8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

Size: px
Start display at page:

Download "8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980"

Transcription

1 % 100% 1 Introduction 2 (100%) (100%) σ- 4 (100%) (100%) (100%) 7 (40%) 8 Fubini (90%)

2 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 [4] 1980 [5, 6, 7, 8] 2000 [1, 4] [7, 4] [7] Stieltjes [6] R n [3] 1 [5] ( ) E = {(x, y) x [a, b], y [c, d]} f(x, y) E f(x, y)dxdy E 2

3 2.1 E : a = x 0 < x 1 < < x n = b, c = y 0 < y 1 < < y m = d S(f, ) = s(f, ) = sup {f(x, y) x i 1 x x i, y j 1 y y j } (x i x i 1 )(y j y j 1 ) 1 i n,1 j m 1 i n,1 j m inf {f(x, y) x i 1 x x i, y j 1 y y j } (x i x i 1 )(y j y j 1 ). S(f) = inf {S(f, ) } s(f) = sup {s(f, ) } S(f), s(f) Darboux 2.2 = max{x i x i 1, y j y j 1 1 i n, 1 j m} lim S(f, ) = S(f), lim s(f, ) = s(f) S(f) = s(f) f(x, y) E E f(x, y)dxdy 2.4 (1) f(x, y) f(x, y) (2)f(x, y) Darboux ξ i,j [x i 1, x i ] [y j 1, y j ] f(x, y)dxdy = lim f(ξ i,j )(x i x i 1 )(y j y j 1 ) E 0 1 i n,1 j m f(x, y) Darboux 2.2 A R 2 1 (x, y) A 1 A (x, y) = (2.1) 0 (x, y) A c 1 A A 3

4 2.5 (A ) A E 1 A E A = 1 A (x, y)dxdy. (2.2) E E 1 A A E 1 A E 1 A (x, y)dxdy = E 1 A (x, y)dxdy E A A E 2.6 S(1 A ) m J (A), s(1 A ) m J (A) A Jordan Jordan A A Jordan m J (A) S(1 A ), s(1 A ) A E E Jordan Joran A Jordan 2.7 (1) c(t) = (x(t), y(t)) C 1 (c(0) = c(1) t t c(t) c(t )) A (2) A E = [0, 1] 2 x y m J (A) = 0, m J (A) = 1 Jordan 2.8 A, A i (1) m J (A) m J (A). (2) (Jordan )A 1, A 2 Jordan A 1 A 2, A 1 A 2 Jordan m J (A 1 A 2 ) = m J (A 1 ) + m J (A 2 ) m J (A 1 A 2 ). (3) {A i } n i=1 Jordan n i=1 A i Jordan m J ( n i=1a i ) n m J (A i ). i=1 (4) A E (E ) m J (A) = E m J (A c E). A Jordan A c E Jordan 4

5 2.9 A R 2 1 A A A A A = { P R 2 ε > 0 B ε (P ) A, B ε (P ) A c }. (2.3) P = (p, q) B ε (P ) = {(x, y) (x p) 2 + (y q) 2 < ε} A R 2 A Jordan R I = [a, b] (i) I 1 3 (ii) (i) I 1, I 2 I 1 ( ) I2 ( 1 2 3) (iii) (ii) I 1,1, I 1,2, I 2,1, I 2,2 ( 1 3) 3 C Cantor m J (C) = 0 n r n (0 < r < 1 3 ) C r C r Jordan (2) A E 0 Jordan 0 Jordan A R n A m L (A) m L (A) { = inf I i I i R n ( } n i=1 [a i, b i ] ) A i=1 I i i=1 (2.4) (1)-(4) (5)-(7) 2.13 (1) A B m L (A) m L (B). (2) A i i=1 A i (3) A m L (A) = 0. (4) A m L (A) m J (A). 5

6 (5) A A 0 Jordan 0 (6) E R n m L (E) E (7) E R 2 A E m L (A) + m L (A c E) m L (E). (6) A, B m L (A B) + m L (A c B) m L (B). (2.5) A R n R n B m L (A B) + m L (A c B) = m L (B) (2.6) A m L (A) A m L (A) R n B L (R n ) 2.15 A E A E B = E (2.6) m L (A) = E m L (A c E) (2.7) 2.8 (4) A Jordan Jordan 2.8 (4) 2.13 (4), (6) 2.16 R n A Jordan A m J (A) = m L (A) (1) R n, B L (R n ). (2) A B L (R n ) A c B L (R n ). (3) A i B L (R n ) (i N) i=1 B L(R n ). (4) () A i B L (R n ) (i N) i j A i A j m L ( i=1a i ) = m L (A i ). (2.8) i= (3), (4)

7 ( ) () F 2 ( F ) (, F) (1), F. (2) A F A c F. (3) A n F (n = 1, 2,...) n=1 A n F. (1), (2), (3) σ-algebra, σ-field,σ-, σ- 3.3 (, 2 ) 3.4 (, F) (3) A n F (n = 1, 2,...) N n=1 A n F (N N). 3.2 (2) A n = (n = N + 1, N + 2,...) (1), (2) (3) σ- 3.6 () (, F) m F m m (, F, m) (1) A F 0 m(a) + m( ) = 0. (2) (, ) A n F A n A m = (n m) m( n=1a n ) = m(a n ). (3.1) (i) m( n ) < (n N) = n=1 n σ- (ii)m() < (iii) m() = 1 (m ) 3.7 (1) A 2, (, A, m) n=1 (i) A (ii) A A 0 m(a) + m( ) = 0. 7

8 (iii) A i A (1 i n, n N), A i A j = m( n i=1 A i) = n i=1 m(a i). Jordan 3.8 (1) F = 2 A A m(a) = + A. (3.2) (2) = R n, F B L (R n ),,m(a) A (R n, B L (R n ), m L ). = {w : [0, ) R n w(0) = 0 w(t) t } (3.3) = [0, 1] N (3.4) () σ (, F, m) (1) A i F (1 i n) n i=1 A i. A i A j = m( n i=1 A i) = n i=1 m(a i). (2) A, B F A B m(a) m(b). m(b) < m(a) < m(b \ A) = m(b) m(a). (3) A n A n+1, A n F (n = 1, 2,...) lim m(a n) = m ( n=1a n ). (3.5) (4) A n F (n = 1, 2,...) m ( n=1 A n) n=1 m(a n). (5) A n A n+1, A n F (n = 1, 2,...) n 0 m(a n0 ) < lim m(a n) = m( n=1a n ). (3.6) (6) A B := (A\B) (B\A) m(a) <, m(b) < m(a) m(b) m (A B). (1) 3.6 A n+1 = A n+2 = = (2) B = A (B \ A) A (B \ A) =. B \ A = B A c (1) m(b) = m(a) + m(b \ A) m(a). m(b) < m(a) < m(b \ A) = m(b) m(a). (3) B n = A n \ A n 1 (n 1, A 0 = ) 1. A N = N n=1 A n = N n=1 B n (N N + ) 2. n > m B n B m A c n 1 A m =. 8

9 (1) (4) m ( n=1a n ) = m ( n=1b n ) = lim N N n=1 m(b n ) = lim N m ( N n=1b n ) = lim N m(a N). (3.7) m ( N ) N n=1a n m(a n ) (3.8) (i) N = 2 A 1 A 2 = A 1 (A 2 \ A 1 ) m(a 1 A 2 ) = m(a 1 ) + m(a 2 \ A 1 ) m(a 1 ) + m(a 2 ). (ii) N OK N = 2 ( ) m N+1 n=1 A n = m ( ( N ) n=1a n ) A N+1 n=1 m ( N n=1a n ) + m(an+1 ) N+1 n=1 m(a n ). (3.9) (3.8) N (3) (5) A n \ A n+1 = B n, n=1 A n = C n > m B n B m A n A c m+1 =. A n0 \ C = n=n 0 B n. (3.10) (2) m(c) <, m(a n ) < n n 0 N m(a n0 ) m(c) = m(b n ) = lim (m(a n ) m(a n+1 )) N n=n 0 n=n 0 = lim (m(a n 0 ) m(a N+1 )). (3.11) N m(c) = lim N m(a N ). (3.10) (i) x A n0 \ C n n 0 x A n x / A n+1. x A n \ A n+1 = B n. (ii) x n=n0 B n n n 0 x B n = A n \ A n+1. x A n0 x / C. (6) m(a) = m(a B)+m(A B c ), m(b) = m(a B)+m(B A c ). m(a) m(b) = m(a B c ) m(b A c ) m(a B c ) + m(b A c ) = m(a B) lim sup A n = n=1 { i=na i } (3.12) lim inf n = n=1 { i=na i } (3.13) 9

10 lim inf A n = lim sup A n lim A n (1) lim inf A n lim sup A n. (2) m(lim inf A n ) lim inf m(a n ). (3) n 0 N m ( ) n=n 0 A n < lim sup m(a n ) m ( ) lim sup A n. (3.14) (4) n 0 N m ( ) n=n 0 A n < lim A n ( ) lim m(a n) = m lim A n. (3.15) (1) x lim inf A n n 0 x i=n0 A i. n x i=n A i. x lim sup A n. (2) B n = i=n A i lim inf A n = n=1 B n B 1 B 2 B (3) ( ) m lim inf A n = m ( n=1b n ) = lim n) = lim inf n) lim inf n) (3.16) (3) C n = i=n A i lim sup A n = n=1 C n C 1 C 2 C 3, m(c n0 ) < 3.9 (5) (4) (2),(3) ( ) m lim inf A n lim inf m (lim sup A n ) = m ( n=1c n ) m(a n) lim sup = lim n) = lim sup m(c n ) lim sup m(a n ). (3.17) ( ) m(a n ) m lim sup A n. (3.18) 3.11 lim sup A n = { x n(1, x) < n(2, x) < < n(k, x) < x k=1 A } n(k,x) (3.19) { } lim inf A n = x n(x) x n=n(x) A n (3.20) 10

11 3.12 {f n (x)} n=1, f(x) [0, + ] n x f n(x) f n+1 (x) lim f n (x) = f(x) a, b 0 a < b + lim A n = A A n = {x a < f n (x) b} (3.21) A = {x a < f(x) b} (3.22) 3.10 (2) 3.12 ( 5.13) 3.2 σ- σ- 2 (1) (3)? 3.13 C 1, C 2 2 C 1 C 2 C 1 C 2 (C 2 C 1 ) () 3.14 C 2 σ(c) = λ Λ F λ {F λ λ Λ} C F λ σ- F λ σ(c) C σ- 2 σ- C F λ C σ(c) (i) σ(c) σ- (ii) F σ- C F σ(c) F (i) 3.2 (1)-(3) (1) λ, F λ, σ(c). (2) A σ(c) λ Λ A F λ. F λ σ- A c F λ λ Λ. A c σ(c). (3) A n σ(c) (n = 1, 2,...) A n F λ n A n F λ. λ n A n σ(c). σ(c) σ- (ii) C F F {F λ } σ(c) F σ(c) C σ- σ- R n Borel( ) 11

12 3.16 = R n C = {O R n O R n } σ(c) B(R n ) R n B(R n ) (?) B(R n ) B L (R n ) B L (R n ) 2 S σ- Borel B(S) S (3.3), (3.4) 3.17 = R n C i (i = 1,..., 5) σ(c i ) B(R n ) (1) C 1 = {R n } (2) C 2 = { n i=1 [a i, b i ] < a i < b i < } (3) C 3 = { n i=1 [a i, b i ) < a i < b i < } (4) C 4 = { n i=1 (a i, b i ] < a i < b i < } (5) C 5 = {B r (a) r a R n a }. B r (a) = {x R n d(x, a) < r}. 4 ( ) (1) 4.1, Y f : Y A f(a) := {f(x) x A} A f B Y f 1 (B) := {x f(x) B} B f (1) B n Y (n = 1, 2,...) f 1 ( n=1b n ) = n=1f 1 (B n ) (4.1) f 1 ( n=1b n ) = n=1f 1 (B n ). (4.2) (2) A n (n = 1, 2,...) f ( n=1 A n) = n=1 f(a n), f ( n=1 A n) n=1 f(a n) (3) B Y f 1 (B c ) = ( f 1 (B) ) c. 4.1, () (1) (, F) f : [, + ] F- (F-measurable function) ( F- ) a R f 1 ((a, + ]) := {x f(x) > a} F. (2) = R n F = B(R n ), B L (R n ), R ( +, ) 12

13 4.3 (1) F (2) f : R n R (?) (3) A F A f : A [, + ] a R {x A f(x) > a} F F- 4.4 f : R n R f f : R n R f 1 ((a, + ]) B(R n )- 4.5 f : [, + ] f 1 (R), f 1 ({+ }), f 1 ({ }) F f 1 ({+ }) = f 1 ( n=1(n, + ]) = n=1f 1 ((n, + ]) f 1 ({ }) = f 1 ( n=1[, n]) = n=1f 1 ([, n]) = n=1 ( f 1 (( n, + ]) ) c. f 1 ((a, + ]) F (2), (3) f 1 ({+ }), f 1 ({ }) F. f 1 (R) = \ ( f 1 ({± }) ) F (, F) f : [, + ] 4 (1), (2), (3), (4) (1) f(x) (2) a R {x f(x) a} F. (3) a R {x f(x) a} F. (4) a R {x f(x) < a} F. (1), (2), (3) (4) (1) (2): f 1 ([, a]) = f 1 ((a, + ]) c F. (2) (3): f 1 ([a, + ]) = f 1 ([, a)) c = f 1 ( n=1[, a 1 n ] ) c = (3) (1): ( n=1f 1 ( [, a 1 n ] )) c F. f 1 ((a, + ]) = f 1 ( n=1[a + 1 n, + ] ) = n=1f 1 ( [a + 1 n, + ] ) F. 4.7 (, F) f : [, + ] (1), (2), (3) (1) f(x) (2) f 1 ({+ }), f 1 ({ }) F R C 13

14 (i) σ(c) = B(R). (ii) A C f 1 (A) F. (3) f 1 ({+ }) F A B(R) f 1 (A) F. (1) (2) (3) (1) (1) (2) : f 1 ({+ }), f 1 ({ }) F C = {(a, b] < a < b < + } 3.17 (4) σ(c) = B(R)., f 1 ((a, b]) = f 1 ((a, + ]) ( f 1 ((b, + ]) ) c F (ii) C (2) (2) (3) H = { A A R f 1 (A) F } B(R) H H (a) C H, (b) H σ-. B(R) = σ(c) H (a) (ii) (b) (1) R, H: f 1 (R) =, f 1 ( ) = OK (2) A H A c H: f 1 (A c ) = (f 1 (A)) c F OK (3) A n H (n = 1, 2,...) n=1 A n H: f 1 ( n=1 A n) = n=1 f 1 (A n ) F OK H σ- (3) (1) a R f 1 ((a, + ]) = f 1 ((a, )) f 1 ({+ }) F. 4.8 f(x), g(x) +, ϕ : R 2 R h(x) = ϕ(f(x), g(x)) a R ϕ S a = {(x, y) ϕ(x, y) > a} S a S a H = {(α, β) (γ, δ) α, β, γ, δ (α, β) (γ, δ) S a. } H = {I i J i i = 1, 2,...} I i = (α i, β i ), J i = (γ i, δ i ). {x h(x) > a} = {x ϕ(f(x), g(x)) > a} = {x (f(x), g(x)) S a } = i=1{x (f(x), g(x)) I i J i } = i=1 ( f 1 (I i ) f 1 (J i ) ) F

15 4.9 f n : [, + ] (n = 1, 2,...) (1) sup n N f n (x), inf n N f n (x) (2) lim sup f n (x), lim inf f n (x) x lim f n (x) (+, ) (1) {x sup f n (x) a} = n=1{x f n (x) a} F, n N {x inf n(x) a} n N = n=1{x f n (x) a} F. 4.6 (2) lim sup f n (x) = inf n { supm n f m (x) }, lim inf f n (x) = sup n {inf m n f m (x)} (1) 4.10 f, g : [, + ] A = {x f(x) g(x)} 4.11 f n (x) (n = 1, 2,...) R (, F) 0 F 0 = {x lim f n (x) } 4.12 f(x) [0, 1] f(x) (1) f : R F f := {f 1 (A) A B(R)} F f σ- F f F (2) σ- G (i) G F. (ii) f G- ( 3.13 ) F f σ- F f σ(f) f σ ( i, F i ) (i = 1, 2) f : 1 2 F 1 /F 2 - : A F 2 f 1 (A) F (, F) S S σ- ( S ) B(S) (S, B(S)) f : S F/B(S)- 15

16 = R, F 2 = B(R) F 1 /F F f(x) = (f 1 (x),..., f n (x)) : R n (1), (2) (1) f F/B(R n )- (2) i f i : R 4.2 F (, F) f : R (simplefunction) (1) f (2) f(x) 5.2 A I A (x) 1 if x A, I A (x) = (5.1) 0 if x A c A (indicator function) 5.3 f(x) {a 1,..., a n }, E i = f 1 ({a i }) (1) E i F. i j E i E j = n i=1 E i =. (2) f(x) = n i=1 a ii Ei (x). (2) a i = 0 a i I Ei (x) = 0 (2) f(x) 5.4 f(x) α i (i = 1,..., n) E i F f(x) = n i=1 α ii Ei (x). 5.5 f f(x) = n i=1 a ii Ei (x) 0 = 0 f(x)dm(x) = n a i m(e i ). (5.2) i=1 16

17 5.6 (1) α, β 0 (αf(x) + βg(x))dm(x) = α f(x)dm(x) + β g(x)dm(x). (5.3) (2) f(x) = l i=1 α ii Ai (x) (α i 0 1 i n, ) fdm = l i=1 α im(a i ). (3) 0 f(x) g(x) fdm gdm. (5.4) (1) f(x) = n i=1 a ii Ei (x), g(x) = m j=1 b ji Fj (x) αf(x) = n i=1 αa ii Ei (x) αfdm = α fdm. α = β = 1 E i F j i, j a i + b j {c l } N l=1 {c l} S l = {(i, j) a i + b j = c l, E i F j } l = (i,j) Sl E i F j 1. l k S l S k = 2. N l=1 l = 3. l k l k = 4. N l=1 c li l (x) f + g (f + g)dm = N l=1 c lm( l ). 1,2 (f + g)dm = = = = = N c l m( l ) l=1 N c l m ( ) (i,j) Sl E i F j l=1 N l=1 (a i + b j )m (E i F j ) (i,j) S l (a i + b j )m(e i F j ) (5.5) 1 i n,1 j m n a i m(e i ) + i=1 m b j m(f j ) = j=1 fdm + gdm (5.6) (5.5) (5.6) 1 i n,1 j m a im(e i F j ) = n i=1 a im(e i ) (2) α ii Ai dm = α i m(a i ) (1) 17

18 (3) (1) f, g f(x) = (i,j) N l=1 S l a ii Ei F j (x), g(x) = (i,j) N l=1 S l b ji Ei F j (x) x f(x) g(x) (i, j) l S l a i b j. fdm = a i m (E i F j ) (i,j) N l=1 S l b j m (E i F j ) = (i,j) N l=1 S l gdm. (5.7) [0, ] ϕ N (t) N N. 0 0 t 1 2 N ϕ N (t) = k k < t k+1, 0 < k 2 N N 1 2 N 2 N 2 N N t > N (5.8) 5.8 f(x), g(x) [0, + ] (1) ϕ N (f(x)) = 2 N N k=0 k 2 N I E N,k (x), (5.9) E N,k = f 1 ( ( k 2 N, k+1 2 N ] ) (0 k 2 N N 1), E N,2 N N = f 1 ((N, ]). ϕ N (f(x)) (2) N N, x ϕ N (f(x)) ϕ N+1 (f(x)). (3) x lim N ϕ N (f(x)) = f(x). (4) f(x) g(x) ϕ N (f(x)) ϕ N (g(x)). Lemma ϕ N (f(x)) f(x) ϕ N (f(x)) 5.8 (2) 5.6 (3) 0 ϕ N(f(x))dm(x) ϕ N+1(f(x))dm(x) I(f) f(x) f(x) f N (x) = 2 N N k=0 E N,k := f 1 ( [ k 2 N, k N ) k 2 N I E N,k (x) (5.10) ) (0 k 2 N N 1) (5.11) E N,2 N N := f 1 ([N, ]). (5.12) 18

19 5.9 [0, + ] f(x) I N (f) = ϕ N (f(x))dm(x) (5.13) I(f) = lim N I N(f). (5.14) 5.10 f(x) (, F, m) I(f) = f(x)dm(x). f(x) = n i=1 a ii Ei (x) ϕ N (f(x)) = n i=1 ϕ N(a i )I Ei (x). I N (f) = ϕ N(f(x))dm(x) = n i=1 ϕ N(a i )m(e i ). lim N ϕ N (a i ) = a i I(f) = lim N I N (f) = n i=1 a im(e i ) = f(x)dm(x). f I(f) I(f) [0, + ] 5.11 [0, + ] f(x) f(x)dm(x) := I(f). (5.15) [0, + ] ( ) f(x) g(x) ( x ) f(x)dm(x) g(x)dm(x). f(x) g(x) ϕ N (f(x)) ϕ N (g(x)) ϕ N(f(x))dm(x) ϕ N(g(x))dm(x). N 5.13 ( (Monotone convergence theorem,mct )) f(x) [0, + ] [0, + ] {f n (x)} n=1 (1) f 1 (x) f 2 (x)... f n (x)... (2) lim f n (x) = f(x). lim f n(x)dm(x) = f(x)dm(x) 5.12 f n(x)dm(x) lim f n(x)dm(x) f(x)dm(x) I N (f n ), I N (f) I N (f n ) = I N (f) = 2 N N k=1 2 N N k=1 k ( 2 N m E (n) N,k ) (5.16) k 2 N m (E N,k). (5.17) 19

20 E (n) E (n) N,k = { x k 2 N < f n(x) k + 1 } 2 N (1 k 2 N N 1) (5.18) N,2 N N = {x f n(x) > N} (5.19) { k E N,k = x 2 N < f(x) k + 1 } 2 N (1 k 2 N N 1) (5.20) E N,2 N N = {x f(x) > N}. (5.21) f n (x) lim f n (x) = f(x) lim E (n) N,k = E N,k (2) m(e N,k ) lim inf m(e (n) N,k ). lim f n (x)dm(x) lim inf N(f n ) I N (f). (5.22) lim f n(x)dm(x) lim N I N (f) = f(x)dm(x) f(x) MCT 5.14 f [0, + ] { } f(x)dm(x) = sup g(x)dm(x) g x 0 g(x) f(x). (5.23) (5.23) [0, + ] f (3) {A n }, A f n (x) = I An (x), f(x) = I A (x) MCT lim m(a n ) = m(a) MCT 3.9 (3) 5.3 f(x) 5.16 (1) f(x) (, F, m) f + (x) := max (f(x), 0), f (x) := max ( f(x), 0) f + (x)dm(x) < f (x)dm(x) < (5.24) f(x) f(x)dm(x) := f + (x)dm(x) f (x)dm(x) (5.25) 20

21 (2) A F f(x) A f(x) A (A, F A, m A ) A f(x)dm(x) F A = {B F B A}, m A (B) = m(b) 5.17 f +(x)dm(x) = f (x)dm(x) < f(x)dm(x) = +. f +(x)dm(x) < f (x)dm(x) = f(x)dm(x) = (1), (2) (1) f (5.24) (2) f(x) dm(x) <. ϕ N ( f(x) ) = ϕ N (f + (x)) + ϕ N (f (x)) f () L 1 (, F, m) f(x) dm(x) f L 1 (,F,m), f L 1 f L (1) x f(x) 0, g(x) 0 α 0, β 0 (αf(x) + βg(x))dm(x) = α f(x)dm(x) + β g(x)dm(x). (5.26) (2) x f(x) 0, g(x) 0 f, g L 1 h(x) := f(x) g(x) L 1 h(x)dm(x) = f(x)dm(x) g(x)dm(x). (5.27) (3) f, g L 1, α, β R αf(x) + βg(x) L 1 (αf(x) + βg(x))dm(x) = α f(x)dm(x) + β g(x)dm(x). (5.28) (1) f n (x), g n (x) f(x), g(x) αf n (x) + βg n (x) αf(x) + βg(x) (αf + βg)dm = lim (αf n + βg n )dm { } = lim α f n dm + β g n dm = α fdm + β gdm. (5.29) (2) h(x) = h + (x) h (x) = f(x) g(x) h + (x) + g(x) = f(x) + h (x). h + (x) f(x) h (x) g(x). h +, h L 1. f g L 1. (1) h + dm + gdm = fdm + h dm. (5.30) 21

22 hdm = h + dm h dm = fdm gdm. (5.31) fdm. (3) α, β 0 (3) f L 1 ( f)dm = αf(x) + βg(x) = (αf + (x) + βg + (x)) (αf (x) + βg (x)). αf + + βg +, αf + βg L 1 (2) αf + βg L 1 (αf + βg)dm = (αf + + βg + )dm (αf + βg )dm ( ) ( ) = α f + f dm + β f + dm f dm = α fdm + β gdm. (5.32) 5.21 (1) x f(x) g(x) g L 1 fdm f(x) dm(x) g(x)dm(x). (5.33) f, f L 1. (2) f, g L 1 x f(x) g(x) fdm gdm. (1) 5.12, 5.18 fdm = f + dm f dm f dm gdm. (2) 0 f(x) g(x) (3) gdm fdm = (g f)dm 0 (4) 5.22 f(x), g(x) m ({x f(x) g(x)}) = 0 f(x) g(x) x a.e. x, m a.s. x, a.s. x, a.a. x f(x) = g(x) m a.e. x. (5.34) 5.23 f(x), g(x) f(x) = g(x) a.e. x fdm = gdm. (5.35) f f(x) = n i=1 α ii Ei (x) α 1,..., α n g(x) β 1,..., β m g(x) = n i=1 α ii Fi (x) + m l=1 β li Gl (x) F i, G l F G l F i = ( i, l) {x f(x) g(x)} = ( i j (E i F j )) ( i,l (E i G l )) l, i, j m(g l ) = 0 m(e i F i ) = 0. m(e i ) = m(f i ) (1 i n). fdm = gdm. 22

23 5.24 (1) f, g f = g a.e.x fdm = gdm. (2) f L 1 f = g a.e. x g L 1 gdm = fdm. (3) f f = 0 a.e. x fdm = 0 (1) N = {x f(x) g(x)} m(n) = 0 f n f MCT f n dm = fdm. lim f n (x) = f n (x)i N c(x) f n f(x)i N c(x) lim f n dm = fi N cdm f ndm = f n dm. fdm = fi N cdm. gdm = gi N cdm. x f(x)i N c(x) = g(x)i N c(x) fdm = gdm. (2) f = g a.e. x f + = g + a.e. x f = g a.e. x. f ±dm = g ±dm. (3) f = 0 a.e. x = fdm = 0 (1) A = {x f(x) > 0} m(a) = 0 A n = {x f(x) > 1/n} A n A n+1 (n = 1, 2,...) A = n=1 A n. m(a) = lim m(a n ). m(a) > 0 n m(a n ) > 0. fdm m(a) = 0 fi An dm 1 n I An dm = m(a n) n 5.25 (1) f(x) [a, b] b a f(x)dx = 0 f(x) = 0 x [a, b] (3) (2) N F N c ( ) N c f(x)dm(x) f(x)dm(x) > 0. (Fubini 8.2 (3) (ii) ) 6 R R- f(x)dx, A L- f(x)dx A 23

24 6.1 f(x) I = [a, b] L- f(x)dx = R- f(x)dx. I I f N (x) := F N,k = 2 N 1 k=0 inf{f(x) [ k 2 N, k + 1 ) 2 N k 2 N x k N }I F N,k (x) ( k = 2 N 1 ) f N (x) f N (x) f(x) L- I f(x)dx = lim N L- I f N (x)dx. L- I f N (x)dx 2N Darboux R- I f(x)dx 6.2 f(x) I f(x) f N (x) inf sup f N (x) (1) Darboux (2) ( 10.3) (3) (Fatou ) f n (x) lim inf f n(x)dm(x) lim inf f n (x)dm(x). (7.1) g n (x) = inf k n f k (x) x lim inf f n (x) = lim g n (x) g 1 (x) g 2 (x) g n (x). lim inf f n(x)dm(x) = lim g n(x)dm(x) = lim g n (x)dm(x). g n(x)dm(x) f n(x)dm(x) 7.2 f n (x) x f(x) sup n f n L 1 < f L 1 f L 1 lim inf f n L 1. 24

25 7.3 ( (Lebesgue s dominated convergence theorem)) {f n (x)} (1), (2) (1) lim f n(x) = f(x) (x ) (2) g L 1 (, m) f n (x) g(x) (x ). lim f n (x)dm(x) = f(x)dx. (2) f n L 1 (, m) (1),(2) f(x) g(x) ( x ) f L 1 (, m) h n (x) = g(x)+f n (x) h n (x) 0 ( x ) lim h n (x) = g(x) + f(x). Fatou (g(x) + f(x)) dm(x) lim inf h n (x)dm(x) = g(x)dm(x) + lim inf f(x)dm(x) lim inf f n, f f n, f f(x)dm(x) lim sup (7.3), (7.4) f n (x)dm(x). (7.2) f n (x)dm(x). (7.3) f n (x)dm(x). f(x)dm(x) lim sup f n (x)dm(x). (7.4) (3) 3.9 (5) 7.5 {x n n = 1, 2,...} t [0, 1] lim e 1tx n = 1 lim x n = f(x) [a, b] F (x) = [a,x] f(t)dm L(t) F (x) x {f n (x)} g(x) n=1 f n(x) g(x) (x ) n=1 f n(x) f n (x)dm(x) = f n (x)dm(x). n=1 n=1 25

26 ( ) n=1 a n < +, a n 0 ( n) f(t, n) (t 0, n N) (1), (2) (1) lim f(t, n) = α n. (2) t, n f(t, n) a n. n=1 f(t, n), n=1 α n lim t n=1 7.9 n=1 a 1 n <, a n 0 ( n) lim t t f(t, n) = α n. n=1 log(1 + a n t) = () f(t, x) (a t b, x ) (1) f(t, x) t C 1 (2) t f(t, ) L 1 (, m). (3) g L 1 (, m) (t, x) f(t, x) t g(x). F (t) = f(t, x)dm(x) t C1 F (t) = f(t, x)dm(x). t lim h 0 n=1 F (t + h) F (t) f(t + h, x) f(t, x) = dm(x) (7.5) h h f(t + h) f(t) = f(t, x) (7.6) h t = f (t + θh, x) t g(x). (7.7) f(t + h, x) f(t, x) h F (t) = f t (t, x)dm(x). F (t) x lim f n (x) = f(x) ( x ) x lim f n (x) = f(x) x lim f n (x) = f(x) f n (x) f(x) 7.11 (1) (, F, m) f n (x) f(x) m ({ x }) lim f n(x) f(x) = 0 N = {x lim f n (x) f(x)} (2) m ({x f(x) > g(x)}) = 0 f(x) g(x) a.e. x 26

27 ( ( )) {f n (x)} (1), (2) (1) lim f n(x) = f(x) a.e. x. (2) g L 1 (, m) f n (x) g(x) a.e. x. lim f n (x)dm(x) = f(x)dx. { } N = x lim f n(x) f(x) N k = {x f k (x) > g(x)} (k = 1, 2,...) m(n) = m(n k ) = 0 (k = 1, 2,...). Ñ = N ( k=1 N k) m(ñ) = 0(!). fn (x) = f n (x)iñ c(x), f(x) = f(x)iñ c(x) lim fn (x) = f(x) ( x ) f n (x) g(x) ( x ). 7.3 lim f n (x)dm(x) = f(x)dm(x). (7.8) f n (x) = f n (x) a.e. x, f(x) = f(x) a.e. x 5.24 (2) f n(x)dm(x) = f n (x)dm(x), f(x)dm(x) = x f(x)dm(x). (7.8) a.e (1) f(x) = g(x) a.e. x g(x) = h(x) a.e. x f(x) = h(x) a.e. x. (2) f 1 (x) = g 1 (x) a.e. x f 2 (x) = g 2 (x) a.e. x f 1 (x) + f 2 (x) = g 1 (x) + g 2 (x) a.e. x. 8 R n+m z z = (x, y) x R n, y R m n x m y f(z) = f(x, y) R n+m ( ) ( ) f(z)dz = f(x, y)dy dx = f(x, y)dx dy R n+m R n R m R m R n Fubini( ) (1) Fubini (2) Fubini 27

28 8.1 A R n+m A x = {y R m (x, y) A} (x R n ) A y = {x R n (x, y) A} (y R m ) R n, R m, R n+m m L 8.1 Fubini Fubini 8.2 f(z) (z = (x, y) R n+m, x R n, y R m ) (1) y R m x( R n ) f(x, y) R n x R n R m y f(x, y) (2) () z = (x, y) f(x, y) 0 x, y F (x) = f(x, y)dm L (y), R m G(y) = f(x, y)dm L (x) (8.1) R n (+ ) f(z)dm L (z) = R n+m F (x)dm L (x) = R n G(y)dm L (y) R m (8.2) (3) ( ) f L 1 (R n+m, m L ) (i) m L (N 1 ) = 0 (N 1 B(R n )) x / N 1 f(x, ) L 1 (R m, m L ). m L (N 2 ) = 0 (N 2 B(R m )) y / N 2 f(, y) L 1 (R n, m L ). (ii) F (x) = R f(x, y)dm m L (y) (x N1 c), G(y) = R f(x, y)dm m L (x) (y N2 c) R n, R m f(z)dm L (z) = F (x)dm L (x) R n+m R n = G(y)dm L (y). (8.3) R m 8.3 (ii) statement 5.25 (2) F (x), G(y) 0 N c 1 F (x)dm L (x) R n F (x)dm L (x) 28

29 Fubini 1. f(x, y) ( 8.4) 2. f(x, y) ( 8.8) 3. f(x, y) ( 8.2) ( Fubini ) A B(R n+m ) (1) A B(R n+m ) x, y A x B(R m ), A y B(R n ). x( R n ) m L (A x ), y( R m ) m L (A y ) (2) m L (A) = m L (A x )dm L (x) = m L (A y )dm L (y). (8.4) R n R m 8.5 f(x, y) = I A (x, y) (1) f(x, y) = I Ax (y) = I A y(x), (2) R m f(x, y)dm L (y) = m L (A x ), R n f(x, y)dm L (x) = m L (A y ), R n+m f(z)dm L (z) = m L (A) f(x, y) = I A (x, y) Theorem 8.2 (1), (2) (Monotone class theorem) Monotone class theorem 8.6 C (1) A i C, A i A i+1 (i = 1, 2,...) i=1 A i C. (2) A i C, A i+1 A i (i = 1, 2,...) i=1 A i C. 8.7 (Monotone class theorem) A C A C σ(a) C. 8.4 A n+m i=1 (a i, b i ] ( a i b i + ) b i = + (a i, + ] (a i, + ) A E N = ( N, N] n { C = A B(R n+m ) N A E N } (1), (2). (i) C 29

30 (ii) A C B(R n+m ) = σ(a) C N (A E N ) x, (A E N ) y x( R n ) m L ((A E N ) x ), y( R m ) m L ((A E N ) y ) N (1) m L (A E N ) = m L ((A E N ) x )dm L (x) = R n m L ((A E N ) y )dm L (y). R m (8.5) N (2) (i), (ii) (i) 3.9 (3), (5) A n+m i=1 (a i, b i ] (ii) A = n+m i=1 (a i, b i ] x = (x 1,..., x n ) n+m j=n+1 A x = (a j, b j ] (a i < x i b i 1 n n ) (8.6) ( ) y = (y 1,..., y m ) n A y i=1 = i, b i ] ( ) (a n+j < y j b n+j 1 j m ) (8.7) a i < x i b i (1 n n) m L (A x ) = m j=1 (b n+j a n+j ), a n+j < y j b n+j (1 j m) m L (A y ) = n i=1 (b i a i ). (1),(2) ( Fubini ) R n+m f(x, y) = k i=1 α ii Ai (x, y) A i B(R n+m ) (1) f(x, y) = k α i I (Ai ) x (y) = i=1 k i=1 α i I (Ai ) y(x) (8.8) x, y y f(x, y), x f(x, y) (2) α i 0 (1 i k) F (x) = R n f(x, y)dm L (y), G(y) = R m f(x, y)dm L (x) 30

31 F (x) = G(y) = F (x)dm L (x) = R n G(y)dm L (y) = R m k α i m L ((A i ) x ) (8.9) i=1 k α i m L ((A i ) y ) (8.10) i=1 k α i m(a i ) = f(z)dm L (z) (8.11) R n+m k α i m(a i ) = f(z)dm L (z) (8.12) R n+m i=1 i=1 8.2 (1) f + N (x, y) f(x) f + (x, y) f (x, y) f N (x, y) f N(x, y) = f + N (x, y) f N (x, y) f N(x, y) lim f N(x, y) = f(x, y) (x, y) R n+m. N x f n (x, y) B(R n )- x f(x, y) B(R n )- y f(x, y) B(R m )- (2) (1) f N (x, y) f N (x, y) 0 F N (x) = f N (x, y)dm L (y) R m G N (y) = f N (x, y)dm L (x) R n x, y lim N F N (x) = F (x), lim N G N (y) = G(y) f(z)dm L (z) = F (x)dm L (x) (8.13) R n+m R n f(z)dm L (z) = lim f N (z)dm L (z) () R n+m N R n+m = lim F N (x)dm L (x) ( Fubini ) N R N = F (x)dm L (x) (). (8.14) R N G(y) (3) (1) f ± N (x, y), f N(x, y) G(y) statement F (x) F (x) F N,1 (x) = f + N (x, y)dm L(y) (8.15) R m F N,2 (x) = f N (x, y)dm L(y) (8.16) R m 31

32 F N,1, F N,2 N F 1 (x) = lim N F N,1 (x), F 2 (x) = lim N F N,2 (x) (+!) F 1 (x) = f + (x, y)dm L (y) (8.17) R m F 2 (x) = f (x, y)dm L (y) (8.18) R m x Fubini (2) F 1 (x)dm L (x) = f + (z)dm L (z) < (8.19) R n R n+m F 2 (x)dm L (x) = f (z)dm L (z) <. (8.20) R n R n+m K 1 = {x F 1 (x) = + }, K 2 = {x F 2 (x) = + } m L (K 1 ) = m L (K 2 ) = 0. N 1 = K 1 K 2 m L (N 1 ) = 0 R n+m f(z)dm L (z) = = f + (z)dm L (z) f (z)dm L (z) R n+m R n+m R n (F 1 (x)i K c(x) F 2 (x)i K c(x)) dm L (x) (8.21) x N1 c f(x, y) y F 1 (x) F 2 (x) = f(x, y)dm L (y) = F (x) ( x K c ) R m (8.21) R n F (x)dm L (x) 8.2 Fubini A B L (R n+m ) (1) N 1 R n, N 2 R m x N c 1, y N c 2 A x, A y x( N c 1 ) m L(A x ), y( N c 2 ) m L(A y ) (2) m L (A) = m L (A x )dm L (x) = R n m L (A y )dm L (y). R m (8.22) 10.2 B, C C A B, m L (B \ C) = 0 D = B \ C 8.4 (2) m L (D x )dm L (x) = m L (D y )dm L (y) = 0. R n R m 32

33 N 1 R n, N 2 R m x N c 1, y N c 2 m L (D x ) = 0, m L (D y ) = 0. x, y m L ((B \ A) x ) = m L ((B \ A) y ) = 0. B x, B y x N c 1, y N c 2 A x, A y x N c 1, y N c 2 m L(A x ) = m L (B x ), m L (A y ) = m L (B y ) x( R n ) m L (B x ), y( R m ) m L (B y ) x( N c 1 ) m L(A x ), y( N c 2 ) m L(A y ) (2) x N c 1, y N c 2 m L(A x ) = m L (B x ), m L (A y ) = m L (B y ) B f(z) (z = (x, y) R n+m, x R n, y R m ) (1) y R m N 1 R n, N 2 R m x N1 c y( Rm ) f(x, y), y N2 c x( R n ) f(x, y) (2) () z = (x, y) f(x, y) 0 x, y f(x, y)dm L (y), f(x, y)dm L (x) (+ ) R m R n ( ) ( ) f(z)dm L (z) = f(x, y)dm L (y) dm L (x) = f(x, y)dm L (x) dm L (y) R n+m R n R m R m R n (8.23) (3) ( ) f L 1 (R n+m, m L ) (i) (ii) m L (N 1 ) = 0 (N 1 B(R n )) x / N 1 f(x, ) L 1 (R m, m L ). m L (N 2 ) = 0 (N 2 B(R m )) y / N 2 f(, y) L 1 (R n, m L ). x(/ N 1 ) f(x, y)dm L (y), y(/ N 2 ) R m f(x, y)dm L (x) R m R n, R m ( ) f(z)dm L (z) = f(x, y)dm L (y) dm L (x) R n+m R n R ( m ) = R m f(x, y)dm L (x) R n dm L (y). (8.24) (1) f + (z), f (z), f(z) 0 f(z) f n (z) A I A x R n, y R m {y R m I A (x, y) = 1} = A x {x R n I A (x, y) = 1} = A y. 8.9 (1) N 1, N 2 (2) f(x, y) f(x, y) f(x, y) = f(x, y) m L a.e.(x, y). N = {(x, y) f(x, y) f(x, y)} m L (N) = 0. N 8.9 (1) 33

34 0 N 1 R n, N 2 R m (2) N m 1 c L (N x )dm L (x) = N m 2 c L (N y )dm L (y) = 0. N i N i N i m L (N x ) = 0 (x N 1 c), m L(N y ) = 0 (y N 2 c ). x N c 1 f(x, y) = f(x, y) (m L a.e. y) y N c 2 f(x, y) = f(x, y) (m L a.e. x) (8.25) x N c 1 R m f(x, y)dm L (y) = y N c 2 R n f(x, y)dm L (x) = R m R n f(x, y)dml (y) f(x, y)dml (y) R m f(x, y)dm L (y), R n f(x, y)dm L (y) 8.2 (2) (3) (2) 8.2 (3) (8.26) 8.11 (1) f(x, y) R n (R m f(x, y) dm L (y) ) dm L (x) f L 1 (R n+m, m L ) (2) f(x, y) A B L (R n+m ) welldefined ( ) f(z)dm L (z) = f(x, y)dm L (y) dm L (x) A A y A ( x ) = f(x, y)dm L (x) dm L (y). (8.27) A y A x 8.12 I R n J R m f(x, y) I J (1) m L -a.e. x I y f(x, y), m L -a.e. y J x f(x, y) (2) J F (y) R- I F (y)dy, R- I F (y)dy R- J f(x, y)dy, R- J f(x, y)dy I ( ) ( ) R- f(x, y)dy dx = R- f(x, y)dy dx = f(x, y)dxdy I J I J I J 8.13 (2) (1) (1) x R- J f(x, y)dy = R- J f(x, y)dy 34

35 (1) (2) L p - (3) (4) (1) 10.1 ε A G F F A G m L (G \ A) ε, m L (A \ F ) ε (1) A m L (A) < {I i } i=1 A i=1 I i, i=1 m L(I i ) m L (A) + ε 2 I i = n l=1 [a(i) l, b (i) l ] 0 {ε l } J i = n l=1 (a(i) l ε l, b (i) l + ε l ) A i=1 J i m L (J i ) m L (A) + ε. (10.1) i=1 G = j=1 J i G m L (G \ A) = m L (G) m L (A) m L (J i ) m L (A) ε. A E E B = E \ A B G B G m L (G \ B) ε F = E G c F F A m L (A \ F ) = m L (A) m L (F ) = m L (E) m L (B) (m L (E) m L (G E)) i=1 = m L (G E) m L (B) m L (G) m L (B) = m L (G \ B) ε. (10.2) (2) A n B n (B 0 = ) A n = A (B n ) B c n 1 A n A = n=1 A n. A n (1) () 35

36 10.2 A B, C C A B m L (B\A) = m L (A \ C) = (1) f(x) R n g(x) f(x) = g(x) m L a.e. x. (10.3) (2) (1) f(x) f N (x) = E N,k = 2 N N k=0 k 2 N I E N,k (x) { x R n E N,2 N N = f 1 ((N, + )) k 2 N < f(x) k N } (0 k 2 N N 1) lim N f N (x) = f(x) (x R n ). E N,k Ẽ N,k ẼN,k E N,k m L (E N,k \ ẼN,k) = 0 f N (x) = 2 N N k k=0 2 N IẼN,k f N (x) f N (x) = f N (x) m L a.e. x. N=1 { f N (x) f N (x)} f N (x) = f N (x) lim N fn (x) = f(x) f(x) lim sup N fn (x) lim sup N fn (x) < + f(x) = 0 lim sup N fn (x) = + (10.4) Borel f(x) = f(x) m L a.e. x (2) f(x) g(x) m L ({f(x) g(x)}) = 0 N = {x R n f(x) g(x)} a R {x R n f(x) > a} = ({f(x) > a} N c ) ({f(x) > a} N) = ({g(x) > a} \ ({g(x) > a} N)) ({f(x) > a} N). (10.5) (10.5) 3 f(x) (2) L p C 0 (R n ) = {f : R n R f(x) R n {x R n f(x) 0} }. (10.6) 10.4 f L p (R n, m L ) (p 1) ε > 0 f ε C 0 (R n ) f f ε L p ε. 36

37 (3) 10.5 A R n R n v O(n) T A + v := {x + v x A}, T A := {T x x A} m L (A) = m L (A + v), m L (T A) = m L (A). (4) 10.6 (, F, m) A F m(a) = 0 A F (1) m L (A) = 0 (2) A m L (A) = 0. (2) (1) (1) (2) B R n m L (A B) + m L (A c B) m L (B) m L (A B) m L (A) = Carathéodory 10.3 Fubini 37

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

1.. 1 ll a ii. 1i. i f 1 1 a. a. i. t. 1 fi fi. t i j fj i. j ;i 1. i. aa a

1.. 1 ll a ii. 1i. i f 1 1 a. a. i. t. 1 fi fi. t i j fj i. j ;i 1. i. aa a 1.. 1 ll a ii. 1i. i f 1 1 a. a. i. t. 1 fi fi. t i j fj i. j ;i 1. i. aa 1 111 0 0 0 0 a I E l21 1fi i L < i i;i1=t ii 111 1; ai i ti a t T ;,, l 1i.... E 11fi i 1t l l t2 1i i1 t Ea li )2 0 u 0 1f )2

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

,..,,.,,.,.,..,,.,,..,,,. 2

,..,,.,,.,.,..,,.,,..,,,. 2 A.A. (1906) (1907). 2008.7.4 1.,.,.,,.,,,.,..,,,.,,.,, R.J.,.,.,,,..,.,. 1 ,..,,.,,.,.,..,,.,,..,,,. 2 1, 2, 2., 1,,,.,, 2, n, n 2 (, n 2 0 ).,,.,, n ( 2, ), 2 n.,,,,.,,,,..,,. 3 x 1, x 2,..., x n,...,,

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

3 3 i

3 3 i 00D8102021I 2004 3 3 3 i 1 ------------------------------------------------------------------------------------------------1 2 ---------------------------------------------------------------------------------------2

More information

1 1 2 GDP 3 1 GDP 2 GDP 3 GDP GDP GDP 4 GDP GDP GDP 1 GDP 2 CPI 2

1 1 2 GDP 3 1 GDP 2 GDP 3 GDP GDP GDP 4 GDP GDP GDP 1 GDP 2 CPI 2 Macroeconomics/ Olivier Blanchard, 1996 1 2 1........... 2 2............. 2 2 3 3............... 3 4...... 4 5.............. 4 6 IS-LM................. 5 3 6 7. 6 8....... 7 9........... 8 10..... 8 8

More information

untitled

untitled Y = Y () x i c C = i + c = ( x ) x π (x) π ( x ) = Y ( ){1 + ( x )}( 1 x ) Y ( )(1 + C ) ( 1 x) x π ( x) = 0 = ( x ) R R R R Y = (Y ) CS () CS ( ) = Y ( ) 0 ( Y ) dy Y ( ) A() * S( π ), S( CS) S( π ) =

More information

一般演題(ポスター)

一般演題(ポスター) 6 5 13 : 00 14 : 00 A μ 13 : 00 14 : 00 A β β β 13 : 00 14 : 00 A 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A β 13 : 00 14 : 00 A 13 : 00 14 : 00 A

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80

3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 3 0 4 3 5 6 6 7 7 8 4 9 6 0 30 33 34 3 36 4 4 5 44 6 47 7 54 8 56 9 60 0 6 64 67 3 70 4 7 5 75 6 80 7 8 3 elemet, set A, A A, A A, A A, b, c, {, b, c, }, x P x, P x x {x P x}, A x, P x {x A P x} 3 { {,,

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

ISTC 3

ISTC 3 B- I n t e r n a t i o n a l S t a n d a r s f o r Tu b e r c u l o s i s C a r (ÏS r c ) E d is i k e - 3 ) a =1 / < ' 3 I n t e r n a t i o n a l s t a n d a r d s f o r T B C a r e e «l i s i k e 3

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

+ + + + n S (n) = + + + + n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 (

+ + + + n S (n) = + + + + n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 ( k k + k + k + + n k 006.7. + + + + n S (n) = + + + + n S (n) S (n) S 0 (n) S (n) 6 4 S (n) S (n) 7 S (n) S 4 (n) 8 6 S k (n) 0 7 (k + )S k (n) 8 S 6 (n), S 7 (n), S 8 (n), S 9 (n), S 0 (n) 9 S (n) S 4

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

t14.dvi

t14.dvi version 1 1 (Nested Logit IIA(Independence from Irrelevant Alternatives [2004] ( [2004] 2 2 Spence and Owen[1977] X,Y,Z X Y U 2 U(X, Y, Z X Y X Y Spence and Owen Spence and Owen p X, p Y X Y X Y p Y p

More information

05秋案内.indd

05秋案内.indd 1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

日本糖尿病学会誌第58巻第1号

日本糖尿病学会誌第58巻第1号 α β β β β β β α α β α β α l l α l μ l β l α β β Wfs1 β β l l l l μ l l μ μ l μ l Δ l μ μ l μ l l ll l l l l l l l l μ l l l l μ μ l l l l μ l l l l l l l l l l μ l l l μ l μ l l l l l l l l l μ l l l l

More information

dvipsj.4131.dvi

dvipsj.4131.dvi 7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :

More information

June 2016 i (statistics) F Excel Numbers, OpenOffice/LibreOffice Calc ii *1 VAR STDEV 1 SPSS SAS R *2 R R R R *1 Excel, Numbers, Microsoft Office, Apple iwork, *2 R GNU GNU R iii URL http://ruby.kyoto-wu.ac.jp/statistics/training/

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

13Ad m in is t r a t ie e n h u lp v e r le n in g Ad m in is t r a t ie v e p r o b le m e n,p r o b le m e n in d e h u lp v e r le n in g I n d ic

13Ad m in is t r a t ie e n h u lp v e r le n in g Ad m in is t r a t ie v e p r o b le m e n,p r o b le m e n in d e h u lp v e r le n in g I n d ic 13D a t a b a n k m r in g R a p p o r t M ィC Aa n g e m a a k t o p 19 /09 /2007 o m 09 :3 1 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06 013-00185 V o o r z ie n in g N ie

More information

10 1 1 (1) (2) (3) 3 3 1 3 1 3 (4) 2 32 2 (1) 1 1

10 1 1 (1) (2) (3) 3 3 1 3 1 3 (4) 2 32 2 (1) 1 1 10 10 1 1 (1) (2) (3) 3 3 1 3 1 3 (4) 2 32 2 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (2) 1 (3) JI S JI S JI S JI S 25 175 J AS 3 (1) 3 70 (2) (3) 100 4 (1)69 (2) (3) (4) (5) (6) (7) (8)70 (9) (10)2 (11)

More information

MultiWriter 5650C 活用マニュアル

MultiWriter 5650C 活用マニュアル 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 11 1 2 3 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 1 2 3 a b c 30 31 32 C *1 *2 *2 33 2 2 2 2 2 2 2 2 2 34 *1 *2 ± *1 C C 35 36 37 38 39 40 OK 1 2 3 4

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

05-5.dvi

05-5.dvi 131 71 71 71 71 71 71 71 7 1 71 71 71 71 71 7 1 71 71 71 71 71 71 7 1 71 71 71 71 71 71 71 71 7 1 1 71 71 71 71 71 71 71 71 71 7 1 75(468) 1 71 71 7 517.95 1 7.1 7. 1 71 71 71 71 71 71 71 7, 1 7.1 7. 1

More information

3 3.1 *2 1 2 3 4 5 6 *2 2

3 3.1 *2 1 2 3 4 5 6 *2 2 Armitage 1 2 11 10 3.32 *1 9 5 5.757 3.3667 7.5 1 9 6 5.757 7 7.5 7.5 9 7 7 9 7.5 10 9 8 7 9 9 10 9 9 9 10 9 11 9 10 10 10 9 11 9 11 11 10 9 11 9 12 13 11 10 11 9 13 13 11 10 12.5 9 14 14.243 13 12.5 12.5

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information