Centralizers of Cantor minimal systems

Size: px
Start display at page:

Download "Centralizers of Cantor minimal systems"

Transcription

1 Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1

2 φ n (x) = x 1. (X, φ) (i) (X, φ) topologically transitive x X Orb φ (x) X (ii) (X, φ) minimal x X Orb φ (x) X (X, φ) X X Z φ n Z φ(n) = n + 1 n Z Orb φ (n) = Z (Z, φ) X R/Z α R \ Q x α x x + α X = R/Z φ (X, φ) irrational rotation (X, φ) [PY] 1.6 X φ R R/Z R 2 R 2 \ {finite points} R n (n 3) S 2n S 2n+1 2

3 X R [O] 18 X [0, 1] [0, 1] X R R/Z R 2 Brouwer transformation theorem [Fr1] R 2 [H] [CY] [Fr2] n R n X X [Fu] 2n S 2n S 2n+1 [FH] [FH] 3

4 3 2. (i) X perfect X (ii) X totally disconnected (iii) X extremally disconnected (ii) (iii) βn 3. {0, 1} N X X {0, 1} N [Y] dimensional 2.13 {0, 1} N {a, b, c} N 4. {0, 1} N X X X X X N X X X 4

5 n n n A 1 i, j n m N A m (i, j) A m ij n n 0 1 A n {1, 2,..., n} {1, 2,..., n} Z A X X = {x = (x n ) n Z ; A(x n, x n+1 ) = 1 for all n Z} X x = (x n ) n X φ(x) = (x n+1 ) n φ(x) X φ X X (X, φ) A = A A {1, 2, 3} Z X Z φ A X (X, φ) 5

6 [PY] X φ X (X, φ) (X, φ) C(X, Z) X Z Z X C(X, Z) C(X, Z) B φ = {f f φ ; f C(X, Z)} B φ C(X, Z) C(X, Z) B φ K 0 (X, φ) f C(X, Z) K 0 (X, φ) [f] K 0 (X, φ) K 0 (X, φ) K 0 (X, φ) + K 0 (X, φ) + = {[f] ; f C(X, Z), f 0} K 0 (X, φ) + K 0 (X, φ) + K 0 (X, φ) + X [1] K 0 (X, φ) + (K 0 (X, φ), K 0 (X, φ) +, [1]) (X, φ) AF K 0 [GPS] [GPS] (K 0 (X, φ), K 0 (X, φ) +, [1]) (X, φ) [M1] [GPS] 6

7 α R \ Q A = {n + mα ; n, m Z} R A B = {b p ; p A} C = {c p ; p A} Y R \ A B C disjoint union Y R \ A R x R \ A, b p, b q B, c p, c q C x b p b p b q def def x < p, x c p def def p < q, c p c q x < p p < q b p c q def p q Y Y Y A y 1 < y 2 (y 1, y 2 ) = {y Y ; y 1 < y < y 2 } (y 1, y 2 ) Y Y [Y] 4.1 Y A R Y x R \ A p A x x + 1, b p b p+1, c p c p+1 T 1 Y T 1 T 1 Y Y α T α T 1 Y X y 1 y 2 def T n 1 (y 1 ) = y 2 for some n Z 7

8 Y X π : Y X X X T α Y X φ φ π = π T α (X, φ) φ α K 0 (X, φ) Z Z K 0 (X, φ) + = {(n, m) Z Z ; n + mα 0} [1] (1, 0) α [PSS] (X, φ) C [M1] interval exchange transformation interval exchnge n n α 1, α 2,..., α n [0, 1) β 0 = 0, β k = k α i, I i = [β i 1, β i ) i=1 I 1, I 2,..., I n {1, 2,..., n} σ σ I 1, I 2,..., I n T 8

9 0 α 1 α 2 α 3 α 4 1 T σ = ( ) 0 α 4 α 1 α 3 α 2 1 T [0, 1) [0, 1) β i A 0 = {β 0, β 1,..., β n 1 } A = k Z T k (A 0 ) A [0, 1) A A B C X = ((0, 1] \ A) B C {0} X T X X (X, φ) 7. (i) α 1, α 2,..., α n 1 Q (ii) σ({1, 2,..., j}) = {1, 2,..., j} j = n (X, φ) [K1] n = 2 (X, φ) K 0 (X, φ) Z n [P] 2.1 Z n [β i 1, β i ) 9

10 [1] (1, 1,, 1) T φ [0, 1) (a 1, a 2,, a n ) Z n \ {0} α 1 a 1 + α 2 a α n a n > 0 {α i } σ uniquely ergodic [KN] [K2] 5 (X, φ) C(φ) = {γ : X X ; γ is continuous, γ φ = φ γ} C(φ) φ X X C(φ) C(φ) C(φ) γ C(φ) γ K 0 (X, φ) mod (γ) g C(X, Z) g γ C(X, Z) γ C(X, Z) f C(X, Z) f f φ γ (f f φ) γ = f γ f φ γ = f γ f γ φ γ K 0 (X, φ) γ mod (γ) T (φ) = {γ C(φ) ; mod (γ) = id} C h (φ) = {γ C(φ); γ is a homeomorphism} T h (φ) = C h (φ) T (φ) 8. (i) (X, φ) T h (φ) G G 10

11 (ii) T (φ) \ T h (φ) (X, φ) (i) C h (φ) T h (φ) T (φ) (ii) γ C(φ) mod (γ) (i)(ii) [M2] [M3] [CY] Le Calvez, P.; Yoccoz, J. C.; Un thorme d indice pour les homomorphismes du plan au voisinage d un point fixe, Ann. of Math. (2), 146 (1997), [Fu] Fuller, F. B.; The existence of periodic points, Ann. of Math. (2), 57 (1953), [FH] Fathi, A.; Herman, M; Existence de diffomorphismes minimaux, Asterisque, N0. 49, (1977), [Fr1] Franks, J.; A new proof of the Brouwer plane translation theorem, Ergodic Theory Dynam. Systems, 12 (1992), [Fr2] Franks, J.; The Conley index and non-existence of minimal homeomorphisms, Proceedings of the Conference on Probability, Ergodic Theory, and Analysis (Evanston, II, 1997), Illinois J. Math., 43 (1999), [GPS] Giordano, T.; Putnam, I. F.; Skau, C. F.; Topological orbit equivalence and C -crossed products, J. reine angew. Math., 469 (1995), [H] Handel, M.; There are no minimal homeomorphisms of the multipuctured plane, Ergodic Theory Dynam. Systems, 12 (1992), [K1] Keane, M; Interval exchange transformations, Math. Z., 141 (1975), [K2] Keane, M; Non-ergodic interval exchange transformations, Israel J. Math., 26 (1977), [KN] Keynes, H; Newton, D.; A minimal, non-uniquely ergodic interval exchange transformation, Math. Z., 148 (1976), [M1] ; Cantor minimal systems and full groups, 11

12 1110, Hilbert C -modules and groupoid C -algebras, [M2] Matui, H.; Finite order automorphisms and dimension groups of Cantor minimal systems, to appear in J. Math. Soc. Japan. [M3] Matui, H.; Dimension groups of topological joinings and non-coalescence of Cantor minimal systems, preprint [O] Oxtoby, J. C.; Measure and category, Graduate Texts in Mathematics, Vol. 2, Springer-Verlag, New York-Berlin, [P] Putnam, I. F.; The C -algebras associated with minimal homeomorphisms of the Cantor set, Pacific J. Math., 136 (1989), [PSS] Putnam, I. F.; Schmidt, K.; Skau, C. F.; C -algebras associated with Denjoy homeomorphisms of the circle, J. Operator Theory, 16 (1986), [PY] Pollicott, M; Yuri, M; Dynamical systems and ergodic theory, London Mathematical Society student Texts 40, Cambridge University Press, Cambridge, [Y] ;,, ; matui@kusm.kyoto-u.ac.jp

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

kokyuroku.dvi

kokyuroku.dvi On Applications of Rigorous Computing to Dynamical Systems (Zin ARAI) Department of Mathematics, Kyoto University email: arai@math.kyoto-u.ac.jp 1 [12, 13] Lorenz 2 Lorenz 3 4 2 Lorenz 2.1 Lorenz E. Lorenz

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

DataHD:Zip16:blue982:lcs:lcs-for-web.dvi

DataHD:Zip16:blue982:lcs:lcs-for-web.dvi Ver 1.21 10 5 7 0 1 I 3 1 / 3 1.1... 3 1.2... 5 1.3... 5 1.4... 6 1.5... 7 1.6... 7 1.7... 7 2 9 2.1... 9 2.2 ( ). 10 2.3 :... 10 2.4... 11 2.5... 12 2.6... 13 II 16 3.2.1... 17 3.2.2... 19 3.2.3.. 22

More information

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2 2014 6 30. 2014 3 1 6 (Hopf algebra) (group) Andruskiewitsch-Santos [AFS09] 1980 Drinfeld (quantum group) Lie Lie (ribbon Hopf algebra) (ribbon category) Turaev [Tur94] Kassel [Kas95] (PD) x12005i@math.nagoya-u.ac.jp

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

-1 - -2 - -3 - -4-2000 -5 - -6 - -7 - -8 - -9 - - 10 - -11-60 200 2,000 1980 24-12 - - 13 - - 14 - - 15 - - 16 - - 17 - 1998 '98 593'98.4. 604'99.3. 1998 '98.10.10 11 80 '98.11. 81'99.3. 49 '98.11. 50

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

sakigake1.dvi

sakigake1.dvi (Zin ARAI) arai@cris.hokudai.ac.jp http://www.cris.hokudai.ac.jp/arai/ 1 dynamical systems ( mechanics ) dynamical systems 3 G X Ψ:G X X, (g, x) Ψ(g, x) =:Ψ g (x) Ψ id (x) =x, Ψ gh (x) =Ψ h (Ψ g (x)) (

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology) 3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

main.dvi

main.dvi Nim naito@math.nagoya-u.ac.jp,.,.,,,.,,,,,,, Nim,.,,,,. Nim Nim,.,.,.,,.,.,. [1, 3],,, Nim,,., Nim. Date:. August 10-11, 1999 2 1 Nim.. Pile., Pile.,. normal case.,. reverse case.,.. Pile. N 1, N 2, N

More information

日本分子第4巻2号_10ポスター発表.indd

日本分子第4巻2号_10ポスター発表.indd JSMI Report 62 63 JSMI Report γ JSMI Report 64 β α 65 JSMI Report JSMI Report 66 67 JSMI Report JSMI Report 68 69 JSMI Report JSMI Report 70 71 JSMI Report JSMI Report 72 73 JSMI Report JSMI Report 74

More information

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2

(interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 7 2 1 (interval estimation) 3 (confidence coefficient) µ σ/sqrt(n) 4 P ( (X - µ) / (σ sqrt N < a) = α a α X α µ a σ sqrt N X µ a σ sqrt N 2 (confidence interval) 5 X a σ sqrt N µ X a σ sqrt N - 6 P ( X

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

20 15 14.6 15.3 14.9 15.7 16.0 15.7 13.4 14.5 13.7 14.2 10 10 13 16 19 22 1 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 2,500 59,862 56,384 2,000 42,662 44,211 40,639 37,323 1,500 33,408 34,472

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

I? 3 1 3 1.1?................................. 3 1.2?............................... 3 1.3!................................... 3 2 4 2.1........................................ 4 2.2.......................................

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2 C II,,,,,,,,,,, 0.2. 1 (Connectivity) 3 2 (Compactness)

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (

平成 15 年度 ( 第 25 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 ~8 15 月年 78 日開催月 4 日 ) X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = ( 1 1.1 X 2 = 1 ( ) f 1 (X 1,..., X n ) = 0,..., f r (X 1,..., X n ) = 0 X = (X 1,..., X n ) ( ) X 1,..., X n f 1,..., f r A T X + XA XBR 1 B T X + C T QC = O X 1.2 X 1,..., X n X i X j X j X i = 0, P i

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

線形空間の入門編 Part3

線形空間の入門編 Part3 Part3 j1701 March 15, 2013 (j1701) Part3 March 15, 2013 1 / 46 table of contents 1 2 3 (j1701) Part3 March 15, 2013 2 / 46 f : R 2 R 2 ( ) x f = y ( 1 1 1 1 ) ( x y ) = ( ) x y y x, y = x ( x y) 0!! (

More information

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9..

set element a A A a A a A 1 extensional definition, { } A = {1, 2, 3, 4, 5, 6, 7, 8, 9} 9 1, 2, 3, 4, 5, 6, 7, 8, 9.. 12 -- 2 1 2009 5,,.,.,.. 1, 2, 3,., 4),, 4, 5),. 4, 6, 7).,, R A B, 8, (a) A, B 9), (b) {a (a, b) R b B }, {b (a, b) R a A } 10, 11, 12) 2. (a). 11, 13, R S {(a, c) (a, b) R, (b, c) S } (c) R S 14), 1,

More information

Kullback-Leibler

Kullback-Leibler Kullback-Leibler 206 6 6 http://www.math.tohoku.ac.jp/~kuroki/latex/206066kullbackleibler.pdf 0 2 Kullback-Leibler 3. q i.......................... 3.2........... 3.3 Kullback-Leibler.............. 4.4

More information

2

2 2013 Vol.18 No.2 3 24 25 8 22 2 23 26 9 15 20 2 3 4 5 6 7 8 point1 point 2 point3 point4 10 11 point1 point 2 point 3 point 4 12 13 14 15 16 17 18 19 20 http://www.taishukan.co.jp/kateika/ 21 22 23 24

More information

第89回日本感染症学会学術講演会後抄録(I)

第89回日本感染症学会学術講演会後抄録(I) ! ! ! β !!!!!!!!!!! !!! !!! μ! μ! !!! β! β !! β! β β μ! μ! μ! μ! β β β β β β μ! μ! μ!! β ! β ! ! β β ! !! ! !!! ! ! ! β! !!!!! !! !!!!!!!!! μ! β !!!! β β! !!!!!!!!! !! β β β β β β β β !!

More information

Abstract Gale-Shapley 2 (1) 2 (2) (1)

Abstract Gale-Shapley 2 (1) 2 (2) (1) ( ) 2011 3 Abstract Gale-Shapley 2 (1) 2 (2) (1) 1 1 1.1........................................... 1 1.2......................................... 2 2 4 2.1................................... 4 2.1.1 Gale-Shapley..........................

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,. 1508 2006 1-11 1 CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$: Cape i Capelli 1991 ( ) (1994 ; 1998 ) 100 Capelli Capelli Capelli ( ) (

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

特別寄稿 1931 Kurt Gödel, inexhaustibility Jean Cavaillès,

特別寄稿 1931 Kurt Gödel, inexhaustibility Jean Cavaillès, Title < 特別寄稿 > 数学の無尽蔵性 と二つの哲学 -- カヴァイエスとゲーデル -- Author(s) 中村, 大介 Citation 哲学論叢 (2016), 43: 27-39 Issue Date 2016 URL http://hdl.handle.net/2433/219150 Right Type Departmental Bulletin Paper Textversion

More information

Perturbation method for determining the group of invariance of hierarchical models

Perturbation method for determining the group of invariance of hierarchical models Perturbation method for determining the group of invariance of hierarchical models 1 2 1 1 2 2009/11/27 ( ) 2009/11/27 1 / 31 2 3 p 11 p 12 p 13 p 21 p 22 p 23 (p ij 0, i;j p ij = 1). p ij = a i b j log

More information

61“ƒ/61G2 P97

61“ƒ/61G2 P97 σ σ φσ φ φ φ φ φ φ φ φ σ σ σ φσ φ σ φ σ σ σ φ α α α φα α α φ α φ α α α φ α α α σ α α α α α α Σα Σ α α α α α σ σ α α α α α α α α α α α α σ α σ φ σ φ σ α α Σα Σα α σ σ σ σ σ σ σ σ σ σ σ σ Σ σ σ σ σ

More information

テクノ東京21 2003年6月号(Vol.123)

テクノ東京21 2003年6月号(Vol.123) 2 3 5 7 9 10 11 12 13 - 21 2003 6123 21 2003 6123 - 21 2003 6123 21 2003 6123 3 u x y x Ax Bu y Cx Du uy x A,B,C,D - 21 2003 6123 21 2003 6123 - 21 2003 6123 - 21 2003 6123 -- -- - 21 2003 6123 03 3832-3655

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

サイバニュース-vol134-CS3.indd

サイバニュース-vol134-CS3.indd NEWS 2012 WINTER 134 No. F=maF ma m af Contents N, X θ 1,θ 2 θ N 0θ i π/2 X i X 0 Θ i Θ 1 = 2θ 1 Θ 2 = 2(θ 1 θ 2) NX N X 0 Θ N N Θ N = 2{θ 1 θ 2θ 3 θ N } Θ N = 2π A 1A 2B 2B 1 mm 3 α α = π /m A 1A

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

ron04-02/ky768450316800035946

ron04-02/ky768450316800035946 β α β α β β β α α α Bugula neritina α β β β γ γ γ γ β β γ β β β β γ β β β β β β β β! ! β β β β μ β μ β β β! β β β β β μ! μ! μ! β β α!! β γ β β β β!! β β β β β β! β! β β β!! β β β β β β β β β β β β!

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

Pari-gp /7/5 1 Pari-gp 3 pq

Pari-gp /7/5 1 Pari-gp 3 pq Pari-gp 3 2007/7/5 1 Pari-gp 3 pq 3 2007 7 5 Pari-gp 3 2007/7/5 2 1. pq 3 2. Pari-gp 3. p p 4. p Abel 5. 6. 7. Pari-gp 3 2007/7/5 3 pq 3 Pari-gp 3 2007/7/5 4 p q 1 (mod 9) p q 3 (3, 3) Abel 3 Pari-gp 3

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

untitled

untitled 2010 58 1 39 59 c 2010 20 2009 11 30 2010 6 24 6 25 1 1953 12 2008 III 1. 5, 1961, 1970, 1975, 1982, 1992 12 2008 2008 226 0015 32 40 58 1 2010 III 2., 2009 3 #3.xx #3.1 #3.2 1 1953 2 1958 12 2008 1 2

More information

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( 1 + 2 )+V (r 1, r 2 ) ϕ(r 1, r 2

1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r 1, r 2 ) Schrödinger } { h2 2m ( 1 + 2 )+V (r 1, r 2 ) ϕ(r 1, r 2 Hubbard 2 1 1 Pauli 0 3 Pauli 4 1 Vol. 51, No. 10, 1996, pp. 741 747. 2 http://www.gakushuin.ac.jp/ 881791/ 3 8 4 1 1: Pauli 2 Heisenberg [3] 3 r 1, r 2 V (r 1, r 2 )=V (r 2, r 1 ) V (r 1, r 2 ) 5 ϕ(r

More information

[4] 1.1. x,y 2 x = n i=0 x i2 i,y = n i=0 y i2 i (x i, y i {0, 1}) x y x y = w i 2 i, (1.1) w i = x i + y i (mod 2) (a) (N -Position)

[4] 1.1. x,y 2 x = n i=0 x i2 i,y = n i=0 y i2 i (x i, y i {0, 1}) x y x y = w i 2 i, (1.1) w i = x i + y i (mod 2) (a) (N -Position) () 2 1 2 2 1.1 3,3,2 3 3 3 2 {3, 3, 2} 1.2 1.4 3 1.1 {x, y, z} 3 {x, y, z} 3 x y z [1] x y z x y z 1.5 1.6 x y z [1] Z 0 x i {0, 1} x i 0 1 1.1. {x, y, z} (x, y, z Z 0 ) 1.1 {3, 3, 2} 1.2 {4, 4, 9} 1.3

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information