Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download ""

Transcription

1

2

3

4

5

6

7

8

9

10

11

12

13

14 NN NN

15

N N 1,, N 2 N N N N N 1,, N 2 N N N N N 1,, N 2 N N N 8 1 6 3 5 7 4 9 2 1 12 13 8 15 6 3 10 4 9 16 5 14 7 2 11 7 11 23 5 19 3 20 9 12 21 14 22 1 18 10 16 8 15 24 2 25 4 17 6 13 8 1 6 3 5 7 4 9 2 1 12 13

More information

untitled

untitled ---------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------------------------

More information

スライド 1

スライド 1 1 2 3 4 53.6% 38.8% 10.0% 5 6 7 8 9 10 140,000 125,700 119,100100 116,700 115,700 120,000 110,600 105,600 107,600 105,400 100,000 80,000 60,000 40,000 20,000 0 90,400 91,600 58,800 783,00 55,300 52,300

More information

B000 B913 B913 S000 S500 L500 L913 B400 B913 B933 S320 L000 L913 492 498 P 38 5 P591 P595 P596 900 911 913 913 913 913 914 916 930 493 498 P 528 P594 P596 P597 910 913 913 913 913 913 914 918 700 723 746

More information

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i = 1 1980 1) 1 2 3 19721960 1965 2) 1999 1 69 1980 1972: 55 1999: 179 2041999: 210 211 1999: 211 3 2003 1987 92 97 3) 1960 1965 1970 1985 1990 1995 4) 1. d ij f i e i x i v j m a ij m f ij n x i = n d ij

More information

c a a ca c c% c11 c12 % s & %

c a a ca c c% c11 c12 % s & % c a a ca c c% c11 c12 % s & % c13 c14 cc c15 %s & % c16 c211 c21% c212 c21% c213 c21% c214 c21% c215 c21% c216 c21% c23 & & % c24 c25 c311 c312 % c31 c315 c32 c33 c34 % c35 c36 c37 c411 c N N c413 c c414c

More information

橡魅力ある数学教材を考えよう.PDF

橡魅力ある数学教材を考えよう.PDF Web 0 2 2_1 x y f x y f f 2_2 2 1 2_3 m n AB A'B' x m n 2 1 ( ) 2_4 1883 5 6 2 2_5 2 9 10 2 1 1 1 3 3_1 2 2 2 16 2 1 0 1 2 2 4 =16 0 31 32 1 2 0 31 3_2 2 3_3 3_4 1 1 GO 3 3_5 2 5 9 A 2 6 10 B 3 7 11 C

More information

四校_目次~巻頭言.indd

四校_目次~巻頭言.indd 107 25 1 2016 3 Key Words : A 114 67 58.84 Mann-Whitney 6 1. 2. 3. 4. 5. 6. I. 21 4 B 23 11 1 9 8 7 23456 108 25 1 2016 3 78 9 II. III. IV. 1. 24 4 A 114 2. 24 5 6 3. 4. 5. 3 42 5 16 6 22 5 4 4 4 3 6.

More information

第55期ご報告

第55期ご報告 A B C D A B C A B C D A B C D A BA CB ñññ ññ ñ A B C A B A B C D À À À À À À À À À À À À News flfl Segment Information P Q R O G L K H IJ C ABE D M N F A B C D E F G H I J K L M N O P Q R Stock

More information

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

( ) ( ) 1729 (, 2016:17) = = (1) 1 1 1729 1 2016 10 28 1 1729 1111 1111 1729 (1887 1920) (1877 1947) 1729 (, 2016:17) 12 3 1728 9 3 729 1729 = 12 3 + 1 3 = 10 3 + 9 3 (1) 1 1 2 1729 1729 19 13 7 = 1729 = 12 3 + 1 3 = 10 3 + 9 3 13 7 = 91

More information

T75 T55 T45 T67 T54 D81 D71 D51 D61 D41 T95 V83 V73 V63 L93 D81 D71 D51 D61 D41 T95 RX82 V83 V73 V63 L93

T75 T55 T45 T67 T54 D81 D71 D51 D61 D41 T95 V83 V73 V63 L93 D81 D71 D51 D61 D41 T95 RX82 V83 V73 V63 L93 T75 T55 T45 T67 T54 D81 D71 D51 D61 D41 T95 V83 V73 V63 L93 D81 D71 D51 D61 D41 T95 RX82 V83 V73 V63 L93 T95 T95T75 T75T5 T55T4 T45T6 T67T54 T54 L93 L93V83 V83V73 V73V63 V63 RX82 RX82N72 N72N61 N61N51

More information

+ + + + n S (n) = + + + + n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 (

+ + + + n S (n) = + + + + n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 ( k k + k + k + + n k 006.7. + + + + n S (n) = + + + + n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 (n), S 0 (n) 9 S (n) S 4

More information

加速度センサを用いた図形入力

加速度センサを用いた図形入力 ( ) 2/Sep 09 1 2 1. : ( ) 2. : 2 1. 2. 2 t a 0, a 1,..., a ( ) v 0 t v 0, v 1,..., v n ( ) p 0 t p 0, p 1,..., p n+1 3 Kentaro Yamaguchi@bandainamcogames.co.jp 1 ( ) a i g a i g v 1,..., v n v 0 v i+1

More information

8 8 7 ( ) 7 8 50 2 1 20 25 No1416~No.1422( 95 ) 25 ( ) Mt. 7 No.1423 No.1424 No.1425 No.1426 113 No.1427 No.1428 No.1429 No.1430 No.1431 114 No.1432 No.1433 No.1434 No.1435 No.1436 No.1437 No.1438 No.1439

More information

0226_ぱどMD表1-ol前

0226_ぱどMD表1-ol前 No. MEDIA DATA 0 B O O K 00-090-0 0 000900 000 00 00 00 0000 0900 000900 AREA MAP 0,000 0,000 0,000 0,000 00,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 00,000 0,000

More information

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト

漸化式のすべてのパターンを解説しましたー高校数学の達人・河見賢司のサイト https://www.hmg-gen.com/tuusin.html https://www.hmg-gen.com/tuusin1.html 1 2 OK 3 4 {a n } (1) a 1 = 1, a n+1 a n = 2 (2) a 1 = 3, a n+1 a n = 2n a n a n+1 a n = ( ) a n+1 a n = ( ) a n+1 a n {a n } 1,

More information

59 1 2 3 6 7 8 10 12 13 14 15 16 17 18 19 20 21 23 24 25 26 46 49 30 33 36 38 39 40 42 44 41 45 56 43 52 2 3 4 5 6 7 8 9 q w e r t y u i o!0!1!2!3!4!5!6!7!8!9 @0 @1 @2 @3 @4 10 @5 J @6 @7 @8 @9 #0 #1 #2

More information

Unknown

Unknown 1 1 4 2014 6 2014 10 12 16 60 18 20 22 24 26 28 34 38 38 46 50 51 1 52 53 55 2 55 3 56 4 57 5 58 6 58 7 58 8 58 9 59 10 59 11 60 12 61 14 61 15 62 16 62 17 63 18 64 19 64 20 64 10 35 10,000 10 4,090 1

More information

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P p P 1 n n n 1 φ(n) φ φ(1) = 1 1 n φ(n), n φ(n) = φ()φ(n) [ ] n 1 n 1 1 n 1 φ(n) φ() φ(n) 1 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 4 5 7 8 1 4 5 7 8 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 19 0 1 3 4 5 6 7

More information

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = =

T T T T A 0 1 A 1 A P (A 1 ) = C 1 6 C 8C 3 = 15 8, P (A ) = C 6 C 1 8C 3 = 3 8 T 5 B P (A 1 B) = = 4 1.. 3. 4. 1. 1 3 4 5 6 1 3 4 5 6. 1 1 1 A B P (A B) = P (A) + P (B) P (C) = P (A) P (B) 3. 1 1 P (A) = 1 P (A) A A 4. A B P A (B) = n(a B) n(a) = P (A B) P (A) 50 015 016 018 1 4 5 8 8 3 T 1 3 1 T T

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

数学概論I

数学概論I {a n } M >0 s.t. a n 5 M for n =1, 2,... lim n a n = α ε =1 N s.t. a n α < 1 for n > N. n > N a n 5 a n α + α < 1+ α. M := max{ a 1,..., a N, 1+ α } a n 5 M ( n) 1 α α 1+ α t a 1 a N+1 a N+2 a 2 1 a n

More information

応用数学III-4.ppt

応用数学III-4.ppt III f x ( ) = 1 f x ( ) = P( X = x) = f ( x) = P( X = x) =! x ( ) b! a, X! U a,b f ( x) =! " e #!x, X! Ex (!) n! ( n! x)!x! " x 1! " x! e"!, X! Po! ( ) n! x, X! B( n;" ) ( ) ! xf ( x) = = n n!! ( n

More information

SALAD BOWL 22 1 2 3 4 850,612 2,382,822 500,000 700,000 900,000 1,100,000 1,300,000 1,500,000 1,700,000 1,900,000 2,100,000 2,300,000 2,500,000 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

More information

N72 T95 T75 T55 T45 T67 T54 N72 RX82 N40 L93 V83 V73 RX73 N51 S90 S80 D81 D51

N72 T95 T75 T55 T45 T67 T54 N72 RX82 N40 L93 V83 V73 RX73 N51 S90 S80 D81 D51 N72 T75 S80 D81 N72 T95 T75 T55 T45 T67 T54 N72 RX82 N40 L93 V83 V73 RX73 N51 S90 S80 D81 D51 N72 RX82 L93 S90 S80 S90 S80 N72 RX82 L93 N40 N29 N72 RX82 N72 RX82 N72 RX82 T95 T75 T55 T45 T67 T54 RX73 L93

More information

untitled

untitled 20073-1- 3 4 5 9 12 14 17-2- 3,700ha 30,000t -3- 1t 70 50 40 C/N -4- 20011228 C/N 13 2001 2cm 1t 60 70 60-5- 70 1t -6- 2003131 ph EC T-C T-N C/N P2O5 K2O CaO MgO HO 2 ms % % % % % % % 8.52 0.64 74.9 44.9

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

JGA

JGA JGA -101-1 JGA 101 14 * i * * * ii 1 1 ( ) 3 3 1. 6 1. 4 4-11 N mm 4-11 N mm 4-11 N mm N mm N mm N mm N mm (4)(b) *1 (3)(c) (4)(b) 1 (c) ( i ) cos (ii) 4..3.(3)(b) sin N mm (3)() (3)(b) 4..3.(3)(b)

More information

1 + 1 + 1 + 1 + 1 + 1 + 1 = 0? 1 2003 10 8 1 10 8, 2004 1, 2003 10 2003 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ( )?, 1, 8, 15, 22, 29?, 1 7, 1, 8, 15, 22,

More information

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a ... A a a a 3 a n {a n } a a n n 3 n n n 0 a n = n n n O 3 4 5 6 n {a n } n a n α {a n } α {a n } α α {a n } a n n a n α a n = α n n 0 n = 0 3 4. ()..0.00 + (0.) n () 0. 0.0 0.00 ( 0.) n 0 0 c c c c c

More information

09-12-15_1203new

09-12-15_1203new 12 15 12/15 1/14 E _ GC DC Y FB GA BF Y 2 g g a f Y b b d b b c c b b g a c e b f b - Y b b c a c C A C C Y f g a b c d e - g a b c d c ab ab b g bb fbbd 3 4 1 F B 1 DF C A A A 6 G F A B 5 GA 6 E BF G

More information

203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3

203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3 203 24 203 x, y, z (x, y, z) x 6 + y 6 + z 6 = 3xyz ( 203 5) 202 20 a 0, b 0, c 0 a3 + b 3 + c 3 abc 3 a = b = c 3xyz = x 6 + y 6 + z 6 = (x 2 ) 3 + (y 2 ) 3 + (z 2 ) 3 3x 2 y 2 z 2 ( ) 3xyz 3(xyz) 2.

More information

untitled

untitled Fig.1 t O O N,N p n J J J J J t J J J J J J J J J J J t t J J J J J J J J J p Fig.2 p t Fig.3 Fig.4 synanti p Table1 Table2t Table2 synanti antisyn synanti synanti Fig.5 syn anti anti Fig.6 Table3 Table4

More information

20003 10 1110101018 1016 320101,000 10 / 1. 1. 2 7. 7. 7 10. 10 10. 14 14 14 24 i 10 11 12 1 2 4 9 11 12 13 15 16 17 22 23 5 18 19 20 21 ii PL PL PL PL TR18TR18 TR19TR20 PL SN PL NNN PL PL 101415 PL 11121316

More information

untitled

untitled 2014.3.16. http://olympus-imaging.jp/product/compact/1/index.html Copyright C 2013 2014 f=6mm 35mm28mm f=19.6mm 35mm92mm f=54.1mm 35mm240mm c0.5 c0.5 c2.5 c3 c2.5 c1.5 c4 b5.5 b5.5 53cm c2.5 c3 c3 c2.5

More information

目次

目次 00D80020G 2004 3 ID POS 30 40 0 RFM i ... 2...2 2. ID POS...2 2.2...3 3...5 3....5 3.2...6 4...9 4....9 4.2...9 4.3...0 4.4...4 4.3....4 4.3.2...6 4.3.3...7 4.3.4...9 4.3.5...2 5...23 5....23 5.....23

More information

~!f' 美 しい 女 (.j: ff, ~ 同 麟 豆 ) 中 野 重 t~fì 論 -tjffi 辰 雄 との 文 学 史 的 統 一 保 を Il lh( ~ 至 17 5 ~ なの~ .... -

More information

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m

n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m 1 1 1 + 1 4 + + 1 n 2 + π2 6 x [10 n x] x = lim n 10 n n 10 k x 1.1. a 1, a 2,, a n, (a n ) n=1 {a n } n=1 1.2 ( ). {a n } n=1 Q ε > 0 N N m, n N a m a n < ε 1 1. ε = 10 1 N m, n N a m a n < ε = 10 1 N

More information

Otsuma Nakano Senior High School Spring Seminar Mathematics B

Otsuma Nakano Senior High School Spring Seminar Mathematics B Otsuma Nakano Senior High School Spring Seminar Mathematics B 2 a d a n = a + (n 1)d 1 2 ( ) {( ) + ( )} = n 2 {2a + (n 1)d} a r a n = ar n 1 a { r ( ) 1 } r 1 = a { 1 r ( )} 1 r (r 1) n 1 = n k=1 n k

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

Word 2007 Word 2007

Word 2007 Word 2007 Word 2007 Word 2007 Word 2007Word 2007 WordWindows Word Word Word Word 97 Word 2002 OSWindows 98 OSWindows XP Word Office Word Web CtrlC WindowsMicrosoft IME Word IME 2007 HENKA NSURU NN Y N Word {} Enter

More information

untitled

untitled 2 6 26 http://www.nitto.co.jp/ 2 3 5 7 9 12 13 15 17 19 21 22 23 24 25 26 27 28 29 3 31 33 34 35 37 41 42 http://www.nitto.co.jp 1 2 3 4 http://www.nitto.co.jp/ 2,712 386 6,263 475 2,514 3,274 6,263 52

More information

CG38.PDF

CG38.PDF ............3...3...6....6....8.....8.....4...9 3....9 3.... 3.3...4 3.4...36...39 4....39 4.....39 4.....4 4....49 4.....5 4.....57...64 5....64 5....66 5.3...68 5.4...7 5.5...77...8 6....8 6.....8 6.....83

More information

応用数学特論.dvi

応用数学特論.dvi 1 1 1.1.1 ( ). P,Q,R,.... 2+3=5 2 1.1.2 ( ). P T (true) F (false) T F P P T P. T 2 F 1.1.3 ( ). 2 P Q P Q P Q P Q P or Q P Q P Q P Q T T T T F T F T T F F F. P = 5 4 Q = 3 2 P Q = 5 4 3 2 P F Q T P Q T

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

DC0 MC OFF THR ON MC AX AX MC SD AX AX SRD THR TH MC MC MC MC MC MC MC MC MC MC 9 0 9

DC0 MC OFF THR ON MC AX AX MC SD AX AX SRD THR TH MC MC MC MC MC MC MC MC MC MC 9 0 9 SDN0 SD-N(CX) MSOD-N(CX) SD-N(CX) MSOD-N(CX) SD-N(CX) MSOD-N(CX) SD-N(CX) MSOD-N(CX) SD-N0 MSOD-N0 SD-N MSOD-N SD-N0 MSOD-N0 SD-N9 MSOD-N9 SD-N MSOD-N SD-N MSOD-N SD-N0 MSOD-N0 SD-N00 MSOD-N00 SD-N00 MSOD-N00

More information

H-21.indb

H-21.indb 1 ) ) ) ) ) h b C N S c a js S M 3 F % % EL Q P O H J E % E L % L U R 09*# # * k S c a js S 5 1 9 3 7 dp 1 2 3 4 5 6 7 ) 1 13 2 3 58 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3

More information

INDEX p01-02 p03-04 p05-07 p08 p09-10 p011 p12-16 p17-18 Audio Philosophy Integrated Amplifier Introduction A-30/A-10 Super Audio CD Player Introducti

INDEX p01-02 p03-04 p05-07 p08 p09-10 p011 p12-16 p17-18 Audio Philosophy Integrated Amplifier Introduction A-30/A-10 Super Audio CD Player Introducti 2012 INDEX p01-02 p03-04 p05-07 p08 p09-10 p011 p12-16 p17-18 Audio Philosophy Integrated Amplifier Introduction A-30/A-10 Super Audio CD Player Introduction / Network Audio Player Introduction N-50/N-30

More information

A_chapter3.dvi

A_chapter3.dvi : a b c d 2: x x y y 3: x y w 3.. 3.2 2. 3.3 3. 3.4 (x, y,, w) = (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, )xȳ w (,,, ) xy w (,,, )xy w (,,, ) xȳw (,,, )xȳw (,,, ) xyw, F F = xy w x w xy w xy w

More information

Chap9.dvi

Chap9.dvi .,. f(),, f(),,.,. () lim 2 +3 2 9 (2) lim 3 3 2 9 (4) lim ( ) 2 3 +3 (5) lim 2 9 (6) lim + (7) lim (8) lim (9) lim (0) lim 2 3 + 3 9 2 2 +3 () lim sin 2 sin 2 (2) lim +3 () lim 2 2 9 = 5 5 = 3 (2) lim

More information

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 (1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e 0 1 15 ) e OE z 1 1 e E xy 5 1 1 5 e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0 Q y P y k 2 M N M( 1 0 0) N(1 0 0) 4 P Q M N C EP

More information

2016_Sum_H4_0405.ai

2016_Sum_H4_0405.ai T75 N72 RX73 T67 RX73 T75 N72 T95 T75 T55 T45 T67 RX73 N72 N51 T95T75T55 T75 T95 T55 T95 T75 T55 T75 T55 T95 T75 T75 T55 T75 T55 T95 T75 T55 T95 T95T75T55 T45 T67 T45 T67 RX73 PRX73VWPBJA PRX73VBPBJA PRX73VWRBJA

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

0 (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4

0   (18) /12/13 (19) n Z (n Z ) 5 30 (5 30 ) (mod 5) (20) ( ) (12, 8) = 4 0 http://homepage3.nifty.com/yakuikei (18) 1 99 3 2014/12/13 (19) 1 100 3 n Z (n Z ) 5 30 (5 30 ) 37 22 (mod 5) (20) 201 300 3 (37 22 5 ) (12, 8) = 4 (21) 16! 2 (12 8 4) (22) (3 n )! 3 (23) 100! 0 1 (1)

More information

main

main 14 1. 12 5 main 1.23 3 1.230000 3 1.860867 1 2. 1988 1925 1911 1867 void JPcalendar(int x) 1987 1 64 1 1 1 while(1) Ctrl C void JPcalendar(int x){ if (x > 1988) printf(" %d %d \n", x, x-1988); else if(x

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

SC- SC-RM SC-/G SC-/SE SC-/V SC-/VG SC-/VS SC-/U SC-C SC-LG SW- SW-RM SW-/G SW-/SE SW-/U SW-/3H SW-/2L SW-/3Q SW-/2E SW-C SW-RMC SW-C/U SW-P SW-LG SW-

SC- SC-RM SC-/G SC-/SE SC-/V SC-/VG SC-/VS SC-/U SC-C SC-LG SW- SW-RM SW-/G SW-/SE SW-/U SW-/3H SW-/2L SW-/3Q SW-/2E SW-C SW-RMC SW-C/U SW-P SW-LG SW- SC- SC-RM SC-/G SC-/SE SC-/V SC-/VG SC-/VS SC-/U SC-C SC-LG SW- SW-RM SW-/G SW-/SE SW-/U SW-/3H SW-/2L SW-/3Q SW-/2E SW-C SW-RMC SW-C/U SW-P SW-LG SW-C/3H SW-C/2E SW RM C / N10 S C 2 5 A B - A 2 2 2 T

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI 65 8. K 8 8 7 8 K 6 7 8 K 6 M Q σ (6.4) M O ρ dθ D N d N 1 P Q B C (1 + ε)d M N N h 2 h 1 ( ) B (+) M 8.1: σ = E ρ (E, 1/ρ ) (8.1) 66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3)

More information

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B

2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius 53 Ea R T k 1 = χe 1 Ea RT k 2 = χe 2 Ea RT 53 A B A B 5. A B B A B A B B A A B A B 2 A [A] B [B] 51 v = k[a][b] 51 A B 3 0 273.16 A B A B A B A A [A] 52 v= k[a] 52 A B 55 2 A B A B A A B Ea 1 51 Ea 1 A B A B B A B B A Ea 2 A B Ea 1 ( )k 1 Ea 1 Ea 2 Arrhenius

More information

国土技術政策総合研究所資料

国土技術政策総合研究所資料 No 1990 2006 3/4 2005 10 2008 10 1992 1987 210 3 44,14,24 6 27 27 2,7,12,17,22,276 610 5 2,5,7,10 2,5,9 19851977 7-1 1987-1 - No 1985 110 10113 102 17 21 7 1 1996 2009-2 - No - 3-1980 1987, 19891990 19891990

More information

untitled

untitled Study 6 Watch Experiment & Experience Experiment & Experience 2007 8/21() JAEA 2007 10/3() JAEA JAEA 2007 12/3 () JAEA JAEA 2007 8/28()30() 8/28 NSRR (JAEA) FCA (JAEA) 8/29 JRR-4(JAEA) 8/30 2007 9/10()14()

More information

KZ3N Series ø, ø U94V0 1 New New New New New 39% 15 Rc KZ3N KZ2N New New KZ3N KZ2N New 1

KZ3N Series ø, ø U94V0 1 New New New New New 39% 15 Rc KZ3N KZ2N New New KZ3N KZ2N New 1 ø, ø 39% 39% New KZ3N-135T 4.36kg 7.16kg New KZ2N-135T 15 15 KZ3N Series KZ3 Series KZ3T Series T.S20-202 KZ3N Series ø, ø U94V0 1 New New New New New 39% 15 Rc KZ3N KZ2N New New KZ3N KZ2N New 1 KZ3T Series

More information

CFASDM004

CFASDM004 CFASDM CFASDM CFASDM CFASDM JIS T 8001:1992 JIS T 8001 1 CFASDM 5. a) 2 CFASDM b) c) a) b) c) a) b) c) 24V 1) 2) 3) 1) 2) 3) 3 CFASDM 1) 2) 7.1.1 a) b) c) 7.1.2 d)7.1.3 a) b) c) 7.1.4 30N 7.1.4 30N 7.1.4

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

6 19,,,

6 19,,, 6 19,,, 15 6 19 4-2 à A si A s n + a n s n 1 + + a 2 s + a 1 à 0 1 0 0 1 0 0 0 1 a 1 a 2 a n 1 a n à ( 1, λ i, λ i 2,, λ i n 1 ) T ( λ i, λ 2 i,, λ n 1 i, a 1 a 2 λ i a n λ ) n 1 T i ( ) λ i 1, λ i,, λ

More information

1 ご挨拶・講演等.indd

1 ご挨拶・講演等.indd 6 1 2 3 4 5 6 7 8 6 1 2 3 6 1 30 2 29 3 20109 6 1 2 3 4 5 900 1000 1100 1200 1300 1400 1500 13301530 1600 1700 1800 1900 1 2 3 4 5 900 1000 1100 1200 1300 1400 1500 1900 1800 1700 1600 9001030 13001330

More information

24 200902728 1 4 1.1......................... 4 1.2......................... 4 1.3......................... 5 1.4......................... 5 1.5........................... 5 1.6...................... 6

More information

離散最適化基礎論 第 11回 組合せ最適化と半正定値計画法

離散最適化基礎論 第 11回  組合せ最適化と半正定値計画法 11 okamotoy@uec.ac.jp 2019 1 25 2019 1 25 10:59 ( ) (11) 2019 1 25 1 / 38 1 (10/5) 2 (1) (10/12) 3 (2) (10/19) 4 (3) (10/26) (11/2) 5 (1) (11/9) 6 (11/16) 7 (11/23) (11/30) (12/7) ( ) (11) 2019 1 25 2

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

.. p.2/5

.. p.2/5 IV. p./5 .. p.2/5 .. 8 >< >: d dt y = a, y + a,2 y 2 + + a,n y n + f (t) d dt y 2 = a 2, y + a 2,2 y 2 + + a 2,n y n + f 2 (t). d dt y n = a n, y + a n,2 y 2 + + a n,n y n + f n (t) (a i,j ) p.2/5 .. 8

More information

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n

Chapter9 9 LDPC sum-product LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n 9 LDPC sum-product 9.1 9.2 LDPC 9.1 ( ) 9.2 c 1, c 2, {0, 1, } SUM, PROD : {0, 1, } {0, 1, } SUM(c 1, c 2,, c n ) := { c1 + + c n (c n0 (1 n 0 n)) ( ) 0 (N(0 c) > N(1 c)) PROD(c 1, c 2,, c n ) := 1 (N(0

More information

平成26年度青少年のインターネット利用環境実態調査調査結果(速報)1

平成26年度青少年のインターネット利用環境実態調査調査結果(速報)1 10 55.2% 88.3% 62.7% 1 99.4% 99.7% 99. 99.5% 98.3% 97.2% 98.3% 99.2% 97.1% 97.1% 9 98. 88.6% 89.2% 83.3% 94.9% 9 78.1% 95. 99.5% 75.4% 81.3% 74.4% 70. 88.1% 91.7% 88.3% 83.9% 0.3% 0.5% 0.3% 0.2% 0.3% 0.6%

More information

II ( : )

II ( : ) http://www.math.sci.hokudai.ac.jp/~yano/biseki2_2015/ 2015 II ( : ) f(x) : [a, b] F(x) : F (x) = f(x) ( ) F(x) F(b) F(a) f(x) b a f(x)dx = [ F(x) ] b = F(b) F(a) a f(x) x = a, x = b x S 紀元前 3000 年 紀元前

More information

() ( ) ( )

() ( ) ( ) () ( ) ( ) C10-14 LAS LAS C12-15 AE AE DHTDMAC DHTDMAC DHTDMAC N,N- N- AO AO C10-14 LAS LAS 1 2 3 4 5 MBAS(mg/L) 1.2 1 0.8 0.6 0.4 0.2 0 BODMBAS 1998 0 5 10 15 BOD(mg/L) MBASNH 4 -N 1998 1.2 MBAS(mg/L)

More information

NTN すべり軸受標準品シリーズ NTN すべり軸受標準品シリーズ 10

NTN すべり軸受標準品シリーズ NTN すべり軸受標準品シリーズ 10 3 3. R-ARE35 3 +.2 +. +.9 +. 5 -.2.3 3 R-ARE +.2 +. 7 +.9 +. -.2.3 R-ARE5 5 +.2 +. 8 +.9 +. -.2.3 5 R-ARE8 +.2 +. 9 +.9 +. 8 -.2.3 R-ARE78 7 +.23 +. +. +.5 8 -.2.5 7 R-ARE88 8 +.23 +. +. +.5 8 -.2.5 8

More information

医薬発1304_局外規第三部改正_.PDF

医薬発1304_局外規第三部改正_.PDF 1304 12 12 21 11 3 23 343 Aldioxa Powder C 4 H 7 AlN 4 O 5 0.1 g 900 ml 2 50 20 ml 0.45 m 10 ml V ml 1 ml C 4 H 7 AlN 4 O 5 22 g ph 10.0 1 10 V ' ml 105 2 0.028 g 25 ml 1 ml ph 10.0 1 10 50 ml 223 nm A

More information

COVER3

COVER3 KAI JAPANESE LANGUAGE SCHOOL www.kaij.jp contents Why KAI? Why Tokyo? 1 2 4 5 6 7 8 9 10 11 12 Everybody Ocean World Encounter Understanding Comfort KAI1987 2 KAI KAI 1 Why KAI? 401987 Why Tokyo? 2 3 400

More information

Ultrason® E, S, P – グレード一覧

Ultrason® E, S, P – グレード一覧 E, S, P PESU, PSU, PPSU : www.plasticsportalasia.basf.com/ultrason E, S, P PESU PSU PPSU E, S, P E, S, P 04 04 06 06 08 10 4 E, S, P E, S, P E, S, P 5 E 1010 E 2010 E 2020 P E 3010 E 6020 P S 2010 S 3010

More information

2001 年度 『数学基礎 IV』 講義録

2001 年度 『数学基礎 IV』 講義録 4 A 95 96 4 1 n {1, 2,,n} n n σ ( ) 1 2 n σ(1) σ(2) σ(n) σ σ 2 1 n 1 2 {1, 2,,n} n n! n S n σ, τ S n {1, 2,,n} τ σ {1, 2,,n} n τ σ σ, τ τσ σ n σ 1 n σ 1 ( σ σ ) 1 σ = σσ 1 = ι 1 2 n ι 1 2 n 4.1. 4 σ =

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

1 1 2 3 2.1.................. 3 2.2.......... 6 3 7 3.1......................... 7 3.1.1 ALAGIN................ 7 3.1.2 (SVM).........................

1 1 2 3 2.1.................. 3 2.2.......... 6 3 7 3.1......................... 7 3.1.1 ALAGIN................ 7 3.1.2 (SVM)......................... [5] Yahoo! Yahoo! (SVM) 3 F 7 7 (SVM) 3 F 6 0 1 1 2 3 2.1.................. 3 2.2.......... 6 3 7 3.1......................... 7 3.1.1 ALAGIN................ 7 3.1.2 (SVM)........................... 8

More information

Microsoft Word - 計算力学2007有限要素法.doc

Microsoft Word - 計算力学2007有限要素法.doc 95 2 x y yz = zx = yz = zx = { } T = { x y z xy } () {} T { } T = { x y z xy } = u u x y u z u x x y z y + u y (2) x u x u y x y x y z xy E( ) = ( + )( 2) 2 2( ) x y z xy (3) E x y z z = z = (3) z x y

More information

橡品質報告書.doc

橡品質報告書.doc 12 ... 1... 2 2.1.... 2 2.1.1.... 2 2.1.2.... 2 2.1.3.... 3 2.1.4.... 3 2.1.5.... 3 2.2.... 3 2.3.... 4.... 5 3.1.... 5 3.1.1.... 5 (1)... 5 (2)... 7 (3)... 7 (4)... 9 3.1.2.... 10 (1)... 10 (2)... 12

More information

7. 1 max max min f g h h(x) = max{f(x), g(x)} f g h l(x) l(x) = min{f(x), g(x)} f g 1 f g h(x) = max{f(x), g(x)} l(x) = min{f(x), g(x)} h(x) = 1 (f(x)

7. 1 max max min f g h h(x) = max{f(x), g(x)} f g h l(x) l(x) = min{f(x), g(x)} f g 1 f g h(x) = max{f(x), g(x)} l(x) = min{f(x), g(x)} h(x) = 1 (f(x) 7. 1 ma ma min f g h h() = ma{f(), g()} f g h l() l() = min{f(), g()} f g 1 f g h() = ma{f(), g()} l() = min{f(), g()} h() = 1 (f() + g() + f() g() ) 2 1 1 l() = 1 (f() + g() f() g() ) 2 2 1 45 = 2 e 1

More information

2 1

2 1 2 1 202008 3 8 3 31 2 1 Unitec New Zealand 5 3 5 3 19 2 20 3 1 4 5 20 3 2 2 192007 7 18 20 1 192007 10 30 31 11 1 2 192007 11 16 5 192007 12 4 1 192007 12 18 2 202008 2 7 3 202008 2 27 3 5 202008 3 8 3

More information

環境・社会報告書2010

環境・社会報告書2010 Our Approach to an Excellent Company 2010 1. 2. 3. 4. 01 2010 Contents 1 3 5 10 16 22 29 31 35 37 38 39 41 43 45 47 49 51 53 57 62 2010 02 Top Message 03 2010 2010 04 7,83097 201 3 2,525 31 8,032 79910

More information

P MXS.indd

P MXS.indd 2 2 Series ø6, ø8, ø12, ø16, ø20, ø25 RoS X XQ XQ X XW X XP XY TS D- -X 33 34 Series 6 8 12 16 20 25 ø ø X XQ XQ X XW X XP XY TS W W 35 D- -X Series 1 2 3 3-1 α α β β α β α 3-2 α 3-3 α 3-4 36 γ γ α δ δ

More information

記号と準備

記号と準備 tbasic.org * 1 [2017 6 ] 1 2 1.1................................................ 2 1.2................................................ 2 1.3.............................................. 3 2 5 2.1............................................

More information

PDG.pdf % 125% mm

PDG.pdf % 125% mm 001-1109PDG.pdf 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 001-1109PDG.pdf 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 75% 125% 54 55 56 57

More information

フィンガルの洞窟スコア印刷用.mus

フィンガルの洞窟スコア印刷用.mus & Allegro moderato c Die Hebriden oder Die Fingalshöhle (Fingal s Cave) o. 26 & & c c c c b & c b & c & c & c & c & c b & c b & c & c & c c c c c c c Teeda ublishing htt://.teeda-aan.com/teeda_ublishing/

More information

山大紀要13

山大紀要13 SD SD SD SD SD SD Newman-keuls MSD MSD MSD F F MSD MSD MSD F F nn nn nn p p p Leary Mook No Leary, M. R.Understanding social anxiety. Beverly Hills, California : Sage. Self-Consciousness Mook No

More information

GM GM [] GM GM PL Part1 [] PL GM PL GM [ PL] PL [PC1 PL] PC PL [] [] [] GM [RoC] [] GM [AdB] [d66n] [d66s] A B d66d6 d66n d66s [1d6][2d6][d66N][d66S]

GM GM [] GM GM PL Part1 [] PL GM PL GM [ PL] PL [PC1 PL] PC PL [] [] [] GM [RoC] [] GM [AdB] [d66n] [d66s] A B d66d6 d66n d66s [1d6][2d6][d66N][d66S] TRPG TRPG LHTRPG PL GM 4 2 TRPG LHTRPG 1 1 PL PT PC 1 1 Part1 2 3 4 4 6 10 GM 10 Part2 10 13 13 13 14(62) GM PL1 1 PC PL 1 PC [] 5 PL PL GM GM PL GM GM PL GM 1 GM GM [] GM GM PL Part1 [] PL GM PL GM [

More information

2

2 Bradley-Terry 1 2 3 paired comparison 4 paired comparison 1860 Landau 5 6 A B B C A C 7 n 0.5n(n-1) n 2 0.5n(n-1) 3 8 9 A B B C A C 10 0.5n(n-1) (n-1) 11 Kendall coefficient of consistence ζ (1940) null

More information

(Jacobi Gauss-Seidel SOR ) 1. (Theory of Iteration Method) Jacobi Gauss-Seidel SOR 2. Jacobi (Jacobi s Iteration Method) Jacobi 3. Gauss-Seide

(Jacobi Gauss-Seidel SOR ) 1. (Theory of Iteration Method) Jacobi Gauss-Seidel SOR 2. Jacobi (Jacobi s Iteration Method) Jacobi 3. Gauss-Seide 03 9 (Jacobi Gauss-Seidel SOR (Theory of Iteration Method Jacobi Gauss-Seidel SOR Jacobi (Jacobi s Iteration Method Jacobi 3 Gauss-Seidel (Gauss-Seidel Method Gauss-Seidel 4 SOR (SOR Method SOR 9 Ax =

More information