α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

Size: px
Start display at page:

Download "α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2"

Transcription

1 N Z 9. Z Q 10. Q R Zorn x x x y x, y α = 2 2 α x = y = 2 1

2 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

3 1 R, A, C B,... a, b, x, N Z Q R C. 2. {x N : 0 x 5} = {0, 1, 2, 3, 4, 5}. 3. {0, 1} {x R : x 3 x = 0}. 1 7 a A a A a / A a A A = B A B x(x A x B) x... x... x x A B A B x(x A x B) {x A : C(x)} A x x... p q C(x) p q p q A p q p q {a, b} a b {a}, {a 1,..., a n } A B A B A 1 A n A B A B A 1 A n {0, 1} / {0, 1}. 3. {0, 1}. x, y R ( x < y f(x) f(y) ) 3 C = {A i : i I} 4 1. A i C i I A i 2. A i i I A i C 1. {a, b} {c, d} = {a, b, c, d}. 2. {0, 1, 2} {1, 2, 3} = {1, 2}. 3. C = {{0, 1}, {1, 2}, {3}} C = {0, 1} {1, 2} {3} = {0, 1, 2, 3}. 8 0, Z, Q, 5 N 1. f : R R x, y R ( x < y f(x) < f(y) ) 2. f : R R 3. 0 = 1 2 = 3 0 = 1 9 C = {A n : n N} C = {x : n N(x A n )}, C = {x : n N(x A n )}. 3

4 10 1.,, a f : A B b f : A B c f : A B d f : R R a A B = A B c e f : R R b A B = A B = A f a R f : R R f(a) g a R f : R R f(a) h f : R R a i f : R R 2. C n {A B : A, B C n } {A B : A, B 3. C n } (n N) C = a P Q n N C n P Q a F N k F A k C b x = 1 x + 1 = 2 b F 0,..., F n x 2 2 = 1 3 = 2 A k A k C c P Q P k F 1 k F n Q Q P 4. A 5. A = A 6. { } = 7. = 8. C = {{0, 1}, {1, 2}, {1, 3}} C C 9. {a} = {b} a = b 10. A (B C) = (A B) (A C) 11. A (B C) = (A B) (A C) 12. A B A B = B 13. A C B C A B C 14. (A B) C = A (B C) C A 15. X A X A c A c = {x X : x / A} a A B =, A c B = B = b (A B) c = A c B c c (A B) c = A c B c 16. A B = {a A : a / B} 17. A + B = (A B) (B A) a A + B = B + A, A + = A, A + A = b A + (B + C) = (A + B) + C 18. C = {A i : i N} C 0 = C, C n+1 = c C (b) 4

5 2 x = u y = x = u = v x y {{x}, {x, y}} = {{u}, {u, v}} 1 {x} {u} x = u { } = {x, y} = {u, v} y u v y = u { } y = u = x y x C = {{0, 1}, {1, 2}} C = {0, 1} y = v {1, 2} = {0, 1, 2} a A, b B (a, b) 1. {x A : x = x} = A, {x A : x P(P(A B). x} = B = {x A : x / x} B / A A A P(A) A 12 X P(A) X A 19 A, B 13 A = {0, 1} A A B = {(a, b) : a A, b B}, {0}, {1}, {0, 1} P(A) = {, {0}, {1}, {0, 1}}. A B A A A 2 A n+1 = A n A 14 A n P(A) 2 n A = {a 1,..., a n } 20 (A B) C A (B C) X P(A) a k (k = 1,..., n) X k a k k = 1,...n 2 n P(A) 2 n ((a, b), c) (a, (b, c)) (a, b, c) (A B) 15 x y (x, y) C A (B C) A B C (x, y) = (u, v) x = u y = v 16 (x, y) = {{x}, {x, y}} 17 (x, y) = (u, v) x = u y = v x = y x y x = y (x, y) = {{x}, {x, x}} = {{x}} (u, v) = {{u}, {u, v}} u = v (u, v) = {{u}} ((a, b), c) (a, (b, c)). 5

6 21 1. {{ }} = { } 2. A B A B A, B 3. A 0 = A n (n = 0, 1, 2,...) A n+1 = A n {A n } a A 1, A 2, A 3 b n m A n A m 4. P( ) = { } 5. P({ }) 6. P({a}) 7. P({a, b}) 8. P({a, b, c}) 9. A B P(A) P(B) 10. P(A) P(B) = P(A B) 11. P(A) P(B) = P(A B) 12. A B = P(A) P(B) 13. X P(A) X = 14. P(A) = A 15. {1, 2, 3} {2, 3} 16. A n A A = 18. a, b (A {a}) (B {b}) = 19. B C = (A B) (A C) = 20. (A B) X = (A X) (B X) 21. (A B) (X Y ) = (A X) (B Y ) 22. A = B = A B = 23. A X, B Y A B X Y 24. A B 25. A 0 P(A), B 0 P(B) A 0 B 0 P(A B) 26. P(A B) A 0 B 0 A, B 27. A 0 =, A n+1 = P(A n ) (n = 0, 1, 2,...) A n 6

7 3 A, B P(A) = {X : X A} X = {(x, y) X 2 : x = y} 2. Z E men m n 3 E A B = {(a, b) : a A, b B}. 27 E X x (a, b) a, b X {y X : xey} E x [x] E x/e {[x] E : x X} X/E 22 R < O = {(a, b) R 2 : a < b} R / O R 2 3. a b a b a < b a < b (a, b) O 29 C x y x = y 1/ 1 23 X X R X 2 (x, y) R 30 E X xry [x] E = [y] E xey X 2 R = R 31 C X 3 2. R = X 2 X A C A, X R A, B C, A B A B =, C = X 32 f : A B R f b R A b = {a A : f(a) = b} C = {A b : b R} A 25 X E X 2 X 33 X 1. E X X/E X 1. xex ( x X) 2. xey yex ( x, y X). 3. xey, yez xez ( x, y, z X) Z a b a b 2. C X E xey ( A C)[x, y A] E X 7

8 34 1. A = {0, 1, 2, 3} 2 E E = {(0, 0), (1, 1), (2, 2), (3, 3), (0, 1), (1, 0)} a E A b C = A/E C 11. E X E 2. f : N N N a b f(a) = f(b) C X N F E = F 3. a b f(a) f(b) 12. X n 4. A Z Z E xey x y A E Z S = {(x, y) R 2 : (x 1, y + 2) R} a A = Z b A = c A = {0} d A = {1} e A = mz (m ) f A = g A = {x Z : 10 x 10}. h A = N. 5. E, F A 2 A E F A 6. E F 7. A N 2 (x, x) A (x, y) A (y, x) A x, y N x 0 = x, x n = y, (x i, x i+1 ) A (i = 0,..., n 1) x 0,..., x n N x y N 8. E, F A 2 A E F 9. X n E X X/E n [x] E 10. X = R 2 {(0, 0)} 0 X x y ( λ 0)( x = λ y) C = X/E 13. X Y 14. R R 2 S R x 1 y 2 8

9 4 A 3. a b, b a a = b. A A R A 2 A (A, ) (a, b) R arb 39 X = P({0, 1}) A E A C = {X i : i I} A (1) {0, 1} X i (2)i j X i X j =, (3) A = i I X i {0} {1} E A a A [a] E = {x A : xea} a E A/E A 4.1 (order) (preorder) 35 A O 1. a O a ( a A) 2. a O b, b O c a O c ( a, b, c A) A/ = {[a] : a A} O 36 A [a] [b] a b a b a b A/ 37 A a b, b a (well- a = b definedness) 38 A A A A a b (a b b a) 41 A a b (a b b a) [a] [b], [b] [b] [a] = [b]. 9

10 42 1. X a b a b X 2. X = {0, 1, 2} O = {(0, 0), (1, 1), (2, 2), ((0, 1), (1, 2)} O X U 1 V U V, 3. X = {0, 1, 2} O = {(0, 0), (1, 1), (2, 2), ((0, 1), (1, 3)} O X (A, 1 ) (A, 2 ) 4. R[X] R f(x) g(x) f(x) g(x) 5. N + = N {0} m n n m 6. A = P(X) A X = {0, 1, 2} 7. C α β α β 8. p N + m n p m n 9. A = P(N) B C B \ C 10. N 2 (a, b) (c, d) (3a + 1)3 d (3c + 1)3 b a N 2 b N 2 {(a i, b i ) : i N}, i N (a i+1, b i+1 ) (a i, b i ) u v u v u v 11. (A, A ) (B, B ) f : A B x A y f(x) B f(y) ( x, y A). A = P(X) U 2 V V U. 10

11 5 F : a b F 1 : b a 43 F A B 49 A B F : X Y, A X, B Y (*) a A (a, b) F 44 F = {(a, b) R 2 : 2a + b = 0} R R a R 2a + b = 0 (a, b) F b R F : R R 45 F : A B a A b B i.e., F (a) = b, F : a b 46 F = {(x, y) R 2 : y = x 2 } 1. F R R F : R R 2. F 0 S = {r R : r 0} F : R S 48 F : A B 1. F ranf = B. 2. F x x F (x) F (x ) ( x, x A). 3. F F 4. F : A B F 1 = {(b, a) B A : (a, b) A B} F b B 1. F (A) = {F (a) : a A} A F F : A B a A 2. F 1 (B) = {a X : F (a) B} B F (a, b) F b B F (a) F : X Y ranf = F (X). 2. A 1 A 2 X F (A 1 ) F (A 2 ) Y. 3. B 1 B 2 Y F 1 (B 1 ) F 1 (B 2 ) X. 51 F : R R F : x x 3 x domf = R, ranf = R, F ({1, 2}) = {0, 7}, F 1 ({0}) = { 1, 0, 1} A = {, { }} F : A A F ( ) = { }, F ({ }) = F ({ }) { } F (A) F [A] F A 2. F 1 (B) F 1 B F F 1 3. F R R F : 53 F : A B, G : B C F G R R G F G F (a) = G(F (a)) 4. F : F : A B G F = {(a, c) A C : (a, b) F, (b, c) G( b B)} 1. A F domf {b B : b = F (a) ( a A)} F ranf ranf = {F (a) : a A} 11

12 55 1. F = {(a, b) R 2 : a + b = 1} R R 2. F = {(a, b, c) R 3 60 f : X X X 0 = X, : a + b + c = 0} X F : R 2 n+1 = f(x n ) (n N) R {X 3. F = {(a, b) R 2 : a 2 n } n N = b} R R 4. F = {(a, b) R 2 : a = b 2 } R R f : X Y g : Y 56 F : R R 1. F (x) = x 2, 2. F (x) = x 3 + 1, 3. F (x) = sin x + cos x F : R R, x x G : R R, x x 2 3. H : R S, x x 2 S = {r R : r 0} 4. K : S S, x x F : R 2 R 2 F (x, y) = (x + y, xy) ranf R 2 59 f : A B 1. X Y A f(x) f(y ) B 2. C B f(f 1 (C)) C 3. f C B f(f 1 (C)) = C 4. X A A f 1 (f(a)) 5. f A = f 1 (f(a)) 6. X 1, X 2 A f(x 1 X 2 ) = f(x 1 ) f(x 2 ) 7. C 1, C 2 B f 1 (C 1 ) f 1 (C 2 ) = f 1 (C 1 C 2 ) 8. f 1 (C 1 ) f 1 (C 2 ) = f 1 (C 1 C 2 ) P(X) g(y) = f 1 ({y}) g X g 2. f : X Y a f b f(x A) Y f(a) A X 12

13 6 F : X Y 1. A X F (A) = {F (a) : a A}. 2. B X F 1 (B) = {a A : F (a) B}. 3. domf = X, ranf = F (x). 62 h (g f) = (h g) f 66 X Y Y X Y = { } Y = 2. X X = 3. X m, Y n Y X 4. P(X) {0, 1} X A χ A 1. X Y F : X Y, x x X Y (inclusion map) 2. X X X (identity map) id X 68 {X i : i I} 3. F : X Y, X 0 X F I X i X 0 {(x, y) F : i I x X 0 } F X 0 F X 0 : X 0 Y X i (*) f : I i I X i 4. F : X Y X, (x, y) x (*) i I f(i) X i. G : X Y Y, 69 X 0 = {1, 2}, X 1 = {3, 4} i=0,1 (x, y) y X i 5. A X χ A : X {0, 1} A characteristic function 2. g(0) = 1, g(1) = 4, { 3. h(0) = 2, h(1) = 3, 1 x A χ A (x) = 0 x / A. 4. k(0) = 2, k(1) = 4. X 0 X 1 X 0 X 1 1. f(0) = 1, f(1) = 3, ran(f X 0 ) = F (X 0 ) X i = i I 2. i I X i = 3. π : X Y X, (x, y) x 2. {X 0, X 1 } Y X 0 X 1 i {0,1} X i 4. A X χ A 3. X i X i.e., X i = X ( i I) i I X i = X I 5. χ A B (x) = χ A (x)χ B (x), χ A c(x) = 1 1. X k = i I X i χ A (x). f i I X i f(k) X k 64 f : X Y, g : Y X g f X k = X (i) f (ii) 2. i {0,1} X i f (f(0), f(1)) X 0 X 1 g f : X Y, g : Y Z, h : Z W 13

14 71 1. F : X Y, X 0 X 1 X (F X 1 ) X 0 = F X 0 2. A = {0, 1, 2} N χ A : X {0, 1} a χ A (0), χ A (1), χ A (2), χ A (3) b {(x, y) N 2 : χ A (x)χ A (y) = 1} c {(x, x+1) N 2 : χ A (x)χ A (x+1) = 1} 3. F (x) = χ A (x)χ A c(x) 0 4. F (x) = χ A (x) + χ A c(x) 1 5. A, B X F (x) = max{χ A (x), χ B (x)} F : X {0, 1} F A B 6. X 0 = {0, 1}, X 1 = {2, 3} i=0,1 X i 7. i = 0, 1, 2 X i n i i {0,1,2} X i 8. X Y Z (X Y ) Z 9. A B = a X A X B = b X A X B X A B 10. {a i } i=0 RN 14

15 7 a b, b a a = b. A (a b a b, b a) (R, ) A = (0, 1] 0 1 max A = 1, min A sup A = 1, inf A = 0. 1 A 0 A 2. (Q, ) B = {x Q : 2 < x 1} max B = sup B = 1 min A, A/ inf A 2 Q 2 B A (*) a, b A a b b a 73 R 77 X X 74 (X, ) A X, a X 1. a A a A b A, b a A max A 2. a A a A b A, a b A min A 3. a A b A, b a A (1) (X, ) sup A a < b a b a b 4. a A b A, a b A (X, <) a b a < b inf A a = b (X, ) < a b, b a a, b X a, b, c A a b c a c. 78 (X, <) (2) (1) (2) 5. A A (X, <) < a < b a < c < b 3. c X 15

16 81 1. a = sup A, a b b A 2. R I = [0, 1) max I, min I, sup I, inf I 3. R X = {1 1/n : n = 1, 2,...} 4. X = {a} P(X) 5. X P(X) 6. Q A Q 7. Q A, B Q A B( ) A, B 8. A R 9. (N, <) < 10. (Q, <) 11. (X, <) X X X x y y x < 010 < 0100 a (X, ) b a X X a = {x X : x a} (X a, ) X X a b a b a = b 2. X X a b a b a b 16 3.

17 8 N = {0, 1, 2,...} 5. N σ(n) Z, Q R 6. Z 7. Z 0. N 2 = {(m, n) : m, n N} 1. N 2 (m, n) (m 1, n 1 ) m + n 1 = n + m 1 [(0, 0)] = σ(0) 2. Z = N 2 / = {[(m, n)] : (m, n) N 2 } 10. Z a 1 = 1 a = a a Z [(m, n)] (m, n) 11. Z a Z a + b = 3. Z b + a = 0 b Z [(m, n)]+[(m 1, n 1 )] = [(m+m 1, n+n 1 )] well-defined [(m, n)] [(m 1, n 1 )] = [(m m 1 +n n 1, m 4. σ σ(m + n) = σ(m) + σ(n) σ(m n) = σ(m) σ(n) 8. Z 9. Z a + 0 = 0 + a = a a Z 0 = 9 n 1 + n m 1 )] welldefined 4. σ : N Z σ(n) = [(n, 0)] 0. A = {(a, b) : a Z, b Z {0}} σ(m + n) = σ(m) + σ(n) 1. A + N + Z (m, n) (m 1, n 1 ) m n 1 = n m 1 σ(m n) = σ(m) σ(n) N Z 2. Q = A/ = {[(m, n)] : (m, n) A} 3. Q 5. N σ(n) Z N [(m, n)]+[(m 1, n 1 )] = [(m n 1 +n m 1, n Z n 1 )] well-defined N 2 [(m, n)] [(m 1, n 1 )] = [(m m 1, n n 1 )] well-defined 2. [(m, n)] = [(m 1, n 1 )] m + n 1 = n + m 1 4. τ : Z Q τ(n) = [(n, 1)] 3. Z well-defined τ(m + n) = τ(m) + τ(n) + N + Z Z well-defined τ(m n) = τ(m) τ(n) 17

18 N Z 2. R well-defined 5. Z τ(z) Q Z 3. R Q = 2 R 84 Q a < b ( c)a < c < b x Q {a n } n=0 p Q +, n N, m 1, m 2 N m 1, m 2 n a m1 a m2 < p. 86 {a n } n=0 C 1. C {a n } n=0 {b n } n=0 p Q + n N m 1, m 2 N (m 1, m 2 n a m1 b m2 < p). 2. R = C/ = {[{a n } n=0] : {a n } n=0 C}. 3. R [{a n } n=0] + [{b n } n=0] = [{a n + b n } n=0] [{a n } n=0] [{b n } n=0] = [{a n b n } n=0] [{a n } n=0] [{b n } n=0] p Q +, m N, n N, [n m a n < b n + p] 4. σ : Q R a Q a {a} n=0 σ σ(a + b) = σ(a) + σ(b) σ(a b) = σ(a) σ(b) a b σ(a) σ(b)

23 14 24 14 25 15 26 15 27 15 28 15 29 16 30 N = Q 17 31 R = R 2 18 32 N < R 18 33 19 34 20 35 20 36 21 37 21 38 21 39 22 40 22 2

23 14 24 14 25 15 26 15 27 15 28 15 29 16 30 N = Q 17 31 R = R 2 18 32 N < R 18 33 19 34 20 35 20 36 21 37 21 38 21 39 22 40 22 2 1 3 2 3 2.1...................................... 4 3 7 4 7 5 7 6 7 7 7 8 8 9 8 10 9 11 10 12 10 13 10 14 10 15 11 16 11 17 11 18 11 19 12 20 12 21 13 22 13 1 23 14 24 14 25 15 26 15 27 15 28 15 29 16

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

サイバニュース-vol134-CS3.indd

サイバニュース-vol134-CS3.indd NEWS 2012 WINTER 134 No. F=maF ma m af Contents N, X θ 1,θ 2 θ N 0θ i π/2 X i X 0 Θ i Θ 1 = 2θ 1 Θ 2 = 2(θ 1 θ 2) NX N X 0 Θ N N Θ N = 2{θ 1 θ 2θ 3 θ N } Θ N = 2π A 1A 2B 2B 1 mm 3 α α = π /m A 1A

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

dvipsj.4131.dvi

dvipsj.4131.dvi 7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

31 gh gw

31 gh gw 30 31 gh gw 32 33 1406 1421 640 0 (mm) (mm) MAX1513 MIN349 MIN280 MAX900 gh gw 34 gh gh gw gw gh gh gw gw gh gh gw gw 35 175 176 177 178 179 180 181 195 196 197 198 202 203 2 1 L L L2 L2 L2 L 2 2 1 L L

More information

280-NX702J-A0_TX-1138A-A_NX702J.indb

280-NX702J-A0_TX-1138A-A_NX702J.indb NX702 1. 2. 3. 9 10 11 12 13 1 2 3 4 5 6 4 7 8 16 17 18 19 20 21 22 23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

More information

² ² ² ²

² ² ² ² ² ² ² ² n=44 n =44 n=44 n=44 20.5% 22.7% 13.6% 27.3% 54.5% 25.0% 59.1% 18.2% 70.5% 15.9% 47.7% 25.0% 60% 40% 20% 0% n=44 52.3% 27.3% 11.4% 6.8% 27.55.5 306 336.6 408 n=44 9.1% 6.8% n=44 6.8% 2.3% 31.8%

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

F8302D_1目次_160527.doc

F8302D_1目次_160527.doc N D F 830D.. 3. 4. 4. 4.. 4.. 4..3 4..4 4..5 4..6 3 4..7 3 4..8 3 4..9 3 4..0 3 4. 3 4.. 3 4.. 3 4.3 3 4.4 3 5. 3 5. 3 5. 3 5.3 3 5.4 3 5.5 4 6. 4 7. 4 7. 4 7. 4 8. 4 3. 3. 3. 3. 4.3 7.4 0 3. 3 3. 3 3.

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

Taro13-第6章(まとめ).PDF

Taro13-第6章(まとめ).PDF % % % % % % % % 31 NO 1 52,422 10,431 19.9 10,431 19.9 1,380 2.6 1,039 2.0 33,859 64.6 5,713 10.9 2 8,292 1,591 19.2 1,591 19.2 1,827 22.0 1,782 21.5 1,431 17.3 1,661 20.0 3 1,948 1,541 79.1 1,541 79.1

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

JGA

JGA JGA -101-1 JGA 101 14 * i * * * ii 1 1 ( ) 3 3 1. 6 1. 4 4-11 N mm 4-11 N mm 4-11 N mm N mm N mm N mm N mm (4)(b) *1 (3)(c) (4)(b) 1 (c) ( i ) cos (ii) 4..3.(3)(b) sin N mm (3)() (3)(b) 4..3.(3)(b)

More information

54_2-05-地方会.indd

54_2-05-地方会.indd 82 58 59 21 83 84 2 9 4 85 86 1. 87 6 88 89 β 1 90 2 3 p 4 t 5 6 EQ 91 7 8 9 1 10 2 92 11 3 12 13 IT p 14 93 15 16 ACTIVE 17 18 94 p p p 19 20 21 22 95 23 24 25 2 26 β β 96 27 1 28 29 30 97 31 32 33 1

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

ボールねじ

ボールねじ A A 506J A15-6 A15-8 A15-8 A15-11 A15-11 A15-14 A15-19 A15-20 A15-24 A15-24 A15-26 A15-27 A15-28 A15-30 A15-32 A15-35 A15-35 A15-38 A15-38 A15-39 A15-40 A15-43 A15-43 A15-47 A15-47 A15-47 A15-47 A15-49

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

13ィェィ 0002ィェィ 00ィヲ0602ィョ ィーィ ィイ07 ツィ 06ィヲ02, ISSN チ

13ィェィ 0002ィェィ 00ィヲ0602ィョ ィーィ ィイ07 ツィ 06ィヲ02, ISSN チ 13 13ィェィ 0002ィェィ 00ィヲ0602ィョ050702 0709ィーィ ィイ07 ツィ 06ィヲ02, ISSN 1992-6138 08030607030207070307090303 07030209020703 チ 03000009070807 010908030109080707030709030503 030006090303 チ09020705 0107090708020709

More information

t14.dvi

t14.dvi version 1 1 (Nested Logit IIA(Independence from Irrelevant Alternatives [2004] ( [2004] 2 2 Spence and Owen[1977] X,Y,Z X Y U 2 U(X, Y, Z X Y X Y Spence and Owen Spence and Owen p X, p Y X Y X Y p Y p

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P5-1 P5-2 P5-3 P5-4 P5-5 P5-6 P7-1 P7-2 P7-3 P7-4 P7-5 P7-6 P9-1 P9-2 P9-3 P9-4 P9-5 P9-6 P11-1 P11-2 P11-3 P11-4 P13-1 P13-2 P13-3 P13-4 P13-5

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information