第2章

Size: px
Start display at page:

Download "第2章"

Transcription

1 L DISI DISI DISI PIV DISI DISI 3-8 -

2 2.2 DISI SL (3) 6 SOHC 3L DISI MAN-FM (4) HC Soot PFI DISC 1970 TCCS Texaco Controlled Combustion System Ford-PROCO programmed combustion control system (4) BSFC Break Specific Fuel Consumption HC MAN-FM PFI 1.3 DISC 1996 GDI (5) PFI (6), D-4 (7) NEO Di (8) FSI (9) DISC DISC (10),(11),(12) (13) - 9 -

3 Direct Injection: DI 1.0~1.5 L PFI PFI THC TGV Tumble Generation Valve (14),(15)

4 2.3 DISI Spark Plug Injector Premixed flame T/C A. Homogeneous combustion DISI engine Air + Fuel Mixture Spark Plug Premixed flame Air Injector Air + Fuel Mixture B. Stratified combustion DISI DISC engine Fig. 2.1 Schematic of typical DISI engines A DISI PFI A PFI B A B A A 1.3L

5 DISC Fig.2.2 Schematic of G-DI combustion systems (16) DISC PFI DISI

6 DISI PFI L Swirl Control Valve SCV Straight Helical SCV SCV (Swirl control valve) Spark plug Injector Fig. 2.3 Schematics of mixture preparation concept Table 2.1 DISI engine specification Displacement L 1.3 Cylinder layout In-line 4 cylinders Number of valve Intake 2, Exhaust 2 Intake port Helical port Straight port with SCV Piston Cavity type Cam phaser Intake VVT Bore mm 78.0 Stroke mm 69.5 Compression ratio 10.5 Fuel supply system Direct injection 2.4 DISI

7 2.5 8 mm Cd SCV opened 0.36 SCV closed2.5 Cd m& m& = A ρ U = CdA ρ U (2.1) eff is is r is is A eff ρ is U is A r ρ is U is ρ is 1 ( P ) κ = ρ (2.2) 0 r κ κ U = 0 1 κ is RT P r 1 (2.3) κ ρ 0 P r R T 0 κ A r 2 A 4 d r 2 = π (2.4) A r = π d L (2.5) d L (2.5) Cd Fig.2.4 Schematic of swirl injector (17)

8 Straight Helical Fig. 2.5 Schematic of intake port

9 2.4 DISI General Motors R&D 3 GMTEC (18) 2.2 Table 2.2 Calculation scheme and model for GMTEC Calculation code GMTEC Gaseous phase solving Finite volume method Convective term scheme Quasi second order upwind Pressure solution PISO algorithm Turbulence model Standard k-ε model Spray dynamics solving Discrete droplet model Breakup model Modified TAB model Collision model Modified O Rourke model Evaporation model Modified Faeth model Wall film model O Rourke model Multi component fuel model Continuous distribution model Navier-Stokes k-ε 3 PISO (19) 1 2 (20) TAB O Rourke (22) O Rourke Wall film (23) Stanton & Rutland (24) (21) Drake

10 (25) Lippert Continuous distribution (26),(27) 2 2 DISI

11 GMTEC PIV Table 2.3 Calculation conditions for in-cylinder flow calculation validation Engine speed rpm 1200 Throttle position WOT SCV position open, close Piston Flat Intake pressure kpa 101 Intake temperature K 293 Initial temperature in cylinder K 330 Initial intake port temperature K 300 Cylinder wall temperature K 330 Piston surface temperature K 330 (a) Intake stroke mesh (b) Compression stroke mesh Fig.2.6 Calculation meshes for flat piston

12 Fig. 2.7 Schematics of elongated piston and optical access Fig. 2.8 Bottom view optical engine experimental set-up

13 PIV 4 2 φ78.0 mm φ60 mm 40 mm 72 mm 74 mm O PIV PIV 2 (28) Particle Tracking Velocimetry: PTV PIV PIV CCD CCD FIT-CCD

14 2 2.9 PIV PIV 2.4 PIV Nd-YAG 2 2 Nd-YAG 2 FIT CCD 532 nm ~2 µm 1200 rpm WOT(Wide Open Throttle) SCV opened closed cycle Fig. 2.9 PIV experimental set-up

15 Table 2.4 PIV experimental conditions Engine speed rpm 1200 Throttle position WOT SCV position open, close Piston Flat Intake pressure kpa 101 Intake temperature K 293 Camera Frame interline CCD Image resolution pixels Dynamic range bit 12 Camera Lens NIKON Nikkor 50 mm F/1.4 Optical filter nm (Half band width) Band pass 532 (10) Light source Double pulse Nd-YAG Wave length nm 532 Maximum power mj 125 Maximum flashlamp frequency Hz 15 Pulse separation 10, 20, 30 LASER light sheet thickness mm 1 Capture number 50~200 Tracer material SiO 2 DOS Tracer particle size µm 0.5~ 2 (29) Recursive cross-correlation 2 Hierarchical cross-correlation PIV x=0 mm, y=-18,0,18, z= -1,-10,-20,

16 X Y1 Y2 Y3 Z1 Z2 Z3 Z4 IVC Intake Valve Close timing 3 +U Distance from head gasket +V Ex In Z=-1mm Z=-10mm Z=-20mm Z=-30mm Y= 18mm Y= 0mm Y=-18mm Z Y X -W X X=0mm Fig.2.10 Cross section for PIV measurement Fig.2.11 Valve lift profile and PIV measurement timing Fig PIV image location

17 U ( x y) = U ( i= 1 <U(x,y)> N 1, i x, y) (2.6) N N U i (x,y) i (x,y) 1/ Z PIV 2.13~ 2.20 PIV SCV opened 240 deg. BTDC Helical Y1 Helical Y2 Straight Y3 Helical Straight Y1, Y3 170 deg. BTDC BDC Y2 240 deg. BTDC Y2 IVC 120 deg. BTDC Z Y2 (28) Helical X Y Z

18 X, Y SCV opened SCV closed Straight Helical opened deg. BTDC X opened SCV opened Y1 170 deg. BTDC Y1, Y3 Z Z Y2 Y1, Y3 120 deg. BTDC Z SCV opened 120 deg. BTDC

19 Fig.2.13 Averaged velocity distribution comparison between experiment and calculation on SCV opened condition with flat piston at 240 deg. BTDC (Cross section: X, Y1, Y2 and Y3)

20 Fig.2.14 Averaged velocity distribution comparison between experiment and calculation on SCV opened condition with flat piston at 170 deg. BTDC (Cross section: X, Y1, Y2 and Y3)

21 Fig.2.15 Averaged velocity distribution comparison between experiment and calculation on SCV opened condition with flat piston at 120 deg. BTDC (Cross section: X, Y1, Y2 and Y3)

22 Fig.2.16 Averaged velocity distribution comparison between experiment and calculation on SCV opened condition with flat piston at 120 deg. BTDC (Cross section: Z1, Z2, Z3 and Z4)

23 Fig.2.17 Averaged velocity distribution comparison between experiment and calculation on SCV closed condition with flat piston at 240 deg. BTDC (Cross section: X, Y1, Y2 and Y3)

24 Fig.2.18 Averaged velocity distribution comparison between experiment and calculation on SCV closed condition with flat piston at 170 deg. BTDC (Cross section: X, Y1, Y2 and Y3)

25 Fig.2.19 Averaged velocity distribution comparison between experiment and calculation on SCV closed condition with flat piston at 120 deg. BTDC (Cross section: X, Y1, Y2 and Y3)

26 Fig.2.20 Averaged velocity distribution comparison between experiment and calculation on SCV closed condition with flat piston at 120 deg. BTDC (Cross section: Z1, Z2, Z3 and Z4)

27 SR,TR 2.21 SR Z1 TR Y2 SR,TR SR TR ζ, = 2 ( x, y) Ne ζ Ne SR TR SR,TR (2.7) Swirl Tumble Swirl ratio Experiment opened Calculation opened Crank angle deg. BTDC Experiment closed Calculation closed 40 Tumble ratio Experiment opened Calculation opened Crank angle deg. BTDC Experiment closed Calculation closed Fig Comparison of swirl and tumble ratio between experiment and calculation results with flat piston (Swirl: Z1, tumble: Y2) SR TR SCV IVC IVC 2 (30) k-ε k ε k ε (31) (32)

28 6.5 5 RNG k-ε

29 φ mm mm ms ms 40 deg. 150 µm 63 deg. 150 µm Rosin-Rammler 1.74 ms 2.23 Gaussian TAB Φ80 mm 70 mm 120 mm 30 mm 30 mm Fig.2.22 Calculation mesh for spray modeling

30 Table 2.5 Calculation conditions for spray modeling Ambient pressure MPa 0.05, 0.1, 0.3, 0.5 Ambient temperature K 300 Fuel Gasoline Initial spray angle deg. 40 Main spray angle deg 63 Injection duration msec Injection quantity mg 13.1 Initial droplet temperature K 300 Initial droplet diameter µm 150 Slug injection duration msec Number of parcel Injection velocity m/s Injected mass of fuel % Injection velocity Injected mass of fuel Time after start of injection msec. Fig.2.23 Table of injection velocity and fuel mass 2.3 Lippert Continuous distribution (26),(27) Γ f ( I ) = α 1 ( I γ ) α β Γ( α ) I γ exp β I f(i) α=7.4 β=12.0 γ= N n+1 N n+1 N n+1 = N n + N θ L 2 Ψ L L V (2.8) (2.9)

31 n+1 n n ( Nθ ) = ( Nθ ) + Nθ L L V (2.10) n n n ( N ) = ( NΨ ) + NΨ Ψ +1 (2.11) L L V m Nθ=m (2.10) m n+1 = m n + m (2.12) m = Nθ n V (2.13) m (33) m = 2 πrρ D B Sh (2.14) d d r ρ d D S h B d B y y FR FL d = (2.15) 1 yfr y FR y FL (2.9) m θ L n+ 1 n m + m m = n θ = L θ + 1 L n m + θ n V (2.16) θ n+1 L ( m + m) θ θ = mθ + m n V n n V L n θ L (2.11) n L n V n L n L (2.17) n n n mθv Ψ + mθ ΨV Ψ +1 L = (2.18) mθ + mθ 2 α, β θ = αβ (2.19) Ψ = α + 2 ( α 1) β 2 θ L θv = A BΨL 1+ θ L (2.20) (2.21) Ψ V θ V = ΨL θ L (2.22)

32 A,B 2 α, β Fig Constant volume chamber experimental set-up 80 mm 115 mm 115 mm m 3 φ115 mm 10 mm 115 mm

33 40 mm 5 MPa N 2 O K Nd-YAG 4 ICCD Image intensified CCD 265 nm 298 K 0.05, 0.1, 0.3, 0.5 MPa 4 Fig Optical set-up for spray cross section visualization

34 Table 2.6 Experimental conditions for spray cross section visualization Ambient pressure MPa 0.05, 0.1, 0.3, 0.5 Ambient temperature K 298 Fuel Iso-octane Fuel temperature K 298 Injector type Swirl injector Spray angle (design spec.) deg. 50 Static flow rate cc/min 700 (fuel pressure: 5 MPa) Fuel pressure MPa 5.0 Injection duration ms 1.5 Injection quantity g Camera ICCD Image resolution pixels Camera lens UV Nikkor 105mm F/4.5 Optical filter nm (Half band width) Band pass 265 (10) Light source ND-YAG Wave length nm 266 LASER power mj 50 LASER pulse frequency Hz 10 LASER light sheet thickness mm MPa 0.9 ms MPa

35 Fig.2.26 Comparison of spray cross section shapes between experiment and calculation at various ambient pressures Liquid fuel axial/radial penetration mm Liquid fuel axial/radial penetration mm Ambient pressure: 0.05 MPa 70 Slug spray axial penetration 60 Calculation Experiment 50 Main spray axial penetration Main spray radial penetration Time msec. ASOI Liquid fuel axial/radial penetration mm Liquid fuel axial/radial penetration mm Fig.2.27 Spray characteristics comparison Slug spray axial penetration Main spray radial penetration Time msec. ASOI MPa 0.5 MPa 70 Slug spray axial penetration Main spray axial penetration Slug spray axial penetration Main spray radial penetration Time msec. ASOI 0.3 MPa Main spray radial penetration Time msec. ASOI

36 60 Sauter Mean Diameter m Calculation Experiment Time msec. ASOI Fig.2.28 Sauter mean diameter comparison at 0.1 MPa MPa Sauter Sauter mean diameter: SMD DISI SCV opened EOI 286 deg. BTDC 2.29 DISI

37 Fig.2.29 Spray motion verification in cylinder condition

38 SCV rpm End of Injection timing: EOI deg. BTDC 3 SCV opened closed 2.30 A B A,B A, B A B Continuous distribution model Table 2.7 Calculation conditions for in-cylinder mixture distribution Engine speed rpm 1200 Fuel Gasoline Initial spray angle deg. 40 Main spray angle deg 63 Injection duration msec End of injection deg. BTDC 65, 75, 85 without delay Injection quantity mg 6.4 Initial droplet temperature K 298 Initial droplet diameter µm 150 Slug injection duration msec Number of parcel Piston A, B SCV opened, closed Type A Type B Fig.2.30 Schematics of piston shape

39 4 1 THC 2.31 smoke smoke Fig.2.31 Relation between wallfilm mass and smoke (34) SCV deg. BTDC Y2 X0,Z0 X0 2.5 mm Z0 4 mm A SCV opened X0 Y2-46 -

40 Z0 Helical Straight SCV closed X0 opened Straight Y2 opened Z0 SCV closed B A SCV SCV closed X0 A Y2 X0 4 SCV

41 Fig Predicted velocity distributions with piston A at 65 deg. BTDC

42 Fig Predicted velocity distributions with piston B at 65 deg. BTDC

43 2.7.3 SCV SCV A 2.34 B 2.35 EOI 65 deg. BTDC SCV opened SCV opened 40 deg. BTDC SCV closed SCV closed A B A A SCV EOI

44 SCV: Opened Closed Fig Predicted spray droplet behavior with piston A

45 SCV: Opened Closed Fig Predicted spray droplet behavior with piston B

46 2.7.4 EOI deg. BTDC deg. BTDC Y2 1 EOI 85 deg. BTDC 1 EOI 85 deg. BTDC 1200 rpm EOI 75 deg. BTDC 65 deg. BTDC 1 A SCV opened 65 deg. BTDC B SCV opened 75 deg. BTDC 1 SCV closed EOI 75 deg deg. BTDC 1 A EOI 75 deg. BTDC 65 deg. BTDC 1 B EOI 65 deg. BTDC A B A 1 mm EOI 85 deg. BTDC A SCV closed A SCV opened B B SCV EOI 65 deg. BTD EOI 65 deg. BTDC SCV opened

47 SCV closed EOI 65 deg. BTDC SCV Fig.2.36 Mixture preparation comparison (Crank angle: 20 deg BTDC, Cross section: Y2)

48 Fig.2.37 Comparison of isovolume of equivalence ratio above 0.25 (Crank angle: 20 deg. BTDC)

49 2.7.5 SCV SCV SCV 25 deg. SCV closed 0 deg opened 90 deg. SCV 25 deg. SR deg. BTDC Y EOI SCV closed A B mm A 30~20 deg. BTDC SCV SCV closed A 20 deg. BTDC 1 B HC 2.41 A B A B A SCV A B SCV A A

50 Fig.2.38 Mixture preparation comparison (Crank angle: 20 deg BTDC, Cross section: Y2, SCV: 25 deg.) Fig.2.39 Comparison of isovolume of equivalence ratio above 0.25 (Crank angle: 20 deg. BTDC, SCV: 25 deg.) Equivalence spark plug A SR 1.5 (-std. dev.) A SR 1.5 (+std. dev.) B SR 1.5 (-std. dev.) B SR 1.5 (+std. dev.) Crank angle deg. BTDC Fig.2.40 Spark gap equivalence ratio (4 mm spheres average)

51 Wallfilm liquid mass % A SR 1.5 B SR Crank angle deg. BTDC Fig.2.41 Wall film liquid mass B PFI BSFC rpm BMEP 450 kpa PFI 10 DISI Table 2.8 Emission target EINO x g/kg fuel 10 EITHC g/kg fuel 50 EICO g/kg fuel 50 Table 2.9 Evaluation operation points Number Engine speed rpm BMEP kpa Idle

52 BSFC improvement rate for PFI % /Idle 1550/ / / / /450 Evaluation operation points Fig.2.42 Fuel consumption improvement compared with PFI engine

53 Pa 0.3 MPa 298 K 423 K 2.10 Table 2.10 Experimental conditions for hot fuel spray cross section visualization Ambient pressure MPa 0.1, 0.3 Ambient temperature K 298~323 Fuel Iso-octane Fuel temperature K 298~423 Injector type Swirl injector Spray angle (design spec.) deg. 50 Static flow rate cc/min 700 (fuel pressure: 5 MPa) Fuel pressure MPa 5.0 Injection duration ms 1.5 Injection quantity g Camera ICCD Image resolution pixels Camera lens UV Nikkor 105mm F/4.5 Optical filter nm (Half band width) Band pass 265 (10) Light source ND-YAG Wave length nm 266 LASER power mj 50 LASER pulse frequency Hz 10 LASER light sheet thickness mm MPa 1.5 ms 348 K 373 K 373 K 423 K

54 0.3 MPa MPa 0.1 MPa K 400 K 0.1 MPa (35)~(39) 0.1 MPa 372 K 0.3 MPa 420 K Van Der Wege (38) 3 A. B. C. A B 373 K B C 398 K 398 K

55 Fig LASER lightsheet images of hot fuel spray (Ambient pressure: 0.1 MPa, Timing: 1.5 msec. ASOI)

56 Fig LASER lightsheet images of hot fuel spray (Ambient pressure: 0.3 MPa, Timing: 1.5 msec. ASOI)

57 Main spray penetration mm Corn angle deg. Spray width mm Corn angle Main spray penetration Spray width Fuel Temperature K Fig.2.45 Comparison of spray characteristics for various fuel temperatures (Ambient pressure 0.1 MPa) PDPA K 407 K 14 Sauter mean radius µm Fuel Temperature K Fig.2.46 Sauter mean radius comparison for various fuel temperatures (Ambient pressure: 0.1 MPa

58 2.8.2 DISI 1 PFI HC DISI % K 423 K Table 2.11 Calculation conditions for hot fuel spray modeling Ambient pressure MPa 0.1 Ambient temperature K 300, 330, 335 Fuel Gasoline Initial spray angle deg. 40 Main spray angle deg 63 Injection duration msec Injection quantity mg 13.1 Initial droplet temperature K 300, 373, 423 Initial droplet diameter µm 150, 130, 110 Slug injection duration msec Number of parcel

59 Fuel temperature: 300 K 373 K 423 K Calculation Experiment Timing: 0.4 msec. ASOI 0.9 msec. ASOI 1.3 msec. ASOI Fig.2.47 Comparison of spray cross section shapes between experiment and calculation at various fuel temperatures

60 SMD SMD Liquid fuel axial/radial penetration mm Cal. Fuel temperature: 373 K Cal. Fuel temperature: 423 K Exp. Fuel tempereture: 373 K Exp. Fuel temperature: 423 K Main spray axial penetration Main spray radial penetration Time ms Fig.2.48 Spray characteristics comparison at various fuel temperatures Sauter Mean Diameter m Cal. Fuel temperature: 300 K Cal. Fuel tempereture: 373 K Cal. Fuel temperature: 423 K Exp. Fuel temperature: 300 K Exp. Fuel temperature: 373 K Exp. Fuel temperature: 423 K Time ms Fig.2.49 Sauter mean diameter comparison at various fuel temperatures

61 2.8.3 (34) 3 DISI rpm 0.5 mm deg. BTDC deg. BTDC Table 2.12 Calculation conditions for cold start condition Engine speed 300 Fuel Gasoline Start of injection deg. BTDC End of injection deg. BTDC Injection quantity mg Intake pressure kpa Intake temperature K 298 Initial temperature in cylinder K 298 Cylinder wall temperature K 298 Number of parcel Piston B SCV opened deg. 20 deg ms

62 Fig.2.50 Spray motion at various fuel temperatures Fuel temperature: 300K 373K 423K Fig Velocity distribution on Y2 at various fuel temperatures (Crank angle: 400 deg. ATDC)

63 Fuel concentration Fuel temperature: 300K 373K 423K Fig.2.52 Fuel distributions at various fuel temperatures 2.53 Wallfilm height m Fuel temperature: 300 K 373 K 423 K Cylinder head Piston Fig.2.53 Wall film height on cylinder head and piston surface

64 % 423 K 2.5 % IVC 560 deg. ATDC 75 % 423 K 34 % 7 Particle Mass % K 373 K 423 K Crank Angle deg. ATDC Fig.2.54 Particle mass at various fuel temperatures Wallfilm Mass % K 373 K 423 K Crank Angle deg. ATDC Fig.2.55 Wall film mass at various fuel temperatures

65 deg. ATDC 423 K Total Vaporized Mass % K 373 K 423 K Crank Angle deg. ATDC Fig.2.56 Vaporized mass at various fuel temperatures 100 Wallfilm Particles Vapor 80 Mass Fraction % Fuel temperature K Fig.2.57 Fuel status at 720 deg. ATDC

66 % 300 K 423 K 66 % 300 K 18 % 423 K 58 % 1/3 THC DISI

67 2.9 (1) (2) PIV (3) (4) PFI (5) DISI (6)

研究成果報告書

研究成果報告書 (NOx) (SOx)2016 (EGR) (SCR) NOx NOx (UHC) NOx 25 ( ) CO 2 ( ) (Gas Permeation Membrane; GPM) 1 GPM GPM (2 ) (Anti-Quenching Membrane; AQM) GPM 2 (Oxygen Enriched Air; )1 (Nitrogen Enriched Air; NEA) NEA

More information

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd: *1 *2 *3 PIV Measurement of Field of the Wind Turbine with a med Diffuser Kazuhiko TOSHIMITSU *4, Koutarou NISHIKAWA and Yuji OHYA *4 Department of Mechanical Engineering, Matsue National Collage of Technology,

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364>

<93C18F578B4C8E965F90F596EE20918F91BC2E6D6364> Laser Flash Exposure time 25(50)µsec Deadtime=150nsec 5µsec I0 I1 I2 I3 I4 I5 Camera (40000 or 20000 fps) Phosphorescence ɡ ɡ ɡ ɡ TSParticle Intensity Ratio [ ] 0.9 1 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Fitted

More information

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa

LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overa LEGACY 1. LEGACY A: DIMENSION 1. SEDAN MODEL 2.5 L SOHC 2.5 L DOHC turbo Overall length mm (in) 4,730 (186.2) Overall width mm (in) 1,730 (68.1) Overall height (at C.W.) mm (in) 1,425 (56.1), 1,435 (56.5)

More information

2章.doc

2章.doc C 2 H 4 N 2 O 2 LPG LIF 13 2.1 2.1.1 2.1 2.2 115mm70mm 727cm 3 Hand Pump Injector Driver Computer Constant Volume Chamber Injector Piezo-electronic transducer Fan Spark Plug Temperature Indicator C 2 H

More information

untitled

untitled NAOSITE: Nagasaki University's Ac Title Author(s) 予混合圧縮着火機関における天然ガスおよびメタノールの着火 燃焼特性に関する研究 鄭, 奭鎬 Citation (2008-03-19) Issue Date 2008-03-19 URL http://hdl.handle.net/10069/16303 Right This document is

More information

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405

(a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig. 2 Priventive gas velocity at nozzle 405 Fig. 1 Experimental Apparatus Fig. 2 Typical Ion Distribution in COG-Air Flame Fig. 3 Relation between Steel Temperature and Reduction Time (a) -4furne.ce Fig. I Schematic drawing of cooling chamber Fig.

More information

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ

Journal of the Combustion Society of Japan Vol.51 No.155 (2009) FEATURE Clarification of Engine Combustion and the Evolution デ 51 155 2009 23-30 Journal of the Combustion Society of Japan Vol.51 No.155 (2009) 23-30 FEATURE Clarification of Engine Combustion and the Evolution ディーゼルエンジン燃焼の課題と今後 Diesel Combustion Challenge and Future

More information

155 13 2 15 B97176 1 1.1. 4 1.2. 5 1.2.1. 1.2.2. 1.3. 7 2. 2.1. 9 2.2. 1 2.3. 13 2.4. 16 3. 3.1. 3.1.1. 18 3.1.2. 26 3.1.3. 33 3.2. 3.2.1. 34 3.2.2. 5 4. 4.1. 52 4.2. 53 54 55 2 1 1.1 1.2 1.3 3 4 Fig.

More information

直噴ガソリンエンジンにおける混合気形成と燃焼

直噴ガソリンエンジンにおける混合気形成と燃焼 Mixture Formation and Combustion in Direct Injection Gasoline Engines Makoto Koike 50 1990 1996 Recent direct injection gasoline engines have remarkably improved specific fuel consumption and increased

More information

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015)

J. Jpn. Inst. Light Met. 65(6): 224-228 (2015) 65 62015 224 228 ** Journal of The Japan Institute of Light Metals, Vol. 65, No. 6 (2015), 224 228 2015 The Japan Institute of Light Metals Investigation of heat flow behavior on die-casting core pin with

More information

食品工学.indb

食品工学.indb , Vol. 11, No. 1, pp. 51-58, Mar. 2010 IH The Visualization and Quantification of the Flow in the Pan During Induction Heating and Gas Heating Haruna KAWAKAMI, Zensyu TOU, Mika FUKUOKA, and Noboru SAKAI

More information

35TS.indd

35TS.indd 海 外 開 発 / 海 外 生 産 特 集 海 外 の 大 学 とのエンジン 共 同 研 究 Collaboration on Engine Research with Foreign Universities 米 谷 俊 一 Shunichi Kometani 研 究 創 発 センター コア 技 術 研 究 室 1 はじめに 2 研 究 課 題 とテストエンジン 表 1 図 1 Engine Type

More information

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting

More information

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析 Analysis of Piston Oil Film Behavior by Using Laser Induced Fluorescence Method Shuzou Sanda, Akinori Saito ( Laser Induced Fluorescence Method LIF ) LIF Scanning -LIF Abstract Analysis of the oil film

More information

スペースプラズマ研究会-赤星.ppt

スペースプラズマ研究会-赤星.ppt 14 1 1 1 1 Pauline Faure 1 1 2 3 (1: 2: JAXA 3: IHI) IHI (C)(No.21560819) ISAS(JAXA) ISO TC20/SC14 / (Spall) 60~90% 2 (Cone) 1% (Jetting) CDV11227 Committee Draft for Comments CDV11227 Witness plate Sabot

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

Microsoft Word - TSE_15_1_5.doc

Microsoft Word - TSE_15_1_5.doc Thermal Science & Engineering Vol.5 No. (7) 圧 縮 天 然 ガス() 直 接 噴 射 エンジンの 燃 焼 解 析 野 村 佳 洋 稲 垣 英 人 塚 崎 之 弘 Numerical Analysis of Combustion in a Compressed Natural Gas Direct Injection Engine Yoshihiro NOMURA,

More information

審査委員会081214_4章まで.ppt

審査委員会081214_4章まで.ppt Presentation title 1 / 54 NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA Contents 2 / 54 1 2 NOxUrea-SCR NOx 3 4 NOx 5 NOx 6

More information

ノック解析(1) CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価

ノック解析(1)  CARSによるエンジン筒内未燃ガス温度の高精度測定と自着火反応モデルの評価 15 Analysis of Knock Phenomena (1) Unburned Gas Temperature Measurement by Accurate CARS Thermometry and Validation of a Reduced Chemical Kinetic Model for Auto-ignition Kazuhiro Akihama, Michio Nakano,

More information

Fig. 1. Schematic drawing of testing system. 71 ( 1 )

Fig. 1. Schematic drawing of testing system. 71 ( 1 ) 1850 UDC 669.162.283 : 669.162.263.24/. 25 Testing Method of High Temperature Properties of Blast Furnace Burdens Yojiro YAMAOKA, Hirohisa HOTTA, and Shuji KAJIKAWA Synopsis : Regarding the reduction under

More information

1 158 14 2 8 00225 2 1.... 3 1.1... 4 1.2... 5 2.... 6 2.1...7 2.2... 8 3.... 9 3.1... 10 3.2... 16 4.... 17 4.1... 18 4.2... 20 4.3... 22 5.... 23 5.1... 24 5.2... 28 5.3... 34 5.4... 37 5.5... 39 6....

More information

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs 15 C11-4 Numerical analysis of flame propagation in a combustor of an aircraft gas turbine, 4-6-1 E-mail: tominaga@icebeer.iis.u-tokyo.ac.jp, 2-11-16 E-mail: ntani@iis.u-tokyo.ac.jp, 4-6-1 E-mail: itoh@icebeer.iis.u-tokyo.ac.jp,

More information

Fig. 2 Pressure-temperature diagram of pure substance and mixed thel consisting of n-tridecane and n-pentane Fig. 1 Schematic of present model

Fig. 2 Pressure-temperature diagram of pure substance and mixed thel consisting of n-tridecane and n-pentane Fig. 1 Schematic of present model Cavitation Induced Breakup Model for Multicomponent Fuel Spray Authors have developed a spray model for multicomponent fuel and reported the successful model which represents batch-distillation in multicomponent

More information

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について

ブローダウン過給システムを用いたガソリンHCCI機関の 運転領域拡大について 1/ 35 ブローダウン過給システムを用いたガソリン HCCI 機関の運転領域拡大 後藤俊介, 窪山達也, 森吉泰生 ( 千葉大学 ) 畑村耕一, 鈴木正剛,( 畑村エンジン研究事務所 ) 山田敏生,(CDAJ) 高梨淳一,( 本田技術研究所 ) 本日の発表内容 2/ 35 1. 背景 2. 目的 3. ブローダウン過給 (BDSCI) システム 4.EGRガイド 5. 実験装置 6. 実験結果と考察

More information

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] (

Table 2 DENSO Port Injection Fuel Injectors Fig.1 Port Fuel Injection System and Module 1996 CO ポート噴射システム 1 ( 1) HC 2 UC [2] ( 52 161 2010 189-197 Journal of the Combustion Society of Japan Vol.52 No.161 (2010) 189-197 FEATURE Evolution of Element and Peripheral Technologies in Engine Combustion 燃料噴射系製品のこれまでの歩みと将来の展望 History and

More information

JSME-JT

JSME-JT 2210 日本機械学会論文集 (B 編 ) 77 巻 783 号 (2011-11) 原著論文 No.2011-JBT-0600 * 1 Nissan Motor CO., Ltd. 560-2, Okatsukoku, Atsugi-shi Kanagawa 243-0192, Japan 1, 2 Development of Flame Propagation Model Considering

More information

教室説明会1113.ppt

教室説明会1113.ppt Presentation title 1 / 62 NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA Contents 2 / 62 > > > NOxUrea-SCR NOx NOx NOx NOx Urea-SCR

More information

Microsoft Word - PIVマニュアル.doc

Microsoft Word - PIVマニュアル.doc (Nikkor 50mm f/1.2) C CCD (PixelFly QE) LAN USB BNC 1 1.1 CCD 注意 CCD CCD 1) 注意 2) 3) LAN LAN 4) 3 2 5) 2 1.2 1) Came Ware Came Ware 2) [Camera] [Camera Control] Camera mode Video Trigger Mode Intern CameraControl

More information

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会 1. 1(1) 1(2)[1] 1992 [2] 1992 [3] 100 100 比率 (%) 80 60 40 変形腐食亀裂 相対損傷数 80 60 40 変形腐食亀裂 20 20 0 0 5 10 15 20 25 船齢 ( 年 ) 0 0 5 10 15 20 25 船齢 ( 年 ) (1) Ratio of Each Damage (2) Number of Damage Fig.1 Relation

More information

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space Characteristics of Hydrostatic Bearing/Seal Parts of Hydraulic Pumps and Motors for Water Hydraulic Systems (2nd Report, Theory) Xiongying WANG, Atsushi YAMAGUCHI In this paper, the characteristics of

More information

橡

橡 CO2 Laser Treatment of Tinea Pedis Masahiro UEDA:,' Kiyotaka KITAMURA** and Yukihiro GOKOH*** Table I Specifications 1. Kind of Laser 2. Wavelength of Lasers. Power of Laser. Radiation Mode. Pulse Duration.

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

<30345F90BC96EC90E690B65F E706466>

<30345F90BC96EC90E690B65F E706466> 15 特集 国際宇宙ステーション日本実験棟 きぼう における流体実験 * Space Experiment on the Instability of Marangoni Convection in Liquid Bridge Koichi NISHINO, Department of Mechanical Engineering, Yokohama National University 1 thermocapillary

More information

本文(第2章軽直噴開発)

本文(第2章軽直噴開発) 第 2 章 数 値 シミュレーションによる 過 給 機 付 直 噴 ガソリン エンジンの 諸 元 検 討 2.1 緒 論 開 発 した 排 気 量 660cc ターボ 過 給 機 付 直 噴 ガソリンエンジンは, 直 噴 システムとターボ 過 給 ステムを 組 み 合 わせたシステムで 構 成 されている.また,K6A エンジンと 呼 ばれる 660cc 直 列 3 気 筒 PFI エンジンをベースにターボ

More information

A Akzo 12y26.doc Example of sun shade mat: ECO-MAT Power consumption of air-conditioner is saved by 10%. Picture of air-conditioner with ECO-MAT Comparison of consumed power of air-conditioner

More information

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA

[ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA [ 30 p. 1-8 (2012)] / ** *** Numerical Analysis of Metal Transfer Phenomena - critical condition between globular and spray transfer mode - by KADOTA Keiji and HIRATA Yoshinori Metal transfer modes in

More information

090117公聴会_提出版.ppt

090117公聴会_提出版.ppt Presentation title 1 / 6 ( ) NO Study on the Control Methods of NOx Component in Diesel Exhaust by Combustion Control and its Application Keishi TAKADA Contents 2 / 6 > > > > NOxUrea-SCR NOx NOx NOx NOx

More information

5 11 3 1....1 2. 5...4 (1)...5...6...7...17...22 (2)...70...71...72...77...82 (3)...85...86...87...92...97 (4)...101...102...103...112...117 (5)...121...122...123...125...128 1. 10 Web Web WG 5 4 5 ²

More information

藤村氏(論文1).indd

藤村氏(論文1).indd Nano-pattern profile control technology using reactive ion etching Megumi Fujimura, Yasuo Hosoda, Masahiro Katsumura, Masaki Kobayashi, Hiroaki Kitahara Kazunobu Hashimoto, Osamu Kasono, Tetsuya Iida,

More information

空力騒音シミュレータの開発

空力騒音シミュレータの開発 41 COSMOS-V, an Aerodynamic Noise Simulator Nariaki Horinouchi COSMOS-V COSMOS-V COSMOS-V 3 The present and future computational problems of the aerodynamic noise analysis using COSMOS-V, our in-house

More information

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 Li 2 B 4 O 7 (LBO) *, ** * ** ** Optical Scatterer and Crystal Growth Technology of LBO Single Crystal For Development with Optical Application

More information

電子部品はんだ接合部の熱疲労寿命解析

電子部品はんだ接合部の熱疲労寿命解析 43 Evaluation for Thermal Fatigue Life of Solder Joints in Electronic Components Haruhiko Yamada, Kazuyoshi Ogawa 2 63Sn- 37Pb 95Pb-5Sn Si Cu Si 63Sn-37Pb Since automotive electronic components are used

More information

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130-

Nano Range Specification Stable & Stable Telescopic Resonators Model Nano S Nano S Nano S Nano S Nano L Nano L Nano L Nano L Nano L Nano L Nano L 130- L i t r o n T o t a l L a s e r C a p a b i l i t y Nano Series Ultra Compact Pulsed Nd:YAG Lasers Product Range Specification Nano Range Specification Stable & Stable Telescopic Resonators Model Nano

More information

untitled

untitled 2 44 2002-0742 3 m JIMTOF 4 Gr. Gr. Gr. Gr. 5 Gr. Gr. 0mm/sec 0.3m 0.m/ JCSS JCSS FAX E-mail t-taguchi 6 7 He-Ne nm He-Ne 8 RT-OS(Linux) 0 User I/F Type A Windows PCI I/F Desktop M/B PU-9 PU-8 PU-7 PU-6

More information

- 83 -

- 83 - - 82 - - 83 - - 84 - τ 2 Bubble θ Non focal plane CMOS camera - 85 - 1 µm A B C (wear surface) A B C - 86 - () 0.2Ni-1.6Cr 1.6Ni-1.6Cr 3Ni-1.6Cr - 87 - Cycling time 1M 3M6M 1Y 2Y 5Y10Y20Y 500 in seawater

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm Neutron Visual Sensing Techniques Making Good Use of Computer Science J-PARC CT CT-PET TB IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm cm cm barn cm thn/ cm s n/ cm

More information

EH092DN8521.xls

EH092DN8521.xls Model R 1700i for C A NA DA S pec. No. R A S 17023091 (E H092DN8521) IS S UE E MD-G P 6345 IS S UE DAT E 2006.10 Tableofabbreviations/ 略語一覧 ABBREVIATIONS/ 略語 DESCRIPTION 説明 A AMPERE アンペア AC AIRCLEANER

More information

XFEL/SPring-8

XFEL/SPring-8 DEVELOPMENT STATUS OF RF SYSTEM OF INJECTOR SECTION FOR XFEL/SPRING-8 Takao Asaka 1,A), Takahiro Inagaki B), Hiroyasu Ego A), Toshiaki Kobayashi A), Kazuaki Togawa B), Shinsuke Suzuki A), Yuji Otake B),

More information

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射

1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射 1611 原著 論文受付 2009 年 6 月 2 日 論文受理 2009 年 9 月 18 日 Code No. 733 ピクセル開口率の向上による医用画像表示用カラー液晶モニタの物理特性の変化 澤田道人 石川晃則 1) 松永沙代子 1) 1) 石川陽子 有限会社ムツダ商会 1) 安城更生病院放射線技術科 緒言 3D PET/CT Fusion 1 liquid crystal display:

More information

<8B5A8F70985F95B632936EE7B22E696E6464>

<8B5A8F70985F95B632936EE7B22E696E6464> 47 Electrical Discharge Truing for Electroplated Diamond Tools Koji Watanabe Hisashi Minami Hatsumi Hiramatsu Kiyonori Masui (211 7 8 ) Electroplated diamond tools are widely used for grinding because

More information

untitled

untitled 2M5-24 SM311 SM332 3 4 e30mm 5 e30mm [2M5-24] 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25 0 25 50 75 100 125 150 0-5 -10-15 -20-150-125-100-75-50 -25

More information

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing

Fig. 3 Coordinate system and notation Fig. 1 The hydrodynamic force and wave measured system Fig. 2 Apparatus of model testing The Hydrodynamic Force Acting on the Ship in a Following Sea (1 St Report) Summary by Yutaka Terao, Member Broaching phenomena are most likely to occur in a following sea to relative small and fast craft

More information

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ

Journal of the Combustion Society of Japan Vol.56 No.178 (2014) FEATURE /Issues and Solutions for Engine Combustion φ-t マッ 56 178 2014 291-297 Journal of the Combustion Society of Japan Vol.56 No.178 (2014) 291-297 FEATURE /Issues and Solutions for Engine Combustion φ-t マップとエンジン燃焼コンセプトの接点 A Point of Contact between a φ-t Map

More information

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch

Vol. 21, No. 2 (2014) W 3 mm SUS304 Ni 650 HV 810 HV Ni Ni Table1 Ni Ni μm SUS mm w 50 mm l 3 mm t 2.2 Fig. 1 XY Fig. 3 Sch 110 : 565-0871 2-1 567-0871 11-1 660-0811 1-9 - 1 tanigawa@jwri.osaka - u.ac.jp Influence of Laser Beam Profile on Cladding Layer TANIGAWA Daichi, ABE Nobuyuki, TSUKAMOTO Masahiro, HAYASHI Yoshihiko, YAMAZAKI

More information

013858,繊維学会誌ファイバー1月/報文-02-古金谷

013858,繊維学会誌ファイバー1月/報文-02-古金谷 Development of Non-Contact Measuring Method for Final Twist Number of Double Ply Staple Yarn Keizo Koganeya 1, Youichi Yukishita 1, Hirotaka Fujisaki 1, Yasunori Jintoku 2, Hironori Okuno 2, and Motoharu

More information

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho 248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Method in Reverse Multiple Emulsion Masato Tanaka*, Yoshinari

More information

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp

Journal of Japan Institute of Light Metals, Vol. 58, No. 2 (2008), pp 58 00847 53 * ** ** Journal of Japan Institute of Light Metals, Vol. 58, No. 008, pp. 47 53 Production of aluminum tall container with flange by hydraulic bulging with compression of surrounding material

More information

ZEMAX Nagata DLL Volume-CAD c Copyright by RIKEN All Rights Reserved : : ( )

ZEMAX Nagata DLL Volume-CAD c Copyright by RIKEN All Rights Reserved : : ( ) ZEMAX Nagata DLL Volume-CAD c Copyright by RIKEN All Rights Reserved : 23 1 26 : ( ) ii 1. Nagata DLL 1 2. Nagata 1 3. VObj 2 3. 1............................................... 2 3. 2.................................................

More information

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsutomu * 1/Mori, Hideki * 1 Ishikawa, Satoshi * 1/Shin,

More information

H17-NIIT研究報告

H17-NIIT研究報告 DLC SiC 1 2 3 4 4 5 5 6 The Influence of SiC Shot Blasting on Adhesion of DLC Film MIKI Yasuhiro *1), TANIGUCHI Tadashi *2), MATSUOKA Takashi *3) SASAKI Kenji *4), FUKUSHI Takayoshi *4), YUKI Tamotsu *5),

More information

台紙.indd

台紙.indd Power Range for U-Wärtsilä Low-Speed ngines Humane and arth-friendly 3 4 5 6 7 8 9 onv e ntiona l onv e ntiona l Layout ield x te nde d La you t ie ld 10 11 WÄRTSILÄ LOW-SP MRIN NINS INTRT LTRONI ONTROL

More information

Al-Si系粉末合金の超塑性

Al-Si系粉末合金の超塑性 Superplasticity of Al-Si P/M Alloys Satoru Ishihara, Mikio Kondoh, Kazuhiko Itoh Al-17Si-4.5Cu-0.5Mg-(06)Fe-(02)Mm ( Mm : ) (i) (ii) Si(iii) Fe (iv) Mm Al-17Si-4.5Cu-0.5Mg500 10 2 s 1 520 110 1 s 1 Si

More information

第3節

第3節 Prolith 3.1 Post Exposure Bake PEB PC 1970 F.H.Dill [1-2] PC Aerial Image Image in Resist Latent Image before PEB Resist Profile Develop Time Contours Latent Image after PEB 1 NA PEB [3-4] NA Cr 2 3 (b)

More information

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive An Application of Multiple Induction Motor Control with a Single Inverter to an Unmanned Vehicle Propulsion Akira KUMAMOTO* and Yoshihisa HIRANE* This paper is concerned with a new scheme of independent

More information

COE

COE COE COOL05 MD @ @ @ @ n ν x, y 2 2 International Workshop on Beam Cooling and Related Topics ( COOL05) General Topics Overview. S-LSR Report from Lab Report from Lab Electron Cooling Muon Cooling

More information

20 12,, 59 q r 2 2.1 Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol

20 12,, 59 q r 2 2.1 Fig.2 [3] Fig.3 1cm Fig.2 Schematic of experimental apparatus for measuring interfacial thermal resistance. Fig.3 Surface morphol 58 *1, *1, * 2 Mechanism of Heat Transfer through Mold Flux in Continuous Casting Mold By Hiroyuki Shibata, Shin-ya Kitamura and Hiromichi Ohta 1 K.C.Mills and A.B.Fox [1] [2] Fig.1 q c q r q t q t = q

More information

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMC6022 Low Power CMOS Dual Operational Amplifier (jp) Low Power CMOS Dual Operational Amplifier Literature Number: JAJS754 CMOS CMOS (100k 5k ) 0.5mW CMOS CMOS LMC6024 100k 5k 120dB 2.5 V/ 40fA Low Power CMOS Dual Operational Amplifier 19910530 33020 23900

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

17 Fig.2-1 Relationship between cooling water temperature and steam consumption of booster Source: The new oil and fat technology, Mr. E. Bornardini, Publishing house Technologie, Rome Note:

More information

2. 実 験 方 法 第 1 表 N 55 400 min 1 Ns 0.15 Ns = N / 60 Q 1/2 /Had 3/4 Q ( m 3 /s ) Had ( J/kg ) 第 1 図 VLD 5 mm 2 R 2 R 2 VLD 1.38 R 2 1.60 R 2 10 mm 1.14

2. 実 験 方 法 第 1 表 N 55 400 min 1 Ns 0.15 Ns = N / 60 Q 1/2 /Had 3/4 Q ( m 3 /s ) Had ( J/kg ) 第 1 図 VLD 5 mm 2 R 2 R 2 VLD 1.38 R 2 1.60 R 2 10 mm 1.14 Study on Flow Fields in Centrifugal Compressor with Unpinched Vaneless Diffuser CFD ( Computational Fluid Dynamics ) CFD CFD The performance of centrifugal compressors strongly depends on their internal

More information

untitled

untitled 1 2 3 4 5 130mm 32mm UV-irradiation UV-cationic cure UV-cationic cure UV-cationic cure Thermal cationic Reaction heat cure Thermal cationic Cation Reaction heat cure Cation (a) UV-curing of

More information

Options Unit : mm Finger guards Color Model Surface treatment Nickel-chrome plating silver DC Fan 4mm Air Flo

Options Unit : mm Finger guards Color Model Surface treatment Nickel-chrome plating silver DC Fan 4mm Air Flo DC Fan 4mm sq. San Ace 4 1mm thick, 15mm thick (GA type), 15mm thick, 2mm thick (GA type), 2mm thick 28mm thick (GA type), 28mm thick (GE type) 28mm thick (GV type), 28mm thick General Specifications Material

More information

„´™Ÿ/’£flö

„´™Ÿ/’£flö 48 144 2006 206-213 Journal of the Combustion Society of Japan Vol. 48 No. 144 (2006) 206-213 ORGNAL PAPER * * An Approach to Combustion Diagnostics of Premixed Flame by Chemiluminescence of OH * and CH

More information

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ 51 206 51 63 2007 GIS 51 1 60 52 2 60 1 52 3 61 2 52 61 3 58 61 4 58 Summary 63 60 20022005 2004 40km 7,10025 2002 2005 19 3 19 GIS 2005GIS 2006 2002 2004 GIS 52 2062007 1 2004 GIS Fig.1 GIS ESRIArcView

More information

untitled

untitled DC Fan 8mm sq. General Specifications San Ace 8 15mm thick (GA type), 15mm thick, 2mm thick (GA type) 2mm thick, 25mm thick (GA type), 25mm thick (S type) 25mm thick (GV type), 25mm thick 25mm thick (San

More information

プラズマ核融合学会誌11月【81‐11】/小特集5

プラズマ核融合学会誌11月【81‐11】/小特集5 Japan Atomic Energy Agency, Ibaraki 311-0193, Japan 1) Kyoto University, Uji 611-0011, Japan 2) National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan 3) Central Research

More information

ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析

ガソリンエンジンシステムにおける未燃炭化水素の生成・排出挙動解析 23 Formation and Emission Characteristics of Unburned Hydrocarbons During Cold Start of a Spark-Ignited Engine System Shuichi Kubo 60% C2 C4 C2 C4 SR C2 C4 THC SR The emission characteristics of hydrocarbons

More information

Microsoft Word - 校了_08_新型 SKYACTIV-G 2.5 燃焼技術の開発.docx

Microsoft Word - 校了_08_新型 SKYACTIV-G 2.5 燃焼技術の開発.docx No.34(2017) マツダ技報 特集 : 新型 CX-5 8 新型 SKYACTIV-G 2.5 燃焼技術の開発 Gasoline Engine SKYACTIV-G 2.5 Combustion Technology 小谷佳苗 *1 上村匠 *2 平下茂行 *3 Kanae Kodani 西尾貴史 *4 Takafumi Nishio Takumi Uemura 野村健太郎 *5 Kentaro

More information

原著03_高橋.indd

原著03_高橋.indd 55 171 2013 73-80 Journal of the Combustion Society of Japan Vol.55 No.171 (2013) 73-80 ORIGINAL PAPER 酸化微粒子塗布バーナによる表面改質 Surface Modification by Oxide Particles Spray Burner 1 2 * 1 2 2 GOTO, Masaya 1,

More information

Options(Unit : mm) Finger guards Model :19-139E :19-139H 53 Surface treatment :Nickel-chrome plating (silver) :Cation electropainting (black) Inlet si

Options(Unit : mm) Finger guards Model :19-139E :19-139H 53 Surface treatment :Nickel-chrome plating (silver) :Cation electropainting (black) Inlet si AC Fan 6mm sq. San Ace 6 28mm thick, 38mm thick General Specifications Material Frame: Aluminum, Impeller:Plastics (Flammability: UL94V-1) Life Expectancy Varies for each model (L1: Survival rate: 9% at

More information

デンソーテクニカルレビュー Vol. 13 No 特集ポート噴射エンジンにおける付着燃料の液膜厚さ解析 * Analysis of the Fuel Liquid Thickness on the Intake Port and Combustion Chamber of a Por

デンソーテクニカルレビュー Vol. 13 No 特集ポート噴射エンジンにおける付着燃料の液膜厚さ解析 * Analysis of the Fuel Liquid Thickness on the Intake Port and Combustion Chamber of a Por デンソーテクニカルレビュー Vol. 13 No. 1 8 特集ポート噴射エンジンにおける付着燃料の液膜厚さ解析 * Analysis of the Fuel Liquid Thickness on the Intake Port and Combustion Chamber of a Port Fuel Injection Engine 髙橋幸宏 中瀬善博 加藤雄一 Yukihiro TAKAHASHI

More information

LSM5Pascal Ver 3.2 GFP 4D Image VisArt Carl Zeiss Co.,Ltd.

LSM5Pascal Ver 3.2 GFP 4D Image VisArt Carl Zeiss Co.,Ltd. LSM5Pascal Ver 3.2 GFP 4D Image VisArt 2004.03 LSM5PASCAL V3.2 LSM5PASCAL SW3.2Axiovert200M 1 1 2 3 3 4 4 5 SingleTrack 9 Multi Track 10,18 5 / 21 6 3 27 7 35 8 ( OFF) 40 LSM5PASCAL V3.2 LSM5PASCAL 65

More information

技術研究報告第26号

技術研究報告第26号 1) 2) 3) 250Hz 500Hz RESEARCH ON THE PHYSICAL VOLUME OF THE DYNAMIC VIBRATION RESPONSE AND THE REDUCTION OF THE FLOOR IMPACT SOUND LEVEL IN FLOORS OF RESIDENTIAL HOUSING Hideo WATANABE *1 This study was

More information

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch

The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Ch The Effect of the Circumferential Temperature Change on the Change in the Strain Energy of Carbon Steel during the Rotatory Bending Fatigue Test by Chikara MINAMISAWA, Nozomu AOKI (Department of Mechanical

More information

LMC6082 Precision CMOS Dual Operational Amplifier (jp)

LMC6082 Precision CMOS Dual Operational Amplifier (jp) Precision CMOS Dual Operational Amplifier Literature Number: JAJS760 CMOS & CMOS LMC6062 CMOS 19911126 33020 23900 11800 ds011297 Converted to nat2000 DTD Edited for 2001 Databook SGMLFIX:PR1.doc Fixed

More information

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig Mover Design and Performance Analysis of Linear Synchronous Reluctance Motor with Multi-flux Barrier Masayuki Sanada, Member, Mitsutoshi Asano, Student Member, Shigeo Morimoto, Member, Yoji Takeda, Member

More information

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat

NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculat NUMERICAL CALCULATION OF TURBULENT OPEN-CHANNEL FLOWS BY USING A MODIFIED /g-e TURBULENCE MODEL By Iehisa NEZU and Hiroji NAKAGA WA Numerical calculation techniques of turbulent shear flows are classified

More information

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig. 1 The scheme of glottal area as a function of time Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels). Fig, 4 Parametric representation

More information

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum

Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Sum Developement of Plastic Collocation Method Extension of Plastic Node Method by Yukio Ueda, Member Masahiko Fujikubo, Member Masahiro Miura, Member Summary Previously, the authors developed the plastic

More information

SICE東北支部研究集会資料(2004年)

SICE東北支部研究集会資料(2004年) 219 (2004.11.05) 219-4 Development of a 3D Range Sensor Based on Equiphase Light-Section Method KUMAGAI Masaaki * *Tohoku Gakuin University : (Vision sensor), (3-D range sensor), (Light-section method),

More information

Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic

Tetsu-to-Hagane Vol. 87 (2001) No. 5 Table 1. Physical properties of particles. (a) side view (b) front view Fig. 1. Experimental apparatus with semic Tetsu-to-Hagane Vol. 87 (2001) No. 5 Deadman.Renewal Motion in a Cold Model of Blast Furnace Hiroshi TAKAHASHI and Hideki KAWAI Synopsis : Permeability in coke bed in the lower part of blast furnace is

More information

1 2 3

1 2 3 INFORMATION FOR THE USER DRILL SELECTION CHART CARBIDE DRILLS NEXUS DRILLS DIAMOND DRILLS VP-GOLD DRILLS TDXL DRILLS EX-GOLD DRILLS V-GOLD DRILLS STEEL FRAME DRILLS HARD DRILLS V-SELECT DRILLS SPECIAL

More information

Grund.dvi

Grund.dvi 24 24 23 411M133 i 1 1 1.1........................................ 1 2 4 2.1...................................... 4 2.2.................................. 6 2.2.1........................... 6 2.2.2 viterbi...........................

More information

XPS分析のための簡易マニュアル

XPS分析のための簡易マニュアル XPS 200.. XPS XPS XPS XPS 1. N2 0.4MPa 2. ON PUMP 3. POWER SUPPLY CONTROL UNIT SPEC ON 4. POWER SUPPLY CONTROL UNIT X-R ON 0.4MPa RESET 5. X-RAY POWER UNIT (a) AUTO/MANUMANU (b) Al/MgMg (c) FILAMENT ON/OFFOFF

More information

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt

Microsoft PowerPoint - datatel Presentation Wind Power Testing V01.ppt Typical Telemetry Applications on Wind Turbines Roller Bearing Load Rotor Shaft Torque and Bending Load Rotor Blade Strain and Vibration Generator Rotor Temperature Gear Wheel Tooth Root Force Generator

More information

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad SuperKEKB EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC Y. Seimiya, M. Satoh, T. Suwada, T. Higo, Y. Enomoto, F. Miyahara, K. Furukawa High Energy Accelerator Research Organization

More information