S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,"

Transcription

1 8.5 [ ]<, > 2 A B Z(T,V,N) = d 3N A p N A!N B!(2π h) 3N A d 3N A q A d 3N B p B d 3N B q B e β(h A(p A,q A ;V )+H B (p B,q B ;V )) = Z A (T,V,N A )Z B (T,V,N B ) (74) F (T,V,N)=F A (T,V,N A )+F B (T,V,N B ) (75) V (partia pressure)p A,B P = P A (T,V,N A )+P B (T,V,N A )=c A P + c B P (76) P A P B A B c A,B c A = N A N A + N B c B = N B N A + N B (77) φ A,B (T ) µ A,B = k B T n k ( ) 3/2 BT ma,b k B T c A,B P 2π h 2 + φ A,B (T ) (78) µ 0 A,B µ A,B = µ 0 A,B + k B T n c A,B (79) (c A c B ) µ A = µ 0 A (T,P)+k BT n c A (80) µ B = µ 0 B(T,P) k B Tc A (8) (79) G = k B T (N A n c A + N B n c B ) (< 0) (82) 53

2 S = k B (N A n c A + N B n c B ) (83) [ ] B A (N A N B ) G = N B µ 0 B (T,P)+N Aψ(T,P)+N A k B T n N A en B (84) 2 A N A 3 (83) N A N B µ B = µ 0 B(T,P) c A k B T (85) µ A = ψ(t,p)+k B T n c A (86) µ 0 B (T,P) ψ(t,p) [ ]< 80, 8 > (85) µ B (T,P,c A )=µ B (T,P 2,c A2 ) (87) µ 0 B (T,P ) µ 0 B (T,P 2)=(c A c A2 )k B T (88) v B (P P 2 )=(c A c A2 )k B T (89) (osmotic pressure) P = c A v B k B T (90) 54

3 P = c A v B k B T = N A V k BT (9) ( : van t Hoff aw of osmotic pressure) [ 2 ]< > 2 2 A µ () B (T,P)=µ (2) B (T,P) (92) A δt µ () B (T + δt, P) k BTc () A = µ(2) B (T + δt, P) k BTc (2) A (93) (s () B s (2) B )δt = (c () A c (2) A )k B T (94) () (2) (s (2) B s() B )T = q δt =(c () A c (2) A ) k BT 2 q (95) µ () B (T,P + δp) k B Tc () A = µ (2) B (T,P + δp) k B Tc (2) A (96) (v () B v (2) B )δp =(c () A c (2) A )k B T (97) δp =(c () A c (2) A ) k B T v () B v (2) B 2 A c (2) A δp c () k B T A v (2) B 0 v() B (98) v(2) B c () A P 0 (T ) (99) 55

4 P 0 ( Raout s aw) [ ]< 64, 65 > A + B C (= AB) (00) G(T,P,N A,N B,N C ) dg = G G G = 0 (0) dn C N C NA,N B N A NB,N C N B NC,N A µ A + µ B = µ C (= µ AB ) (02) ( ) ν i A i = 0 (03) i ν i µ i = 0 (04) i [ ]< 72, 73 > (78) (02) ε b c AB = ( 2π h 2) ( ) 3/2 mab 3/2 P c A c B m A m B (k B T ) 5/2 e(ε b φ AB (T )+φ A (T )+φ B (T ))/k B T (05) (aw of mass action) 56

5 9 S = k B n Ω /N! p p 2 p 2 p /2! p /2! 9. [ ] 2 (Boson, boson) (Fermion, fermion) Ψ(q 2,q )=±Ψ(q,q 2 ) () ( ) 2 ψ (q) ψ 2 (q) 2 Ψ(q,q 2 )= 2! (ψ (q )ψ 2 (q 2 ) ± ψ (q 2 )ψ 2 (q )) (2) Ψ B (q,,q N )= N!N!N 2! Ψ F (q,,q N )= N! N! a permutations N! a permutations ψ k (q ) ψ kn (q N ) (3) ( ) P ψ k (q ) ψ kn (q N ) = N! det (ψ i (q ki )) (4) ( ) P N i, 2,,N i i {N i } N i 0 57

6 9.2 [ ] ( Z(T,V,N)= exp β i a possibe configurations of N= N i N i ε i ) (5) N i 0 [ ] i i) (N i =0) E =0 ii) (N i =) E = ε i Z i (T,V,µ) = N i =0 = +e β(µ ε i) e β(e(n i ) i µn i ) (6) Z(T,V,µ)= i Z i (T,V,µ) (7) Φ(T,V,µ) = k B T i n Z i (T,V,µ) = i Φ i (T,V,µ) = k B T i n ( +e β(µ ε i) ) (8) i N i = Φ i µ βe β(µ ε i) +e β(µ ε i) = β = e β(ε i µ) + i (Fermi-Dirac statistics) 58 (9)

7 (Fermi distribution function) f FD (ε) = e β(ε µ) + (0) f e T Figure 6: (k B T =) µ =, µ = µ =5 µ N = Φ µ = i e β(ε i µ) + () ( ) x (ε µ)/k B T f FD (ε) = = e β(ε µ) + e x + = ( tanh x ) 2 2 (2) ε = µ f FD =/2 f FD (ε) θ(µ ε) (3) ε : N i = f FD (ε) e β(ε µ) e βµ (βµ ) f FD (ε) e β(µ ε) (4) (Maxwe-Botzmann distribution) 59

8 [ ] i 0 Z i (T,V,µ) = = = = N i =0 e βµn i Z i (T,V,N) e βµn i e βε in i N i =0 e β(µ ε i)n i N i =0 e β(µ ε i) (5) Z(T,V,µ)= i Z i (T,V,µ) (6) Φ(T,V,µ) = k B T i n Z i (T,V,µ) = i Φ i (T,V,µ) = k B T i n ( e β(µ ε i) ) (7) i N i = Φ i µ βe β(µ ε i) = β e β(µ ε i) = e β(ε i µ) (8) i (Bose-Einstein statistics) (Bose distribution function) f BE (E) = e β(ε µ) (9) 60

9 f e T Figure 7: (k B T =) µ =, µ = 0.5, µ =0, µ N = Φ µ = i e β(ε i µ) (20) ( ) III e β(ε µ) f BE (ε) e β(µ ε) (2) f e T Figure 8: (µ =, k B T =) 6

10 9.3 [ ] {ε i } ε M N N M W = M C N = M! N!(M N )! {N } S = k B n W (22) ( k B M n M e N n N e (M N )n (M ) N ) e = k B M [n n n +( n )n( n )] (23) n = N /M N = M n (24) E = M ε n (25) ( ) S αn βe = S (α βε ) M n kb k B n ] n = M [n + α + βε n n = = 0 (26) e βε +α + (27) α β N = M e βε +α + 62 (28)

11 E = M ε e βε +α + (29) α β [ ] α β N E : S(E,V,N) ( V ) (26) T = ( S E ) V,N = ( ) ( ) S n M n E V,N V,N ( ) n = k B M (α + βε ) E V,N = k B α ( ) n M + β ( ) n M ε E E V,N V,N = k B β (30) N 2 E β /k B T µ ( ) S T = N E,V = ( ) ( ) S n M n N E,V E,V ( ) n = k B M (α + βε ) N E,V = k B α ( ) n M + β ( ) n M ε N E,V N E,V = k B α (3) α = µ/k B T [ ] {ε i } N W = M +N C N = M + N N!(M )! (32) 63

12 {N } S = k B n W [ k B (M + N )n (M + N ) e = k B M n M e N n N ] e M [( + n )n(+n ) n n n ] (33) N E ( S n kb ) αn βe = M [ n +n n α βε = 0 (34) ] n = e βε +α (35) α β 64

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030

1 913 10301200 A B C D E F G H J K L M 1A1030 10 : 45 1A1045 11 : 00 1A1100 11 : 15 1A1115 11 : 30 1A1130 11 : 45 1A1145 12 : 00 1B1030 1B1045 1C1030 1 913 9001030 A B C D E F G H J K L M 9:00 1A0900 9:15 1A0915 9:30 1A0930 9:45 1A0945 10 : 00 1A1000 10 : 15 1B0900 1B0915 1B0930 1B0945 1B1000 1C0900 1C0915 1D0915 1C0930 1C0945 1C1000 1D0930 1D0945 1D1000

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

橡Taro11-卒業論文.PDF

橡Taro11-卒業論文.PDF Recombination Generation Lifetime 13 9 1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse

More information

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2 Y. Kondo Department of Physics, Kinki University, Higashi-Osaka, Japan (Dated: September 3, 27) [] PACS numbers: I. m cm 3 24 e =.62 9 As m = 9.7 3 kg A. Drude-orentz Drude orentz N. i v i j = N q i v

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

untitled

untitled C08036 C08037 C08038 C08039 C08040 1. 1 2. 1 2.1 1 2.2 1 3. 1 3.1 2 4. 2 5. 3 5.1 3 5.2 3 6. 4 7. 5 8. 6 9. 7 10. 7 11. 8 C08036 8 C08037 9 C08038 10 C08039 11 C08040 12 8 2-1 2-2 T.P. 1 1 3-1 34 9 28

More information

レイアウト 1

レイアウト 1 1 1 3 5 25 41 51 57 109 2 4 Q1 A. 93% 62% 41% 6 7 8 Q1-(1) Q2 A. 24% 13% 52% Q3 Q3 A. 68% 64 Q3-(2) Q3-(1) 9 10 A. Q3-(1) 11 A. Q3-(2) 12 A. 64% Q4 A. 47% 47% Q5 QQ A. Q Q A. 13 QQ A. 14 Q5-(1) A. Q6

More information

10_11p01(Ł\”ƒ)

10_11p01(Ł\”ƒ) q q q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

VISPO /表1-4

VISPO /表1-4 7 2005 1,132 5,249 362 13,666 311,809 1,359 3,723 1,669 538 3,737 17,418 39,036 75,694 5,281 1,169 161,502 7,463 11,408,436 500,000 13,263 192,052 41,391 49,706 136,232 61,102 12,402,182 11,573,898 273,042

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

+ + + + n S (n) = + + + + n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 (

+ + + + n S (n) = + + + + n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 ( k k + k + k + + n k 006.7. + + + + n S (n) = + + + + n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 (n), S 0 (n) 9 S (n) S 4

More information

P1-1 P1-2 P1-3 P1-4 P1-5 P1-6 P3-1 P3-2 P3-3 P3-4 P3-5 P3-6 P5-1 P5-2 P5-3 P5-4 P5-5 P5-6 P7-1 P7-2 P7-3 P7-4 P7-5 P7-6 P9-1 P9-2 P9-3 P9-4 P9-5 P9-6 P11-1 P11-2 P11-3 P11-4 P13-1 P13-2 P13-3 P13-4 P13-5

More information

橡Taro11-報告書0.PDF

橡Taro11-報告書0.PDF Research Center RC 2001 5-1- RC RC NHK -2- -3- 00/12/16 RC 01/01/07 RC 01/01/21 1 13 01/02/11 2 9 01/02/10 01/02/14 01/02/19 01/02/25 3 7 01/03/10 4 8 01/03/23 5 8 01/04/29 2001/01/07-4- -5- RC 1990 RC

More information

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22

P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 1 14 28 16 00 17 30 P-1 P-2 P-3 P-4 P-5 2 24 29 17 00 18 30 P-6 P-7 P-8 P-9 P-10 P-11 P-12 P-13 3 4 28 16 00 17 30 P-14 P-15 P-16 4 14 29 17 00 18 30 P-17 P-18 P-19 P-20 P-21 P-22 5 24 28 16 00 17 30 P-23

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

2004

2004 2008 3 20 400 1 1,222 7 1 2 3 55.8 54.8 3 35.8 6 64.0 50.5 93.5 1 1,222 1 1,428 1 1,077 6 64.0 52.5 80.5 56.6 81.5 30.2 1 2 3 7 70.5 1 65.6 2 61.3 3 51.1 1 54.0 2 49.8 3 32.0 68.8 37.0 34.3 2008 3 2 93.5

More information

取扱説明書[d-01G]

取扱説明書[d-01G] d-01g 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 T 18 1 2 19 3 1 2 4 3 4 20 21 1 2 3 4 22 1 T 2 T 1 T 2 T 23 1 T 1 2 24 25 1 2 26 1 T 27 1 2 3 1 2 3 28 29 30 1 2 1 2 31 1 2 3 32 1 2 3 4 5 1 2 3 4 33 1

More information

1

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Ni-Cd 19 1 1 2 3 4 5 6 7 20 21 1 2 3 22 1 2 3 1 2 3 23 1 2 1 1 1 24 25 1 1 2 3 2 26 1 2 1 27 1 2 3 28 1 2 3 29 30 31 32 33 34 35 1 1 36 1 2 37 38 1 2 3 1 39

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

ap0 ap1 ap2 ap3 ap4 ap5 ap6 ap7 ap8 ap9 aq0 aq1 aq2 aq3 aq4 aq5 aq6 aq7 aq8 aq9 aw0 aw1 aw2 aw3 aw4 aw5 aw6 aw7 aw8 aw9 ae0 ae1 ae2 ae3 ae4 ae5 ae6 ae7 ae8 ae9 ar0 ar1 ar2 ar3 ar4 ar5 ar6 ar7 ar8 ar9 at0

More information

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

高齢化の経済分析.pdf

高齢化の経済分析.pdf ( 2 65 1995 14.8 2050 33.4 1 2 3 1 7 3 2 1980 3 79 4 ( (1992 1 ( 6069 8 7079 5 80 3 80 1 (1 (Sample selection bias 1 (1 1* 80 1 1 ( (1 0.628897 150.5 0.565148 17.9 0.280527 70.9 0.600129 31.5 0.339812

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information