + (6.36) [D A,D B ]=D {B,A} = D {A,B} (6.37) H = V + T t{v,t} + ({ ( t) V,{V,T} } + { {V,Y },T }) + = H t V T + ( V T V q i i p i ( t) + T ) V T + q i,j i p i p j q j p i q i q j p j = H tv qt p + ( t)( V q T pp V q + T p V qq T p ) + (6.38) H, H 6..5 Verlet Verlet p n+ = p n + F n t q n+ = q n + m p n+ t p n = (p n+ + p n ) t = p n + F n t = p n F n q n+ = q n + p n m t + F n m p n+ p n ( t)

61 6 55 e D V t,e D T t,e D t V. e D V t q = q n p = p n+ = p n + F n t (6.39). e D T t q = q n+ = q n + m p n+ t = q + p m t p = p (6.40) 3. e D t V q = q = q n + p n m t + F n ( t) m p = p n+ = p + F (q ) t = p t n+ + F n+ (6.4) Verlet e D H t e D V t e D T t e D V t (6.4) e D V t e D T t e D V t e D T t e D V t t e D V e D T t e D V t t e D V = e D V t e D T t e D V t = e D H t (6.43) H = H ++ 4 ( t)( T p V qq T p V q T pp V q ) + O ( ( t) 4 ) (6.44) 6..6 S ( t) =e D V t e D T t e D V t (6.45)

62 6 56 S 4 ( t) =S (d t)s (d t)s (d t) (6.46) d,d d = /3, d = /3 /3 (6.47) S 6 ( t) =S (d t)s (d t)s (d 3 t)s (d 4 t)s (d 3 t)s (d t)s (d t) (6.48) d,d,d 3,d

63 57 7 MD 7. MD (E,V,N) (extensive) A = A + A, A N (7.) (intensive) B = B E T V p N µ

64 7 MD MD MD Car-Parrinello 7.. MD ) Green-Kubo ) MD 3) 98 Evans et al. sllod 0 4) 98 Evans et al.

65 7 MD ) 97 Woodcoch ad hoc scaling ) Langevin 978 Schneider-Stoll 3) 980 Andersen T Boltzman 4) 98 ) 5) 984 6) 985 Hoover Nos e-hoover 7) 990 Bulgac-Kusnezov Nos e-hoover 8) 999 Bond et al. 5) Nos e-poincar e

66 7 MD ) 980 Andersen ) 980 Parrinello-Rahman 3) 990 Cleveland, Wentzcovich 7..4 ) 990 Çagin, MontGomery Pettitt fractional 7..5 Car-Parrinello ) 985

67 6 8 MD 8. N N N N 8. N N N = MD. (Constraint Method) K = K i m iv 3 i = NkT (8.). (Stochastic Method) a

68 8 MD 6 Langevin m i d q i dt = Φ dq mγ i i +R i (8.) q i } {{ dt} R i (t) α R j (t) β =m i γ i ktδ αβ δ ij δ(t t ) (8.3) b Anderson Bolzmann 3. (Extended system method) Andersen N N = 4. Berendsen et. al. J. Chem. Phys. 8, 3684(984) E

69 8 MD 63 p 8.3 (a) Woodcock, Chem. Phys. Lett. 0, 57 (97) MD ad hoc scaling leap frog algorithm v i ( t + t K ( t + t ) ( = v i t + t ) = i m i ( v i ) + F i(t) t (8.4) m ( t + t )) = 3 NkT (8.5) 3 NkT ( v i t + t ) ( = sv i t + t ) (8.6) K ( t + t ) = i s = m i T T = ( (v i t + t )) = s 3 NkT = 3 NkT (8.7) i m i 3 NkT ( ( )) v i t + t (8.8)

70 8 MD 64 (b) Gauss W. G. Hoover et. al. Phys. Rev. Lett. 48, 88 (98) D. J. Evans J. Chem. Phys. 78, 397 (983) K = p i i m i Gauss R(q, q,t) = 0 (8.9) R t + R R q + q = 0 q q (8.0) d q m i i dt = Φ + F ic (8.) q i F ic R = Φ R R m i q i q i q i t m i q i R (8.) q i F ic F ic R q i K = F ic R q i (8.3) R = m i q i 3 NkT 0 i (8.4) R = m i q q i = p i i (8.5)

71 8 MD 65 p i dq i dt = p i m i (8.6) dp i dt = Φ ζp q i i (8.7) Ṙ = i q i q i = 0 (8.8) (8.7) (8.8) q i ζ i ( Φ ) ζp q i = 0 (8.9) i ζ = i q i q Φ i g i p i m = dφ dt gkt (8.0) Γ =(q, p) f(p) f t + ( ) Γf = 0 (8.) Γ f t + Γ f ( ) Γ + Γ Γ f = 0 (8.) df dt = f t + Γ f Γ df dt = ( f q q i + f ) ṗ i i p i i ( ) [ ( = Γ Γ f = q q i + ) ] ṗ i p i f (8.3) i dq i dt = H, p i i ( q i H p i i dp i dt = H (8.4) q i ) H = 0 (8.5) p i q i

72 8 MD 66 Liouville df dt = 0 (8.6) dq i dt = p i m i, dp i dt = Φ q i ζp i (8.7) i ( q q i + ) ṗ i p i = i i df dt p i ( ζp i ) = 3Nζ i ζ p i p i } {{ } ζ = (3N )ζ (8.8) ) dφ =(3N )ζf = (3N gkt dt f (8.9) g =3N i f e 3N g f e Φ kt Φ(q) kt (8.30) p i = g 3N kt = kt (8.3) m i ( ) p i f(q, p) δ 3N Φ(q) kt e kt (8.3) m i i

73 8 MD S. Nosé Mol. Phys. 5,55 (984); J. Chem. Phys. 8,5,(984); Prog. Theor. Phys. Suppl. 03, (99) 8.4. p i H N = m i i s +Φ(q) } {{ } p H 0 ( s,q) + gkt ln s Q } {{ } + p s (8.33) ln s e H/kT p i = 3 NkT (8.34) m i i v = dq dt v = q q = q (8.35) t s t = t s }{{} t = t (8.36) s s t v = q t = d q t = sv, ( ) (8.37)

74 8 MD 68 H N q = q p = p s v = sv dt = dq i dt = H N = p i p i m i s (8.38) dp i dt = H N = Φ q i q i (8.39) ds dt = H N p s dp s dt = H N s = p s Q = s ( i p i m i s gkt ) dt s (8.40) (8.4) 8.4. H N Z = dpdqdsdp s δ ( i p i m i s +Φ(q)+ p s + gkt ln s E Q ) (8.4) p = p s, q = q dpdq = s 3N dp dq (8.43) (s, p s, p, q ) ( ) Z = ds dp s dp dq s 3N δ H 0 (p, q )+ p s + gkt ln s E Q E p s Q H 0(p, q ) s 0 = exp gkt (8.44) (8.45) δ(f(s)) = δ(s s 0) f (s )

75 8 MD 69 f(s) =0 s Z = dp s dp dq ds s 3N δ(s s 0 ) gkt = dp s dp s 0 dq gkt exp (3N +) ( E p s Q H 0(p, q ) gkt ) g =3N + = dp s ekt = dp s ekt ( ) E p s Q ( E p s Q dp ) H 0 (p, q ) dq e kt Z C (8.46) Z C (MC) ( p ) ( p ) ds dp s dp dqa A s, q s, q δ(h N E) = MC ds dp s dp dqδ(h N E) ( ) E p s H 0 (p, q ) dp s ekt Q dp dq A(p, q )e kt = dp s ekt ( ) E p s Q dp H 0 (p, q ) dq e kt = A(p, q ), (8.47) C ( p ) A s, q T ( ) p(t) = lim A T T s(t), q(t) dt (8.48) 0 ( p ) = A s, q A(p, q ) MC C (8.49)

76 8 MD 70 Q Q Q Nosé-Hoover H N = i p i m i s +Φ(q)+ p s + gkt ln s (8.50) Q dq i dt = dt s, q = q, p = p s (8.5) = s dq i dt dt = s H = p i p i m i s = bp i (8.5) m i dp i = s d ( pi ) = dp i dt dt s dt ds s dt p i = Φ ds p i q i dt s = Φ ds p q i }{{} s dt i (8.53) =ζ ζ = ds (8.54) s dt dζ = s d ( ) dt dt s sds = s d ( ) ps dt dt Q ( ) = s p i Q m i i s gkt 3 s ( ) = (p i) gkt (8.55) Q m i i

77 8 MD 7 Nosé-Hoover dq i dt = p i (8.56) m i dp i dt = Φ ζp q i (8.57) ( i ) dζ dt = (p i ) gkt (8.58) Q m i i dζ dt = gkt ( ) T (t) T0 Q (8.59) T (t) T 0 T (t) >T 0 dζ dt > 0 ζ ζ>0 (8.57) T (t) <T Γ=(p, q,ζ) f(γ) f t + Γ ( ) Γf = 0 (8.60) df dt = f t + Γ f ( ) Γ = Γ Γ f (8.6) Γ Γ = ṗ p i = ( ζp i i p i )= 3Nζ i i (8.6) df =3Nζf dt (8.63) H T = H 0 (p, q)+ Qζ (8.64)

78 8 MD 7 dh T = ( H0 q dt q i + H ) 0 ṗ i i p i + Qζ ζ i ( Φ pi + p i q i m i m i = i = gktζ ( Φ )) ( ) p i ζp q i + Qζ gkt i m i i Q (8.65) g =3N df dt = dh T gkt dt 3Nf = dh T kt dt f (8.66) g =3N lim T df dt = dh T kt f e H T kt dt f (8.67) H 0 (p, q) Qζ kt kt (8.68) = e T ( p ) A T 0 s, q dt = lim T = T T 0 T 0 ( p ) s A s, q s ( p ) dt A s, q s T s dt = A(p, q ) C (8.69) 8.5 Nos e-poincar e 8.5. Nos e-poincar e Nos e Nosé-Hoover

79 8 MD 73 Bulgac and Kusnezov, Phys. Rev. A4, 5045 (990) Nosé H N H N Nosé-Poincaré 8.5. Nos e-poincar e H N Nosé-Poincaré Bond et al. J. comp. phys. 5,4 (999) H NP = s [ H N H N (t =0) ] (8.70) dq i dt = H NP = s H N p i p i (8.7) dp i dt = H NP = s H N q i q i (8.7) ds dt = H NP = s H N p s p s (8.73) dp s dt = H NP = s H N s s [ H N H N (t =0) ] } {{ } (8.74) =0 dq i dt = H N dt = dt p i s 8.6 ζ, s Q Q K( )

80 8 MD 74 ζ, s 8.6. Q Q Q s = s ( i ) (p i ) m i s gkt (8.75) s = s + δs (8.76) ( Q d δs ( p i δs ) ) gkt dt s m i i s s ( ) p i = δs (8.77) m i s 4 i p i = gkt m i i s (8.78) Q d δs = gkt δs dt s (8.79) ω = gkt Q s (8.80) ω = gkt Q (8.8) 8.6. Q Q

81 8 MD 75 Q d δs = gk ( T (t) T ) s dt [ ] (T (t) T ) = gk δs = gkaδs (8.8) δs } {{ } ω = sgka Q = gk C V ω (8.83) A = T (t) T δs (δt) (δs) (δt) C = (δt) + (δt) MC (δt) = (δt) C (δt) MC = T g T ( gk ) = kt g C V C V (δs) = s C V g k kt A = g k = gkt (8.84) C V s C V s C V Di Tolla and Ronchetti, Phys. Rev. E48, 76 (993) s

Nosé Hoover 1.2 ( 1) (a) (b) 1:

Nosé Hoover 1.2 ( 1) (a) (b) 1: 1 watanabe@cc.u-tokyo.ac.jp 1 1.1 Nosé Hoover 1. ( 1) (a) (b) 1: T ( f(p x, p y, p z ) exp p x + p y + p ) z (1) mk B T p x p y p = = z = 1 m m m k BT () k B T = 1.3 0.04 0.03 0.0 0.01 0-5 -4-3 - -1 0

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0 1 2003 4 24 ( ) 1 1.1 q i (i 1,,N) N [ ] t t 0 q i (t 0 )q 0 i t 1 q i (t 1 )q 1 i t 0 t t 1 t t 0 q 0 i t 1 q 1 i S[q(t)] t1 t 0 L(q(t), q(t),t)dt (1) S[q(t)] L(q(t), q(t),t) q 1.,q N q 1,, q N t C :

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

nosenote3.dvi

nosenote3.dvi i 1 1 2 5 3 Verlet 9 4 18 5 23 6 26 1 1 1 MD t N r 1 (t), r 2 (t),, r N (t) ṙ 1 (t), ṙ 2 (t),, ṙ N (t) MD a 1, a 2, a 3 r i (i =1,,n) 1 2 T =0K r i + m 1 a 1 + m 2 a 2 + m 3 a 3 (m 1,m 2,m 3 =0, ±1, ±2,,

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

「数列の和としての積分 入門」

「数列の和としての積分 入門」 7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

untitled

untitled 3,,, 2 3.1 3.1.1,, A4 1mm 10 1, 21.06cm, 21.06cm?, 10 1,,,, i),, ),, ),, x best ± δx 1) ii), x best ), δx, e,, e =1.602176462 ± 0.000000063) 10 19 [C] 2) i) ii), 1) x best δx

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14 f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) f(x 1,...,x n ) (x 1 x 0,...,x n 0), (x 1,...,x n ) i x i f xi

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2

2 III 22 7 4 3....................................... 3.2 Kepler ( ).......................... 2 2 4 2.................................. 4 2.2......................................... 8 3 20 3..........................................

More information

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a 9 203 6 7 WWW http://www.math.meiji.ac.jp/~mk/lectue/tahensuu-203/ 2 8 8 7. 7 7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa,

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........ version 0.01 : 2004/04/16 1 2 1.1................. 2 1.2.......................... 3 1.3................. 5 1.4............... 6 1.5.............. 7 2 9 2.1........................ 9 2.2......................

More information

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2

(9 30 ) (10 7 ) (FP) (10 14 ) (10 21 ) (2 1 2009 2010 1 18 1 (9 30 ) 2 2 7 2.1 (10 7 )...................... 7 2.2 (FP) (10 14 ).............. 14 2.3 2 (10 21 )...................... 26 2.4 (2. )(10 28 ).......... 35 3 42 3.1 (11 4 )..........................

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

数学演習:微分方程式

数学演習:微分方程式 ( ) 1 / 21 1 2 3 4 ( ) 2 / 21 x(t)? ẋ + 5x = 0 ( ) 3 / 21 x(t)? ẋ + 5x = 0 x(t) = t 2? ẋ = 2t, ẋ + 5x = 2t + 5t 2 0 ( ) 3 / 21 x(t)? ẋ + 5x = 0 x(t) = t 2? ẋ = 2t, ẋ + 5x = 2t + 5t 2 0 x(t) = sin 5t? ẋ

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

数値計算:常微分方程式

数値計算:常微分方程式 ( ) 1 / 82 1 2 3 4 5 6 ( ) 2 / 82 ( ) 3 / 82 C θ l y m O x mg λ ( ) 4 / 82 θ t C J = ml 2 C mgl sin θ θ C J θ = mgl sin θ = θ ( ) 5 / 82 ω = θ J ω = mgl sin θ ω J = ml 2 θ = ω, ω = g l sin θ = θ ω ( )

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k 4.6 (E i = ε, ε + ) T Z F Z = e ε + e (ε+ ) = e ε ( + e ) F = kt log Z = kt loge ε ( + e ) = ε kt ln( + e ) (4.8) F (T ) S = T = k = k ln( + e ) + kt e + e kt 2 + e ln( + e ) + kt (4.20) /kt T 0 = /k (4.20)

More information

master.dvi

master.dvi 4 Maxwell- Boltzmann N 1 4.1 T R R 5 R (Heat Reservor) S E R 20 E 4.2 E E R E t = E + E R E R Ω R (E R ) S R (E R ) Ω R (E R ) = exp[s R (E R )/k] E, E E, E E t E E t E exps R (E t E) exp S R (E t E )

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? *

2 1 (10 5 ) 1 (10 5 ) () (1) (2) (3) (4) (1) 2 T T T T T T T T? * 1 2011 2012 1 30 1 (10 5 ) 2 2 6 2.1 (10 12 )..................... 6 2.2 (FP) (10 19 ).............. 14 2.3 2 (10 26 )...................... 26 2.4 (2. )(11 2 )..... 35 3 40 3.1 (11 9 )..........................

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

II 1 II 2012 II Gauss-Bonnet II

II 1 II 2012 II Gauss-Bonnet II II 1 II 212 II Gauss-Bonnet II 1 1 1.1......................................... 1 1.2............................................ 2 1.3.................................. 3 1.4.............................................

More information

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( )

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( ) 1.... ( ) 5. VSS.. 8. 9. (VIM ) 1. ( ) 11. (ANN ) 1. 1. ( ) 1 Lagrange 1..1 Lagrange q, Lagrange D(q)q + C(q; _q)_q + G(q) = (1.1) D(q)q C(q; _q)_q G(q) ( ) D(q) D(q) m ; M < M m (D(q)) (1.) (D(q)) M

More information

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 14 5 1 ,,,17,,,194 1 4 ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,, 1 4 1.1........................................ 4 5.1........................................ 5.........................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k 7 b f n f} d = b f n f d,. 5,. [ ] ɛ >, n ɛ + + n < ɛ. m. n m log + < n m. n lim sin kπ sin kπ } k π sin = n n n. k= 4 f, y = r + s, y = rs f rs = f + r + sf y + rsf yy + f y. f = f =, f = sin. 5 f f =.

More information