090117公聴会_提出版.ppt

Size: px
Start display at page:

Download "090117公聴会_提出版.ppt"

Transcription

1 Presentation title 1 / 6 ( ) NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA

2 Contents 2 / 6 > > > > NOxUrea-SCR NOx NOx NOx NOx Urea-SCR >

3 Background and Motivation (1) 3 / 6 NOx PM emission Combustion improvement NOx PM Aftertreatment NOx emission Fig. Conceptual figure of diesel emission standards > >DPF PM1% >NOx 8 9% NOx, NOx NOx,

4 Background and Motivation (2) 4 / 6 - Urea-SCR (NH 3 ) NOx NH 3 Urea-SCR NOx etc NH 3 etc NOx Exhaust gas NOx Catalyst layer Ammonia Injection NH 3NOx N 2 H 2 O Clean gas *Ref. NOx NOx

5 Previous Studies (1) 5 / 6 Urea-SCR Koebel, et al. (Paul Scherrer Institute) Tronconi, et al. (Politecnico di Mirano) York, et al. (Johnson Matthey) SCR Tenisson, et al. (Ford) NOx HNCO NO 2 Fe-ZSM NO 2 Standard SCR Fast SCR NO 2 NOx [ ] 2 3DOC SCR (US FTP ) Urea-SCR NO ( ) 2 N 2 O Curran, et al. (LLNL) Patel, et al. (ERC) ( ) Yamauchi, et al. (Osaka City Univ.) Opat, et al. (ERC) n-heptane ( ) n-heptane ( 29 52) KUCRS ASRT (LTC) CO HC

6 Previous Studies (2) 6 / 6 EGR Kimura, et al. (NISSAN) Shimazaki, et al. (Isuzu Adv. Eng. Center) Akihama, et al. (Toyota Central R&D) EGR NOx (Brunel Univ.) 5 Pa(abs) ( ) 3% EGR NOx PM Ladommatos, et al. MK EGR PCI EGR Smoke He Ar NOx DOC DPF, CSF LNT NSR Depres, et al. (Paul Scherrer Institute) Cooper, et al. (Johnson Matthey) Messerer, et al. (Tech. Univ. of Munich) ( ) Mahzoul, et al. (Univ. de Haute-Alsace) Pt DOC NO 2 O 2 NO NO 2 O 2 PM O 2 NO 2 Soot NO NO 2 NO 2 ( ) Pt BaO 2 NO NO 2 NO 2

7 Outline of Doctor Thesis 7 / NOx 6 NOx Urea-SCR 7

8 8 / 6 2 NOxUrea-SCR NOx

9 Outline of Urea-SCR System 9 / 6 Urea-SCR Urea decomposition (NH 2 ) 2 CO HNCO + NH 3 - Pyrolysis HNCO + H 2 O NH 3 + CO 2 - Hydrolysis Overall SCR reaction 4NH 3 + 4NO + O 2 4N 2 + 6H 2 O 8NH 3 + 6NO 2 7N H 2 O 2NH 3 + NO + NO 2 2N 2 + 3H 2 O (1) Standard SCR reaction (2) NO 2 SCR reaction (3) Fast SCR reaction Fast SCR reaction NOx Urea-SCR SCR NOx Urea-SCR NOx NOx

10 Experimental Apparatus 1 - Engine Test Bench - 1 / 6 Air flow meter Intercooler Common rail Fuel tank Rotary encoder Urea-SCR system Fuel consumption meter Measuring method MEXA-91DEGR NOx Chemiluminescence CO, CO 2 Non-Dispersive Infrared Dynamometer Detection (NDIR) THC Flame Ionization Detection (FID) MEXA-4FT Turbocharger Fourier Transform Infrared Radiatorspectrometer (FT-IR) Exhaust gas analyzer Engine specifications Engine type : 4-cycle, DOHC, DI Cylinders : In-line 6 Bore x Stroke : 115 x 125 mm Swept volume : 7.8 L Aspiration : Turbocharged MEXA4FT MEXA91DEGR

11 Experimental Apparatus 2 - Urea-SCR System Layout - Urea-SCR,NOx Base system 11 / 6 Urea Injector Urea tank (32.5 wt% urea-solution) Bypass line Exhaust gas Valve Catalyst line 2 1 Pre-oxidation catalyst ( 2) Modification 1. Pre-oxidation catalyst 2. Bypass line 3. Two valves Zeolite SCR catalyst (Cell density : 4 cpsi, Catalyst volume : 22.6 L catalyst

12 Definition of NO 2 /NOx 12 / 6 NOx NO 2 /NOx NOx 2 /NOx Exhaust gas NO 2 /NOx = NO 2 NO + NO 2 NOx NO, NO 2, N 2 O trace quantity NO NO 2 Load % NO 2 /NOx with Pre-Oxi. cat. w/o Pre-Oxi. cat NO 1% NO 2 % - NO 2 /NOx =. NO 5% NO 2 5% - NO 2 /NOx =.5 NO % NO 2 1% - NO 2 /NOx = 1.

13 Effect of NO 2 /NOx on NOx Reduction 13 / 6 NOx Conventional SCR system Modified SCR system Normalized NOx emission % NOx reduction performance Catalyst temperature : 45 K NOx reduction 43.% 92.6% 6.1% 91.8% 1 13 S. P. 4 S. P Normalized NOx emission % NOx reduction performance Catalyst temperature : 5 K NOx reduction 72.7% 97.4% 9.6% 99.4% 1 1 S. P. 4 S. P. 7 NO 2 /NOx = NO 2 /NOx = NOx NOx 6 21 %

14 Summary of Section II 14 / L NOx Urea-SCR NOx NOx Urea-SCR NOx NO NO 2 Fast SCR reaction 2 NO 2 /NOx.5 NOx NO 2 Fast SCR reaction 45K(177 ) NOx 1/5

15 15 / 6 3

16 Outline of Diesel Combustion Modeling 16 / 6 Physical process > > NOx PM Coupling Chemical process RH QOOH > R OOQOOH > ROO HOOQ OOH HOOQ O + OH R: Alkyl radical NOx

17 Reaction Scheme - Outline 17 / 6 CFD STAR-CD v3.26 Complex Chemistry Module n-heptane reaction scheme* N series reactions Parameter modification Extended Zel dovich mechanism, Prompt NO, NO via N 2 O, NO 2 formation Species : 33 Elementary reactions : 66 CPU time: Approximately 54 hours for basic conditions. Machine spec. : Intel Core 2 Duo processor 2.4 GHz 2GB Memory (single core calculation) *A. Patel et al., Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations, SAE Paper (24).

18 Engine Specifications and Calculation Grids 18 / 6 Table Engine specifications Engine type 4-cycle, 2.2L, DOHC, In-line 4 cylinders, DI Bore Stroke 86 mm 96 mm Top clearance Con-rod length.98 mm mm Compression ratio 15.8 Calculation grids Fixed line The number of cells 5464 at BDC timing 2344 at TDC timing

19 Reaction Scheme Ignition Delay Test 19 / 6 ignition delay ms P = 1.3 MPa 1. LLNL scheme ERC scheme Applied scheme /K Ignition delay characteristics of each scheme calculated by -D chemical reaction analysis. LLNL scheme: 56 species, 2537 reactions ERC scheme : 29 species, In this study : 33 species, Pressure MPa 5 4 Peak Pressure timing.1 ms Pressure rise.1 ms 52 reactions 66 reactions Peak Pressure 3% 3 Operating conditions Engine speed : 2 rpm Fuel injection timing : TDC Exp_pressure Exp_pressure Fuel quantity : 2 mm 3 /st ERC scheme Applied ERC scheme scheme EGR ratio: 19.1% Crank angle deg. ATDC

20 Calculation Conditions for Validation 2 / 6 Parameter : Fuel Injection Timing Engine speed rpm 2 Intake pressure kpa 13 ( 1 in Exp.) Intake temperature K 33.15* ( 1.5 in Exp.) Injection timing deg. ATDC -5, -2,, 2 Injection quantity mm 3 /st 2 EGR ratio % Intake O 2 concentration vol. % 2.9 Parameter : EGR Ratio (Intake O 2 concentration) Engine speed rpm 2 Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake pressure kpa Intake temperature K 33.4* EGR ratio % Intake O 2 concentration vol. % *Heat transfer (+1-15 K) between intake gas and cylinder wall is assumed in calculation

21 Calculation Results - Pressure and Heat Release - 21 / 6 Cylinder pressure MPa Parameter : Fuel Injection Timing Exp. Cal. Fuel injection timing -5 deg. ATDC -2 deg. ATDC TDC 2 deg. ATDC Heat release J/deg. CA Cylinder pressure MPa Parameter : EGR Ratio (Intake O 2 concentration) Exp. Cal. EGR ratio.4% 27.8% 3.2% 32.5% Heat release J/deg. CA Crank angle deg. ATDC Crank angle deg. ATDC 8

22 Calculation Results - NO 2 /NOx Prediction - 22 / 6 NO 2 /NOx NO 2 NO 2 /NO NO 2 emission Calculated NO 2 /NOx Oxygen concentration vol% Injection timing deg. ATDC Black: -5 Red: -2 Blue: (TDC) Green:2 15% Measured NO 2 /NOx Measured NO 2 emission ppm NO 2 /NOx NO 2 Calculated NO 2 emission ppm Oxygen concentration vol% Injection timing deg. ATDC Black: -5 Red: -2 Blue: (TDC) Green:2 NO 2 /NOx ( 15%) 15%

23 Summary of Section III 23 / 6 NOx n-heptane.1ms3%.1ms EGR NOx NO 2 NO 2 /NOx 15%

24 24 / 6 4 NOx

25 Outline of Supercharge with EGR 25 / 6 EGR EGR line VNT/VGT turbocharger Fig. Diesel engine system Common-rail fuel injection system EGR EGR NOx PM >EGR >EGR PM NOx > EGR NOx NOx NO 2 /NOx

26 Analysis Method of EGR Mechanism 26 / 6 EGR NOx 2NOx Inert O 2 EGR O 2 Inert O 2 Inert O 2 > > Inert O 2 2

27 Calculation Conditions - EGR Mechanism - 27 / 6 Table Calculation conditions (Operating conditions) Engine speed rpm 2 Intake pressure kpa 1 Injection timing deg. ATDC Injection quantity mm 3 /st 2 Intake temperature K Table Calculation conditions (In-cylinder gas components) Case A B C O 2 vol% , 17.7, 16. N 2 vol% , 78.3, 78. H 2 O, CO 2 vol%. 1., 2., 3.. Inert O 2 vol%.. 2., 4., 6. EGR Case A EGR CO 2 H 2 O Case B Inert O 2 Case C

28 Calculation Results - EGR Mechanism - 28 / 6 Cylinder pressure MPa In-cylinder Pressure and HRR Dilution gas w/o EGR CO2, H2O Inert_O2 Dilution gas % 2.% 4.% 6.% Crank angle deg. ATDC NOx Heat release J/deg. CA NO, NO2 ppm NO 8 Inert O 2 NO Case NO NOx 2 /NOx emissions EGR(CO 2,H 2 O) Inert O2 EGR Inert O2 EGR Inert O2 EGR Dilution gas vol% A C B C B C B Case A C () Case B C () EGR NOx EGR NOx 2 /NOx

29 In-cylinder Behaviour of NO and Gas Temp. NO (movie) 1 9 deg. ATDC (1 deg. CA/sec) Case A Case B* Case C* 29 / 6 Temperature K Min. 4 Max. 25 NO mass fraction Min.. Max..8 *Dilution gas amount of Case B and C is 4.%

30 NO and Temperature Distribution 3 / 6 NO Temperature K 4 25 NO mass fraction..8 (A) w/o EGR (B) EGR (C) Inert O 2 (A) w/o EGR (B) EGR (C) Inert O 2 14 deg. ATDC 14 deg. ATDC 18 deg. ATDC 18 deg. ATDC 26 deg. ATDC 26 deg. ATDC NO NO NO

31 Numerical Analysis of Supercharge with EGR EGR Intake pressure / O 2 vol% : base 1 kpa / 18.5% base 2kPa / 23.4%, +2kPa / 15.3%, +4kPa / 13.%, +6kPa / 11.4%, +8kPa / 1.1%, +1 kpa / 9.% 31 / 6 EGR 1 In-cylinder Pressure and HRR 5 Cylinder pressure MPa Crank angle deg. ATDC +2kPa +4kPa +6kPa +8kPa +1kPa -2kPa base Heat release J/deg NOx emission ppm NOx NO 2 /NOx Intake pressure kpa (gage) NO 2 /NOx

32 Summary of Section IV 32 / 6 NOx EGR NOx NOx EGR NOx NOx NO EGR NOx NO EGR NOx NO NOx NO 2 /NOx EGR EGR NOx NOx

33 33 / 6 5 NOx

34 Outline of NOx Composition Control 34 / 6 NOx NO 2 NO * NO NO 2 NO 2 /NO x CH 4 C 2 H 4 CH 3 OH DME NO-NO 2 NO+HO 2 NO 2 +HO NO-NO Temperature K Pilot HC HO 2 NO *Ref. HORI et al., An experimental and kinetic calculation of the promotion effect of hydrocarbons on the NO-NO 2 conversion in a flow reactor Post HO 2 NO NO 2

35 Experimental Setup 35 / 6 Table Number of cylinders Inline 4 Bore Stroke mm Swept volume cc 2231 Max power kw / rpm 13 / 36 Max torque Nm / rpm Test Engine Specifications 4 / 2 26 DOC Pt/Al 2 O 3 Size mm Volume L 1.86 Sampling Point A. DOC Inlet B. DOC outlet A B

36 Experimental Conditions 36 / 6 EGR 4% Post/Pilot Table Experimental conditions EGR effect Load x/8 1, 2 Engine Speed rpm 15 Pilot Injection Timing deg. ATDC -8 ~ -1 w/o w/o Pilot Injection Quantity mm 3 /st 2. Main Injection Timing deg. ATDC Post Injection Timing deg. ATDC 1-8 w/o Post Injection Quantity mm 3 /st 2. EGR ratio % 4 (1/8 Load), 32 (2/8 Load) 1/8 Main

37 Experimental Results - 1/8 Load with EGR - 37 / 6 NOx g/h BSFC g/kwh Pilot Injection timing deg. ATDC NOx Pilot THC NOx NO 2 /NO Single Single CO NO 2 /NOx BSFC CO THC Post BSFC baseline BSFC Post CO baseline THC baseline Injection timing deg. ATDC NO 2 /NOx CO, THC g/h NOx NO 2 /NOx 84.6% 37.3% BSFC Post 3 deg. ATDC TDC CO TDC NO 2 /NOx THC Post 3deg ATDC

38 Calculation Conditions Analysis of NO-NO 2 Conversion - 38 / 6 NO-NO 2 Pilot/Post NO 2 Table Calculation conditions Engine speed 15 rpm Engine load 1/8 Injection timing deg. ATDC EGR Single(TDC) Pilot(-4)+Main, Main+Post(4) w/o EGR, with EGR Cylinder pressure MPa In-cylinder Pressure and HRR Engine speed: 15 rpm Load: 1/8, with EGR Base (single) Pilot(-4)+Main Main+Post(4) Exp Cal Crank angle deg. ATDC Heat release J/deg. CA 15 rpm NOx

39 In-cylinder Behaviour (movie) - NO, NO 2, HO 2, Gas temp / 6 NO, NO 2, HO 2 Min. Max. Temperature K NO mass frac. NO 2 mass frac. HO 2 mass frac. 15 rpm, 1/8 load with EGR, 12 deg. ATDC Single injection (TDC) Double injection Main + Post (4 deg. ATDC)

40 In-cylinder Behaviour - NO, NO 2, HO 2, Gas temp. - 4 / 6 NO, NO 2, HO 2 Min. Max. Temp 3 26 NO.5 Single injection NO deg. ATDC 3 deg. ATDC Temp. NO NO 2 HO 2 53 deg. ATDC HO 2 Post NO-NO 2 Single Post NO 2 Single Post NO 2 HO 2 6 deg. ATDC 58 deg. ATDC 9 deg. ATDC 8 deg. ATDC 12 deg. ATDC Post HO 2 NO 2

41 Summary of Section V 41 / 6 NOx NO 2 Pilot PostNOx Post Pilot NOx NO 2 NO 2 /NOx 15 rpm 1/ % Post HO 2 NO NO 2 NOx NO 2 NOx Pilot/Post Main CO HC

42 42 / 6 6 NOx Urea-SCR

43 Outline of Diesel Engine System Optimization 43 / 6 Synergy effect of combustion and aftertreatment Combustion Aftertreatment Emissions reduction performance Cost Cost Cost Exhaust gas temperature > > NOx Urea-SCR

44 Experimental Setup 44 / 6 Aftertreatment device : Urea-SCR Table Urea-SCR Material Size mm Volume L Specifications of SCR catalyst Vanadium (2.92/ ) Sampling Point A. DOC inlet B. DOC outlet C. SCR inlet D. SCR outlet C B D A

45 Experimental Conditions 45 / 6 NOx Pilot -5 deg. ATDC Post 5 deg ATDC Urea equivalence ratio Table Experimental conditions Effect of NOx control on NOx conversion Load x/8 1, 2 Engine Speed rpm 15 Pilot Injection Timing deg. ATDC -4, -2, -1 w/o Pilot Injection Quantity mm 3 /st 2. Main Injection Timing deg. ATDC Post Injection Timing deg. ATDC 1, 2, 4 w/o Post Injection Quantity mm 3 /st 2. EGR ratio %, or 4(1/8 Load), 32(2/8 Load) 1. w/o Main

46 NO 2 /NOx, Experimental Results NO 2 /NOx NOx SCR Single injection, w/o EGR NOx conversion % w/o EGR with EGR NO 2 /NOx (SCR_inlet) NOx conversion SCR temperature Pilot/Post Timing deg. ATDC NOx NOx Pilot 1 deg.atdc, w/o EGR 2/8 load NO 2 /NOx 62.3% NOx 76.8% SCR BSFC 275 g/kwh SCR catalyst temp. deg. C Post 2 deg.atdc, w/o EGR 2/8 load NO 2 /NOx 49.6% ( 12.7%(point)) NOx 8.2% ( 3.4%(point)) SCR (.1 ) BSFC 272 g/kwh ( 1.9%) NO 2 /NOx 29.9% NOx 33.3% SCR 174. BSFC 361 g/kwh Post 2 deg. ATDC, w/o EGR 46 / 6 NO 2 /NOx 44.% ( 14.1%(point)) NOx 48.1% ( 14.8%(point)) SCR ( 2.7 ) BSFC 363 g/kwh (.55%) NO 2 /NOx, SCR NOx NO 2 /NOx.5 NOx ( NOx1 )

47 Combination of Combustion and Aftertreatment 47 / 6 NOx 1/8 NOx emission g/h Case A Case B Case C Case D 56.4% reduction 84.3% reduction 91.5% reduction 87.7% reduction 93.% reduction Injection Single Multi Single Multi EGR w/o EGR w/o EGR with EGR with EGR GHSV Urea-SCR NOx 1/8 NOx reduction % Case ASV NO 2 /NOx SCR temp. (deg. C) Total NOx reduction 39.7% 86.5% 95.9% 97.2% NOx Case A B : 56.4% Case C D : 21.7% (3.4 point) EGR NOx Case A C : 84.3% Case B D : 71.8% (31.3 point) NOx Case C : 46.% (7.2 point) Case D : 42.8% (5.2 point) Urea-SCR 68.9% 6.8% 51.5% 39.7% Case A B : 29.2 point NO 2 Case A C : 11.8 point NO 2

48 Summary of Section VI NOx Urea-SCR NOx 15rpm 1/8 EGR Post 14.8%(point) NOx 3.4%(point) Urea-SCR NOx NOx NOx Urea-SCR Pilot Post EGR 48 / 6 NOx EGR NO 2 /NOx GHSV 1/8 Urea-SCR 39.7% 68.9% NOx

49 49 / 6 7

50 Concluding Remarks 5 / 6 > EGR ( 34 ) > / ( 35 ) NOx NO NO 2 NO 2 /NOx EGR NO Pilot/Post NO-NO 2 NO 2 /NOx >Urea-SCR( 26 ) LNT/NSR NOx NOx NOx

51 Future Work - Numerical analysis - Table Calculation and experimental conditions Engine speed rpm 2 Engine load 2/8 3/8 6/8 1 st pilot injection timing deg. ATDC st pilot injection quantity mm 3 /st nd pilot injection timing deg. ATDC nd pilot injection quantity mm 3 /st Main injection timing deg. ATDC Main injection timing mm 3 /st Intake pressure kpa(abs) Intake temperature K * EGR ratio % *Heat transfer (+15 K) between intake gas and cylinder wall is assumed in calculation 51 / 6 EGR

52 Cylinder pressure MPa Future Work - Numerical analysis - Experimental and numerical results In-cylinder Pressure and HRR Exp. Cal. Load 6/8 3/8 2/ Crank angle deg. ATDC Heat release J/deg. CA NO, NO 2 ppm 52 / 6 NOx emission NO NO * * Exp. Cal. Exp. Cal. Exp. Cal. 2/8 load 3/8 load 6/8 load *NOx in EGR gas is considered Pilot EGR NOx

53 Future Work - NOx component control - 53 / 6 DOC NO 2 Engine speed : 15 rpm, 1/8 load, with EGR Before DOC After DOC NO 2 /NOx ratio % Injection Timing deg. ATDC >Pilot/Post NO 2 /NOx NO 2 DOC NO 2 /NOx Pilot/Post NO 2 CO THC DOC NO 2 NO CO THC NO-NO 2

54 Future Work - NOx component control - 54 / 6 Post NO-NO 2 Post 2.mm 3 /st 1.mm 3 /st Cylinder pressure MPa Pressure and Heat Release NO, NO 2, HO 2 Engine speed: 15 rpm Load: 1/8, with EGR, Main + Post Inj. Exp. Cal. post 2. Cal. post Crank angle deg. ATDC Heat release J/deg. CA NO, NO 2 mass g post 2. post 1. NO 2 NO HO Crank angle 2 1 HO 2 mass g Post HO 2 NO NO 2 NO 2 DOC NO 2

55 Future Work Fuel Injection for Aftertreatment Device - 55 / 6 NOx NO NO 2, Pilot/Post Present THC NO 2 NO NO-NO 2, DOC Future NOx NOx

56 Future Work - Simplified Heat Release Prediction Model - 56 / 6 3 Typical heat release rate curve D > (B, C, D, E) (B, C, D) Heat release > C SOI A B E A:Ignition delay (Cool flame) B:Ignition delay (Hot flame) C:Max. heat release D:Max. heat release timing E:Combustion duration 7. J/deg. CA Crank angle 5

57 Future Work - Simplified Heat Release Prediction Model - 57 / 6 Heat release J/deg D B C A SOI E Crank angle deg. ATDC Heat release J/deg SOI B A D E C Crank angle deg. ATDC Cool flame deg. CA Sensitivity analysis A B C D E base Cool flame deg. ATDC Initial pressure kpa (v.s. base) Hot flame deg. CA Hot flame deg. ATDC base Max. HRR J/deg Initial pressure kpa (v.s. base) base HRR max J/deg Initial pressure kpa (v.s. base) Simple equations A = f(p,t, ) B = g(p,t, ) C = h(p,t, ) HRR max. timing deg. CA D = i(p,t, ) E = j(p,t, ) HRR max timing deg. ATDC base 1-2 base Initial pressure kpa (v.s. base) Combustion duration deg. CA base Combustion duration deg. CA Initial pressure kpa (v.s. base)

58 Future Work - Simplified Heat Release Prediction Model - NOx emission ppm (NOx ) NOx (O vol.%) NOx emission and NO 2 /NOx 2 NOx emission ppm NOx emission NO 2 /NOx Intake pressure kpa (gage) NO 2 /NOx Max. heat release rate and Air Excess Ratio / 6 NOx 2 /NOx NOx NOx (parameter: O 2 conc.) NOx NOx NOx emission and NO 2 /NOx Oxygen concentration vol.% 1.5 NO 2 /NOx Max. H.R.R. J/deg 1 5 Max. Heat release Excess air ratio Intake pressure kpa (gage) 1 (NOx: 1-1 ppm) 2 (NOx 9-18 ppm) 3 (NO 2 /NOx ) NOx Excess Air Ratio

59 Future Control System for Diesel Engine 59 / 6 Input (Accel pedal) Engine information Intake temp., Intake pres., Intake air mass., etc. Catalyst information Bed temp., Soot loading, NH 3 or NOx adsorption, etc. Base control Injection pattern Intake throttle EGR ratio, etc In-cylinder state quantity prediction model Pres., Temp., O 2 conc., etc. Injection pattern modification Simple H.R.R. prediction model Torque, Ex. Temp. Emission (Soot, NOx, NO 2 /NOx) NG Number of inj., Inj. Q, timing, etc ECU Performance evaluation Good!! Optimized injection

60 End of the Presentation 6 / 6 End Thank you for your attention!!

審査委員会081214_4章まで.ppt

審査委員会081214_4章まで.ppt Presentation title 1 / 54 NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA Contents 2 / 54 1 2 NOxUrea-SCR NOx 3 4 NOx 5 NOx 6

More information

研究成果報告書

研究成果報告書 (NOx) (SOx)2016 (EGR) (SCR) NOx NOx (UHC) NOx 25 ( ) CO 2 ( ) (Gas Permeation Membrane; GPM) 1 GPM GPM (2 ) (Anti-Quenching Membrane; AQM) GPM 2 (Oxygen Enriched Air; )1 (Nitrogen Enriched Air; NEA) NEA

More information

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ 51 155 2009 23-30 Journal of the Combustion Society of Japan Vol.51 No.155 (2009) 23-30 FEATURE Clarification of Engine Combustion and the Evolution ディーゼルエンジン燃焼の課題と今後 Diesel Combustion Challenge and Future

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

5 11 3 1....1 2. 5...4 (1)...5...6...7...17...22 (2)...70...71...72...77...82 (3)...85...86...87...92...97 (4)...101...102...103...112...117 (5)...121...122...123...125...128 1. 10 Web Web WG 5 4 5 ²

More information

1 VW EGR NOx NOx NOx (HC) SCR NOx (NH 3 ) 2L 2007 1,100 0 36 EA189 27 12 3L 2008 8.5 0 35 27 12 NO NO 2 NPO ICCT, International Council on Clean Transportation West Virginia University NOx EPA, Environmental

More information

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ 56 178 2014 291-297 Journal of the Combustion Society of Japan Vol.56 No.178 (2014) 291-297 FEATURE /Issues and Solutions for Engine Combustion φ-t マップとエンジン燃焼コンセプトの接点 A Point of Contact between a φ-t Map

More information

17 Fig.2-1 Relationship between cooling water temperature and steam consumption of booster Source: The new oil and fat technology, Mr. E. Bornardini, Publishing house Technologie, Rome Note:

More information

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405 Fig. 1 Experimental Apparatus Fig. 2 Typical Ion Distribution in COG-Air Flame Fig. 3 Relation between Steel Temperature and Reduction Time (a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig.

More information

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について 1/ 35 ブローダウン過給システムを用いたガソリン HCCI 機関の運転領域拡大 後藤俊介, 窪山達也, 森吉泰生 ( 千葉大学 ) 畑村耕一, 鈴木正剛,( 畑村エンジン研究事務所 ) 山田敏生,(CDAJ) 高梨淳一,( 本田技術研究所 ) 本日の発表内容 2/ 35 1. 背景 2. 目的 3. ブローダウン過給 (BDSCI) システム 4.EGRガイド 5. 実験装置 6. 実験結果と考察

More information

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] (

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] ( 52 161 2010 189-197 Journal of the Combustion Society of Japan Vol.52 No.161 (2010) 189-197 FEATURE Evolution of Element and Peripheral Technologies in Engine Combustion 燃料噴射系製品のこれまでの歩みと将来の展望 History and

More information

ノック解析(1) CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価

ノック解析(1)  CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価 15 Analysis of Knock Phenomena (1) Unburned Gas Temperature Measurement by Accurate CARS Thermometry and Validation of a Reduced Chemical Kinetic Model for Auto-ignition Kazuhiro Akihama, Michio Nakano,

More information

ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析

ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析 23 Formation and Emission Characteristics of Unburned Hydrocarbons During Cold Start of a Spark-Ignited Engine System Shuichi Kubo 60% C2 C4 C2 C4 SR C2 C4 THC SR The emission characteristics of hydrocarbons

More information

橡

橡 CO2 Laser Treatment of Tinea Pedis Masahiro UEDA:,' Kiyotaka KITAMURA** and Yukihiro GOKOH*** Table I Specifications 1. Kind of Laser 2. Wavelength of Lasers. Power of Laser. Radiation Mode. Pulse Duration.

More information

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt Typical Telemetry Applications on Wind Turbines Roller Bearing Load Rotor Shaft Torque and Bending Load Rotor Blade Strain and Vibration Generator Rotor Temperature Gear Wheel Tooth Root Force Generator

More information

....PDF.pmd

....PDF.pmd OBS-1000 Hans Stix HORIBA EUROPE GmbH HORIBA OBS-1000OBS-1000 CO CO 2 HC NOx NOx 1-5 HORIBA 50 OBS-1000 6-10 56 No.30 February 2005 Technical Reports 1 2 OBS-1000 CO CO 2 HCNDIR MEXA-1170HNDIR NOx A/FZrO

More information

研究論文 尿素 SCR システムの NOx 浄化率向上に関する研究 ( 第 7 報 ) 鉄および銅ゼオライト系 SCR 触媒の比較と N 2 O 排出要因の解明 * 1) 伊藤聡一郎 2) 菊池裕 5) 鈴木央一 3) 田中陽 6) 石井素 4) 大聖泰弘 A Study on t

研究論文 尿素 SCR システムの NOx 浄化率向上に関する研究 ( 第 7 報 ) 鉄および銅ゼオライト系 SCR 触媒の比較と N 2 O 排出要因の解明 * 1) 伊藤聡一郎 2) 菊池裕 5) 鈴木央一 3) 田中陽 6) 石井素 4) 大聖泰弘 A Study on t 研究論文 2134187 鉄および銅ゼオライト系 SCR 触媒の比較と N 2 O 排出要因の解明 * 1) 伊藤聡一郎 2) 菊池裕 5) 鈴木央一 3) 田中陽 6) 石井素 4) 大聖泰弘 A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System (Seventh Report) Comparison

More information

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA Fig.2 Produced gas composition of vitrinite hydrogenation at 400 Ž Fig.1 Symplified average structural model of Taiheiyo coal hydrogenation

More information

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap

The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collap The Evaluation of LBB Behavior and Crack Opening Displacement on Statically Indeterminate Piping System Subjected to Monotonic Load The plastic collapse and LBB behavior of statically indeterminate piping

More information

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets

Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets Fig. 1 Flow diagram of experimental apparatus employed Fig. 2 Porosity change during sulfurization of reduced sample pellets Fig. 4 Simultaneous reduction-sulfurization and direct sulfurization of iron

More information

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 Li 2 B 4 O 7 (LBO) *, ** * ** ** Optical Scatterer and Crystal Growth Technology of LBO Single Crystal For Development with Optical Application

More information

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe

More information

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori Proposal and Characteristics Evaluation of a Power Generation System Utilizing Waste Heat from Factories for Load Leveling Pyong Sik Pak, Member, Takashi Arima, Non-member (Osaka University) In this paper,

More information

„´™Ÿ/’£flö

„´™Ÿ/’£flö 48 144 2006 206-213 Journal of the Combustion Society of Japan Vol. 48 No. 144 (2006) 206-213 ORGNAL PAPER * * An Approach to Combustion Diagnostics of Premixed Flame by Chemiluminescence of OH * and CH

More information

Microsoft PowerPoint - SeniorMtng_2010_06_14V2.ppt

Microsoft PowerPoint - SeniorMtng_2010_06_14V2.ppt 日 本 機 械 学 会 関 西 支 部 シニア 会 第 8 回 情 報 交 流 サロン 2010 年 6 月 14 日 第 三 のエンジン 燃 焼 法 - 予 混 合 圧 縮 自 着 火 燃 焼 - 西 脇 一 宇 立 命 館 大 学 総 合 理 工 学 研 究 機 構 内 容 予 混 合 圧 縮 自 着 火 燃 焼 とは 予 混 合 圧 縮 自 着 火 燃 焼 研 究 の 歴 史 予 混 合 圧

More information

Engine Control <D-FH> (T) (T) 0 EDU 0 EFI MIN EDU elay EFI MIN elay 7 0 EFI N. 0 EFI N. - -

Engine Control <D-FH> (T) (T) 0 EDU 0 EFI MIN EDU elay EFI MIN elay 7 0 EFI N. 0 EFI N. - - Engine Control (T) (T) 0 0 /F low lug elay /F elay low lug 7 0 (), () Junction Connector 0 - - Engine Control (T) (T) 0 EDU 0 EFI MIN EDU elay EFI MIN elay 7 0 EFI N. 0 EFI N. - - Engine

More information

MEET NEWS JAPAN

MEET NEWS JAPAN Mitsubishi Marine Energy & Environment Technical Solution-System 10 2012 13 MEET 2 2016 EEDI Energy Efficiency Design Index IMO Tier UEC-Eco 1 VTI MAP Mark-W MEET UST Ultra Steam Turbine Plant UEC80LSE-Eco

More information

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel.

Table 1. Main specifications of VAD plant. Fig. 2. Typical operating pattern of low alloy steel. UDC 669. 184. 244. 66-251: 669. 046. 554-982 On the Operations of LD-VAD Process and Product Qualities Takaharu MORIYA and Masanori TAWARA Synopsis: VAD (Vacuum Arc Degassing) plant is characterized by

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

RT-PCR プロトコール.PDF

RT-PCR プロトコール.PDF Real -Time RT-PCR icycler iq Bio Rad RT-PCR RT-PCR 1 icycler iq Bio Rad icycler iq 30 2 Ready-To-Go T-Primed First-Strand Kit (amersham pharmacia biotech) Ready-To-Go T-Primed First-Strand Kit QuantiTect

More information

スペースプラズマ研究会-赤星.ppt

スペースプラズマ研究会-赤星.ppt 14 1 1 1 1 Pauline Faure 1 1 2 3 (1: 2: JAXA 3: IHI) IHI (C)(No.21560819) ISAS(JAXA) ISO TC20/SC14 / (Spall) 60~90% 2 (Cone) 1% (Jetting) CDV11227 Committee Draft for Comments CDV11227 Witness plate Sabot

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364>

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364> Laser Flash Exposure time 25(50)µsec Deadtime=150nsec 5µsec I0 I1 I2 I3 I4 I5 Camera (40000 or 20000 fps) Phosphorescence ɡ ɡ ɡ ɡ TSParticle Intensity Ratio [ ] 0.9 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Fitted

More information

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd: *1 *2 *3 PIV Measurement of Field of the Wind Turbine with a med Diffuser Kazuhiko TOSHIMITSU *4, Koutarou NISHIKAWA and Yuji OHYA *4 Department of Mechanical Engineering, Matsue National Collage of Technology,

More information

untitled

untitled DC Fan 8mm sq. General Specifications San Ace 8 15mm thick (GA type), 15mm thick, 2mm thick (GA type) 2mm thick, 25mm thick (GA type), 25mm thick (S type) 25mm thick (GV type), 25mm thick 25mm thick (San

More information

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s

Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been s Rate of Oxidation of Liquid Iron by Pure Oxygen Shiro BAN-YA and Jae-Dong SHIM Synopsis: The rate of oxidation of liquid iron by oxygen gas has been studied using a volume constant technique. The process

More information

K02LE indd

K02LE indd I Linear Stage Table of Contents 1. Features... 1 2. Description of part Number... 1 3. Maximum Speed Limit... 2 4. Specifications... 3 5. Accuracy Grade... 4 6. Motor and Motor Adaptor Flange... 4 6-1

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig Mover Design and Performance Analysis of Linear Synchronous Reluctance Motor with Multi-flux Barrier Masayuki Sanada, Member, Mitsutoshi Asano, Student Member, Shigeo Morimoto, Member, Yoji Takeda, Member

More information

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Chikara MINAMISAWA, Nozomu AOKI (Department of Mechanical

More information

Microsoft Word - ■50_TRIAS_08-R docx

Microsoft Word - ■50_TRIAS_08-R docx 原動機の出力装置試験 ( 協定規則第 85 号 ) 1. 総則原動機の出力装置試験 ( 協定規則第 85 号 ) の実施にあたっては 本規定によるものとする 2. 設定値及び計算値の末尾処理設定値及び計算値の末尾処理は 表 1 により行うものとする 3. 試験記録及び成績試験記録及び成績は 該当する付表の様式に記入する 3.1 当該試験時において該当しない箇所には斜線を引くこと また 使用しない単位については二重線で消すこと

More information

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.

More information

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2

Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2 Vol. 36, Special Issue, S 3 S 18 (2015) PK Phase I Introduction to Pharmacokinetic Analysis Focus on Phase I Study 1 2 Kazuro Ikawa 1 and Jun Tanaka 2 1 2 1 Department of Clinical Pharmacotherapy, Hiroshima

More information

no15

no15 Development of High Performance Catalyst Temperature Sensor for NOx Catalyst Control Atsushi KURANO Kaoru KUZUOKA Sotoo TAKAHASHI Itsuhei OGATA In order to meet each countrys low emission vehicle regulations

More information

LM35 高精度・摂氏直読温度センサIC

LM35 高精度・摂氏直読温度センサIC Precision Centigrade Temperature Sensors Literature Number: JAJSB56 IC A IC D IC IC ( ) IC ( K) 1/4 55 150 3/4 60 A 0.1 55 150 C 40 110 ( 10 ) TO-46 C CA D TO-92 C IC CA IC 19831026 24120 11800 ds005516

More information

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of

Introduction ur company has just started service to cut out sugar chains from protein and supply them to users by utilizing the handling technology of Standard PA-Sugar Chain Catalogue Masuda Chemical Industries Co., LTD. http://www.mc-ind.co.jp Introduction ur company has just started service to cut out sugar chains from protein and supply them to users

More information

塗装深み感の要因解析

塗装深み感の要因解析 17 Analysis of Factors for Paint Depth Feeling Takashi Wada, Mikiko Kawasumi, Taka-aki Suzuki ( ) ( ) ( ) The appearance and quality of objects are controlled by paint coatings on the surfaces of the objects.

More information

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015)

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015) 65 62015 224 228 ** Journal of The Japan Institute of Light Metals, Vol. 65, No. 6 (2015), 224 228 2015 The Japan Institute of Light Metals Investigation of heat flow behavior on die-casting core pin with

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

GPGPU

GPGPU GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the

More information

a b Chroma Graphein Chromatography

a b Chroma Graphein Chromatography a b Chroma Graphein Chromatography (Stationary Phase) (Mobile Phase) CHROMATOGRAPHY GAS SFC LIQUID GSC GLC Column Planar NP RP IEC SEC TLC Paper Normal Phase Reverse Phase GPC GFC Thin Layer Chromato.

More information

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo

More information

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S

Plastic Package (Note 12) Note 1: ( ) Top View Order Number T or TF See NS Package Number TA11B for Staggered Lead Non-Isolated Package or TF11B for S Overture 68W ( ) 0.1 (THD N) 20Hz 20kHz 4 68W 8 38W SPiKe (Self Peak Instantaneous Temperature ( Ke)) SOA (Safe Operating Area) SPiKe 2.0 V ( ) 92dB (min) SN 0.03 THD N IMD (SMTPE) 0.004 V CC 28V 4 68W

More information

MFS 8A3 9.8A3 #026832XE OB NO.002-21051-4 0910 NB 3,400 HOW TO USE THIS PARTS LIST 1. This Parts List contains the component parts of the Tohatsu outboard motors. 2. Please keep the Parts List updated

More information

0810_UIT250_soto

0810_UIT250_soto UIT UNIMETER SERIES 250 201 Accumulated UV Meter Digital UV Intensity Meter Research & Development CD Medical Biotech Sterilization Exposure Bonding Manufacturing Curing Production Electronic Components

More information

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4) 3 * 35 (3), 7 Analysis of Local Magnetic Properties and Acoustic Noise in Three-Phase Stacked Transformer Core Model Masayoshi Ishida Kenichi Sadahiro Seiji Okabe 3.7 T 5 Hz..4 3 Synopsis: Methods of local

More information