D:/BOOK/MAIN/MAIN.DVI

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "D:/BOOK/MAIN/MAIN.DVI"

Transcription

1 8 2 F (s) =L f(t) F (s) =L f(t) := Z 0 f()e ;s d (2.2) s s = + j! f(t) (f(0)=0 f(0) _ = 0 d n; f(0)=dt n; =0) L dn f(t) = s n F (s) (2.3) dt n Z t L 0 f()d = F (s) (2.4) s s =s f(t) L _ f(t) Z Z ;s L f(t) _ df() = 0 d ;s 0 e;s d = f()e ; f() de;s d 0 d 0 Z = f()e + s f()e ;s d = ;f(0) + sf (s) (2.5) 0 f(t) n L d n f(t) = ;s n; f(0) ; s n;2 f(0) _ dn; f(0) ;; dt n dt n; + s n F (s) (2.6) (f(0) = 0 0) (2.6) (2.3) f(t) g(t) = _g(t) Z t 0 _ f(0) = 0 d n; f(0)=dt n; = f()d G(s)

2 2.3 v R (t) =Ri R (t) (2.5) Z v C (t) = t i C ( )d (2.6) C 0 v L (t) =L d dt i L(t) (2.7) (a) (b) (c) 2.7 R []C [F]L [H]v R (t)v C (t) v L (t) [V]i R (t)i C (t)i L (t) [A] 2. RL 2.8 RL u(t) vin(t) y(t) i(t) (a) 2.8 u(t) = vin(t)y(t) = i(t) ( ) 2.8 RL L _y(t) +Ry(t) =u(t) (2.8) (b) (2.8) u(s) y(s) P (s)

3 2.4 () 5 () 2.3 f r (t) ( r (t)) () c f r (t) =;c _z(t) (2.34) r (t) =;c (t) _ (2.35) (a) (b) 2.3 () 2.3 (a) 2.3 (a) M z(t) =f (t) ; c _z(t) (2.36) u(t) =f (t) y(t) =z(t) M y(t) +c _y(t) =u(t) (2.37) (b) (2.37) P (s) P (s) = Ms 2 (2.38) + cs (b) u(t) = (t)y(t) =

4 3. 37 (p i ) k i =(s ; p i )y(s) (3.30) s=p i bs + b0 y(s) = (s ; p)(s ; k p2) = s ; k2 p + s ; p2 (3.3) s ; p (s ; p)y(s) =k + k2(s ; p) s ; p2 (3.32) s = p k =(s ; p)y(s) s=p i k k2 (3.3) (3.32) (3.33) (3.30) k = sy(s) s=0 = s + s=0 = k2 =(s +)y(s) s=; = s s=; = ; (b) p i (i = 2 n) p = p 2 = = p` (3.27) y(s) = k ` (s ; p )` + + k 2 (s ; p ) 2 + k s ; p + k`+ s ; p`+ + k`+2 s ; p` k n s ; p n (3.34) y(s) y(t) =L ; y(s) = k `t` + + k 2 t + k e pt `! +k`+ e p`+t + k`+2 e p`+2t + + k n e pnt (3.35)

5 38 3 k i 8 >< >: (p i ) d`;i f(s ; p )`y(s)g k i = (` ; i)! ds`;i k j =(s ; p j )y(s) s=pj s=pi (i = 2 `) (j = ` + `+2 n) b2s2 + bs + b0 y(s) = (s ; p) 2 k2 (s ; p3) = (s ; p) 2 k k3 + s ; p + s ; p3 (3.37) (s ; p) 2 (s ; p) 2 k3(s ; p)2 y(s) =k2 + k(s ; p) + s ; p3 (3.38) s = p k2 =(s ; p) 2 y(s) s=p k2 (3.38) s df(s ; p) 2 y(s)g ds (3.36) (3.37) (3.38) (3.39) = k + k3f2(s ; p)(s ; p3) ; (s ; p)2 g (s ; p3) 2 (3.40) (3.40) s = p k = df(s ; p)2 y(s)g ds s=p (3.4) k k3 pi (3.36)

6 44 3 (a) T> 0 (b) T< T T > 0 T < 0 T > 0 T T > 0 t = T y(t) y = K 63.2 % 3.6 y(t) = K T e;t=t (t 0) (3.52) RL S ON () (2) (3) u(t) e(t) y(t) i(t) RL T S ON i(t) i R

7 (a) 0 < (b) ; <<0 (c) 3.4 y(t) =KL ; s ; 2 (d) ;! n (s +! n ) 2 ; s +! n = K ; e ;!nt (! n t +) (3.57) (3.57) = y = K ( 3.4 (c)) = ; ( 3.4 (d)) (iii) jj > P (s) (2 ) p = ;( + p 2 ; )! n p 2 = ;( ;p 2 ; )! n t 0

8 48 3 ; y(t) =KL s + p2 p ; p ; p 2 s ; p s ; p 2 ; + e! nt ; ; ; e ;! nt # = K " ; e;!nt 2 (3.58) =p 2 ; jj >>0 (3.58) > y = K ( 3.4 (c)) <; ( 3.4 (d)) 2 (a) Tp (3.54)(3.57)(3.58) 0 << 0 << (3.54) y(t) =K ( ; e ;!nt p ; 2 sin! dt + cos! d t!) y(t) _y(t) = K! n p ; 2 e;!nt sin! d t (3.59) T p! d t = (sin! d t =0 t>0) T p T p = = (3.60)! d! np ; 2 (b) Amax y max y max = y(t p )=K ; +e ;!ntp (3.6) y = K A max

9 A max = y max ; y = Ke ;!ntp = Kexp ; p ; 2! (3.62) (c) (3.59) i y i! d t i =(2i ; ) (i = 2 ) t i y(t) i A i = A i+ =A i = A i+ A i y i = y(t i )=K ; +e ;!nti (3.63) A i = y i ; y = Ke ;!nti (3.64) = e;!nti+ e ;!nti = exp ; 2 p ; 2 0 =log e 2! (3.65) 0 = ; (3.66) p ; () () <0 () =0 () 0 << A max 0 <<!! A max = Kexp ; 2 = exp ; p ; p 2 ; 2 y = K

10 6. 09 u(t) =Asin!t (A >0!>0) y(t) u(t) =Asin!t u(s) =A!=(s 2 +! 2 ) y(t) y(s) =P (s)u(s) = k = A! +! s + A! s 2 +! 2 = A(j ;!) k2 = 2 2( +! 2 ) k s + + k2 s + j! + k3 = ; A(j +!) 2( +! 2 ) k3 s ; j! y(t) y(t) =L ; [y(s)] = k e ;t + k 2e ;j!t + k 3e j!t (6.2) = A! +! 2 e;t + A (sin!t ;! cos!t) (t 0) (6.3) +! 2 (6.3) e ;t = 0 y(t) u(t) = A sin!t y(t) = A (sin!t ;! cos!t) +! 2 = B(!) sin(!t + G p(!)) (= y app(t)) (6.4) A B(!) = p +! 2 Gp(!) =tan; (;!) =;tan ;! (a) u(t) = sin0:t 6.2 (b) P (s) ==(s +) u(t) = sin0t 6.2 A =! =0: 0 u(t)y(t) y(t) y app(t) 6.2 u(t) y(t)

11 6. 3 P (j!)= N (j!)n2(j!) N m (j!) D(j!)D2(j!) D n (j!) = jn (j!)je j\n(j!) jn2(j!)je j\n2(j!) jn m (j!)je j\nm(j!) jd(j!)je j\d(j!) jd2(j!)je j\d2(j!) jd n (j!)je j\dn(j!) jn (j!)jjn2(j!)jjn m (j!)j = jd(j!)jjd2(j!)jjd n (j!)j exp ( j mx nx \N i (j!) ; \D i (j!) i= i=!) (6.20) (6.9) jp (j!)j \P (j!) jp jn (j!)jjn2(j!)jjn m (j!)j (j!)j = jd(j!)jjd2(j!)jjd n (j!)j mx (6.2) \P (j!)= \N i (j!) ; \D i (j!) (6.22) i= i= P (s) ==(s +)(s +2) P (s) = D(s) =s + D2(s) =s +2 D (s)d 2(s) p jd (j!)j = +! 2 \D (j!) = tan ;! jd 2(j!)j = p +4! 2 \D 2(j!) = tan ; 2! P (s) jp (j!)j = jd = ; (j!)jjd 2(j!)j p( (6.23) +! 2 )( + 4! 2 ) \P (j!) =; \D (j!)+\d 2(j!) = ; tan ;! + tan ; 2! (6.24) (6.23) (6.5) = tan ;! 2 = tan ; 2! nx

12 8 6 M p jp (0)j =! p u(t) y(t) u(t) () P (s) = +Ts jp (j!)j \P (j!) (6.27) jp (j!)j = p +(!T ) 2 \P (j!)=;tan;!t (6.28) (6.28) ( 20log!T << 0 jp (j!)j = 20log 0 = 0 [db] \P (j!) = ;tan ; 0=0[deg] 8 <!T = : 20log 0jP (j!)j =20log 0 p = ;3:0 [db] 2 \P (j!)=;tan ; =;45 [deg] 8 <!T >> : 20log 0jP (j!)j = 20log 0!T = ;20log 0!T [db] \P (j!) = ;tan ; = ;90 [deg] ! ==T 0[dB] ;20 [db/dec] 0 <! =5T 0 [deg]! 5=T ;90 [deg] (20 )

13 20 6! b jp (j!)j () T (!<< =T 0 [db] 0 [rad]!>> =T ) () ()! c ==T () (6.27) (=2 0) =2 6.6 P (s) ==( + 0s) (2 )

14 7. 37 (P (s)c(s) ) P (s)c(s) P (s)c(s) (; 0) (a) (b) 7.5 P (s)c(s) 7.2 P P (s) = +Ts T >0 C(s) =kp kp > 0 7. L(s) :=P (s)c(s) =kp =( + Ts) jl(j!)j \L(j!) jl(j!)j = kp p +(!T) 2 \L(j!) =;tan;!t! =0 jl(j!)j = kp \L(j!) = 0 [deg]! = jl(j!)j =0 \L(j!) =;90 [deg] L(j!) kp L(j!) = +j!t = kp ( ; j!t) +(!T) 2 L(j!) Im L(j!) =0! =0 P (j!)c(j!) 7.6 kp > 0 P (j!)c(j!) (; 0) kp > 0

15 P (s)c(s) P (s)c(s) P P (s) = (s +) 3 (7.) C(s) =k P k P > 0 (7.2) 7. k P k P > 0 L(s) :=P (s)c(s) jl(j!)j \L(j!) jl(j!)j = k P j +j!j 3 = k P ( +! 2 ) 3=2 \L(j!) =;3tan;! (7.3)! =0 jl(j!)j = k P \L(j!) = 0 [deg]! = jl(j!)j =0 \L(j!) =;270 [deg] L(j!) L(j!) = kp D(j!) D(j!) =(; 3!2 )+j!(3 ;! 2 ) D(j!) Im D(j!) =0 0 <!<! = p 3 \L(j!) =;80 [deg] p! =! pc! pc = 3 7.! =! pc jl(j! pc)j = k P ( +! 2 pc) 3=2 = kp 8 < (7.4) 0 <k P < 8 7. k P =8

16 D =0 2 Ann Bn Cn D u(t) y(t) ( ) 3 (2.) n>m() D = (2.39) (t) =0 J (t) =;c _ (t) ; M`g(t) + (t) (8.3) x(t) u(t) y(t) " # " # x (t) (t) x(t) = = x 2(t) _(t) u(t) = (t) y(t) =(t) _x (t) = (t) _ =x 2(t) _x 2(t) = (t) = ;;c (t) _ ; M`g(t) + (t) J = ; M`g J x(t) ; c J x2(t) + J u(t) y(t) =(t) =x (t) (8.3) A = 4 ; M`g ; c 5 B = 4 5 C = 0 D =0 (8.4) J J J 2 MATLAB 8.5. (73 ) 3

17 D = P{D P{D u(t) =k P e(t) ; k D _y(t) e(t) =r ; y(t) (8.28) u(t) = (t)y(t) =(t) x (t) =(t) x 2(t) = _ (t) (8.28) P{D u(t) =k P ; r ; x (t) ; k Dx 2(t) = ;k P " # x (t) ;k D + k P r x 2(t) = Kx(t) +Hr K = ;k P ;k D H = kp (8.29) (8.27) r =0(8.27) H =0 u(t) =Kx(t) (8.30) (8.30) x(t) (8.30) (8.) ; _x(t) = A + BK x(t) (8.3) A + BK K t! x(t)! 0 (8.30) K

18 y(t) =x (t) =(t) r (8.45)(8.46) K y(t) r = 8.6 Q = diag q q > 0 0 R = (r = x(0) = 0) Z t u(t) =Kx(t) +k I w(t) w(t) := e( )d e(t) =r ; y(t) (8.47) 0 x(t) = y(t) (5.0) (8.47) _y(t)t I{PD x e (t) = x(t) T w(t)t 8.7

19 () P (s) = s ;2 +2 2s + (2) P (s) = ;p 2j ; 3s 2 +2s C 2.2 P (s) = CLs 2 + RCs + Cs 2.3 () P (s) = RCs + (2) P (s) = RCs P (s) = Js 2 + cs 2.5 P (s) = Ms + c 2.6 P (s) = Ms 2 +(c + c 2 )s + k T (t) = 2 M _z(t)2 U (t) =0D(t) = 2 c _z(t)2 q(t) =z(t)(t) =f (t) (2.46) (2.36) r T = M c K = 2.9! n = p = R C K = c CL 2 L 2.0 ;:043 0:5935j0:4793 0:752j;:0000 :442j P (s) = s 2 ; :2j s () ; s s s ; (2) s s s 4 (3) s s s 2 +4 (4) ; s +3 s s 2 +6s +0 (5) 6 s +5 (s +2) 3 (6) s 2 +4s () f (t) =2+3e;2t (2) f (t) = t2 2 e ;t (3) f (t) =cos5t + 5 sin5t (4) f (t) =e ;t 2cos2t + 32 sin2t 3.4 () y(t) = 3 2 ( ; e ;2t ) (2) y(t) =2; 3e;t + e;2t cos2t + 2 sin2t (3) y(t) = 2( ; te;t ; e;t ) (4) y(t) =; e;t 3.5 () y = 2 (2) y =2

20 203 K 3.6 y(t) =L; y(t) = K +Ts T e ;t=t y(0) = K T 3.7 () P (s) = Ls + R T = L R (2) y(t) =K( ; e;t=t )= R ( ; e ;Rt=L )(t 0)y = R (3) R T L T R = =50[]L = RT =0:2 [H] y 3.9 R 2r L r C k 3.0 ()! n = M = c K = 2p km k (2) K = y =0:04! d = A max = 6:28 = ; log e = 2:77 T p T p K (3)! n = q! d = 6:87 = = 0:404 k = = 25! n K M = k =! n 2 0:530c =2! nm = 2:94 3. () (2) (3) (4) () s = ; p 3j 2 (2) s = ; p , 4.4 () k P > ; 2 5 (2) k P > ; <k I < 2 5 (2 + 5k P ) () C(s) =2e = 2 C(s) =5e = () C(s) =2y = 5 5 C(s) =5y = G yr(s) = 0s +6:25 s 3 +2s 2 +2s +6:25, G yd(s) = (2) e =0 (2) y =0 5s s 3 +2s 2 +2s +6:25, s 3 +2s 2 +2s G er(s) = s 3 +2s 2 +2s +6:25, G ;5s ed(s) = s 3 +2s 2 +2s +6:25 G yr(s)gyd (s)

21 () y(t) = 2 et ; 2 (cost +sint) t! et! y(t) y(t) (6.7) 6.2 () jp (j!)j = p 25 +! 2, \P! (j!)=;tan; 5 (2) jp (j!)j = p 25 +! 2, \P (j!) =! tan; 5 (3) 2 jp (j!)j = p 4+! 4, \P 2! (j!)=;tan; 2 ;! 2 (4) jp (j!)j =! 2s +! 2 (9 +! 2 )(6 +! 2 )(25 +! 2 ), \P (j!) = 90 + tan ;! ; tan ;! ;! 3 tan; ;! 4 tan; 5 (5) jp (j!)j = ( +! 2 ) 5, \P (j!)=;0tan;! 6.3 y(t) = sin(t + ), = tan ; 2 ; tan; B(! ) A = 0, B(! 2) A =, B(! 3) A = 0, B(! 4) A = 6.5 P (j!) ==( + j!t) =x + jy jp (j!)j ==p +(!T ) 2 = px 2 + y 2 \P (j!)=;tan ;!T =tan ; y=x y=x = ;!T p +(!T ) 2 = p px +(;y=x) 2 = 2 + y 2 00 (x ; =2) 2 + y 2 =(=2) () P (j!) = e ;j!l = cos!l ; jsin!l jp (j!)j =\P (j!) = ;!L 6.8 (a) (2) jp (j!)j ==p +(!T ) 2 \P (j!) =;(!L +tan ;!T ) 6.8 (b) =0) =0) 7.2 () 0 <k P < 8 (! =! pc = p 5 Im P (j! pc)c(j! pc) (2) 0 <k P < 6(! =! pc = p 2 Im P (j! pc)c(j! pc)

22 7.3 () 8>< >: 8>< >:!gc =!pc = 0 [rad/s] k G M =80; P 20log 0 4 qk [db] =2 ; P 02 [rad/s] (k P > 0 4 ) P M = 80 ; 4tan ; q (2) k P = k =2 ; P [deg] (k P > 0 4 ) P k P =8:5 P M =49:98 [deg]pi k P =5:8T I =0:85 P M =50:23 [deg]pid k P =8:5T I =0:85T D =0:04 P M =50:30 [deg] S(s)T (s) 8 8. () (2.36) x(t) = T z(t) _z(t) Z t _x(t) =" 0 0 ;c=m y(t) = 0 x(t) # x(t) +" 0 =M # u(t) P (s) ==(Ms 2 + cs) (2) RCL (2.20)(2.2) T x(t) = i( )d i(t) 0 _x(t) =" 0 ;=CL ;R=L y(t) = =C 0 x(t) 8.2 e At = e ;2t" # ;3t" 3 ;2 # ; + e # x(t) +" 0 =L # u(t) P (s) ==(CLs 2 + RCs +) ;6 ;2 6 3

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

A大扉・騒音振動.qxd

A大扉・騒音振動.qxd H21-30 H21-31 H21-32 H21-33 H21-34 H21-35 H21-36 H21-37 H21-38 H21-39 H21-40 H21-41 H21-42 n n S L N S L N L N S S S L L log I II I L I L log I I H21-43 L log L log I I I log log I I I log log I I I I

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

CSE2LEC2

CSE2LEC2 " dt = "r(t "T s dt = "r(t "T s T T s dt T "T s = "r ln(t "T s = "rt + rt 0 T = T s + Ae "rt T(0 = T 0 T(0 = T s + A A = T 0 "T s T(t = T s + (T 0 "T s e "rt dy dx = f (x, y (Euler dy dx = f (x, y y y(x

More information

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........ version 0.01 : 2004/04/16 1 2 1.1................. 2 1.2.......................... 3 1.3................. 5 1.4............... 6 1.5.............. 7 2 9 2.1........................ 9 2.2......................

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

PII S (96)

PII S (96) C C R ( 1 Rvw C d m d M.F. Pllps *, P.S. Hp I q G U W C M H P C C f R 5 J 1 6 J 1 A C d w m d u w b b m C d m d T b s b s w b d m d s b s C g u T p d l v w b s d m b b v b b d s d A f b s s s T f p s s

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

小川/小川

小川/小川 T pt T T T T p T T T T T p T T T T T T p p T T T p p T p B T T T T T pt T Tp T p T T psp T p T p T p T p T p Tp T p T p T T p T T T T T T T Tp T p p p T T T T p T T T T T T T p T T T T T p p T T T T T

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

F8302D_1目次_160527.doc

F8302D_1目次_160527.doc N D F 830D.. 3. 4. 4. 4.. 4.. 4..3 4..4 4..5 4..6 3 4..7 3 4..8 3 4..9 3 4..0 3 4. 3 4.. 3 4.. 3 4.3 3 4.4 3 5. 3 5. 3 5. 3 5.3 3 5.4 3 5.5 4 6. 4 7. 4 7. 4 7. 4 8. 4 3. 3. 3. 3. 4.3 7.4 0 3. 3 3. 3 3.

More information

本文/YAZ092F

本文/YAZ092F pd qpdq pdqd pdq ytt f s e is s scovytyts fc d d L d ytt d LLytyt twn ytl d t L d jd jjd L j x z x e z dz pd q LL d ytltt twn z zd ytpdq f e i d e i e i f d pdq pdq d LL d ytlt fracdiff tt d d d pdq pdq

More information

表1-表4_No78_念校.indd

表1-表4_No78_念校.indd mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Fs = tan + tan. sin(1.5) tan sin. cos Fs ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

観測量と物理量の関係.pptx

観測量と物理量の関係.pptx (I! F! ( (! "! (#, $ #, $!! di! d"! =!I! + B! (T ex T ex : "! n 2 / g 2 = exp(! h! n 1 / g 1 kt ex " I! ("! = I! (0e "! +! e ("! " #! B! [T ex ("! ]d " d! " = # " ds = h" 4$ %("(n dsb h" 1 12 [1! exp(!

More information

...............y.\....07..

...............y.\....07.. 150 11.512.0 11.812.0 12.013.0 12.514.0 1 a c d e 1 3 a 1m b 6 20 30cm day a b a b 6 6 151 6 S 5m 11.511.8 G 515m 11.812.0 SG 10m 11.812.0 10m 11.511.8 1020m 11.812.0 SF 5m 11.511.8 510m 11.812.0 V 5m

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

1320M/161320M

1320M/161320M " # $ %! θθ v m g y v θ O v α x! O x y x α x y y " v # v sinα $ & v cosα ' v cosα v sinα ( v cosα % v sinα " g # gsinθ $ g sinθ ' g ( gsinθ ) g sinθ % gcosθ & g cosθ * gcosθ! g cosθ xy y L v g x xy L α

More information

1

1 1 2 3 4 5 6 7 8 9 10 A I A I d d d+a 11 12 57 c 1 NIHONN 2 i 3 c 13 14 < 15 16 < 17 18 NS-TB2N NS-TBR1D 19 -21BR -70-21 -70-22 20 21 22 23 24 d+ a 25 26 w qa e a a 27 28 -21 29 w w q q q w 30 r w q!5 y

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () 64: ィャ 9997ィ 34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747

More information

小川/小川

小川/小川 p TRE p Mp p p M p S p p Tp M p p p p p p p p M T T T p p MT MR MR M M p p M M p p M T T T T T T T T S T M p M p T p M E M M p p p p TT T T p p p T T p T T T T T T T p p pt T T T p S T S S T p T T T T

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

液晶テレビ保護パネル対応表 (SHARP) SHARP LC-AE6 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE6 LC-AE6 LC-AE6 LC-AE7 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE7 LC-AE7 LC-AE7

液晶テレビ保護パネル対応表 (SHARP) SHARP LC-AE6 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE6 LC-AE6 LC-AE6 LC-AE7 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE7 LC-AE7 LC-AE7 液晶テレビ保護パネル対応表 (Panasonic) Panasonic TH-A305 A305 39 TH-39A305 左右 7.5 下 7mmはみでますが 使用できます TH-A305 YK-CRT016 A0 TH-A0 左右 9.5 下 30mmはみでますが 使用できます AS600 TH-AS600 AS630 TH-AS630 YK-CRT016 TH-AS6 AS6 TH-AS6 55

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv - - m k F = kx ) kxt) =m d xt) dt ) ω = k/m ) ) d dt + ω xt) = 0 3) ) ) d d dt iω dt + iω xt) = 0 4) ω d/dt iω) d/dt + iω) 4) ) d dt iω xt) = 0 5) ) d dt + iω xt) = 0 6) 5) 6) a expiωt) b exp iωt) ) )

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

取扱説明書[N-02B]

取扱説明書[N-02B] 187 1 p p 188 2 t 3 y 1 1 p 2 3 4 5 p p 1 i 2 189 190 1 i 1 i o p d d dt 1 2 3 4 5 6 9 0 191 192 d c d b db d 1 i 1 193 194 2 d d d r d b sla sla 1 o p i o o o op 195 u u 1 u t 1 i u u 1 i 196 1 2 bd t

More information

CAT. No. 1102q 2014 G-2

CAT. No. 1102q 2014 G-2 A7 A4 4 45 46 75 76 83 84 09 0 8 82 205 206 243 244 279 280 303 304 325 326 333 334 345 346 355 356 379 33 AT. No. 02q NSKAT. No. 02q NSK SI JIS NSK NSK http://www.nsk.com A 7. A 7.2 A 7 A6 A8 3. A8 3.2

More information

技適番号 JARL 日本マランツ株式会社 C4200 KU086 ***** 日本マランツ株式会社 C4200D KU085 ***** 日本マランツ株式会社 C450 S55 日本マランツ株式会社 C460 A052S 日本マランツ株式会社 C470 KV061 ***** 日本マランツ株式会社

技適番号 JARL 日本マランツ株式会社 C4200 KU086 ***** 日本マランツ株式会社 C4200D KU085 ***** 日本マランツ株式会社 C450 S55 日本マランツ株式会社 C460 A052S 日本マランツ株式会社 C470 KV061 ***** 日本マランツ株式会社 技適番号 JARL アルインコ株式会社 ALD-23 AL40 アルインコ株式会社 ALD-23D AL41M アルインコ株式会社 ALD-23DX AL51M アルインコ株式会社 ALD-23SX AL50 アルインコ株式会社 ALD-24 AL36 アルインコ株式会社 ALD-24D AL37M アルインコ株式会社 ALD-24DX AL53M アルインコ株式会社 ALD-24SX AL52 アルインコ株式会社

More information

2

2 23 12 28 23 15 ------ ------------------------------------------------------------------------------------------------------------------ -------------------------------------------------------------------------------------------------------------------------

More information

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23 2 III Copyright c 2 Kazunobu Yoshida. All rights reserved. i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2...

More information

X-FUNX ワークシート関数リファレンス

X-FUNX ワークシート関数リファレンス X-FUNX Level.4a xn n pt 1+ 1 sd npt Bxn3 cin + si + sa ( sd xn) 3 n t1 + n pt xn sd ( t1+ n pt) Bt t t cin + xn si sa ( sd xn) n 1 + +

More information

2014.10.27 3.13 2

2014.10.27 3.13 2 last update : 2014 10 27 1 3 1 2014.10.27 3.13 2 1 1 2 5 2.1 1-5F.......................................... 5 2.2 6-7F.......................................... 7 2.3 8-12F..........................................

More information

CM CM VOLVO

CM CM VOLVO CM CM VOLVO - 1 - - 2 - - 3 - - 4 - CM CM CM CM CM CM CM CM CM CM CM - 5 - CM CM CM CM CM CM CM CM CM CM CM CM CM - 6 - 4 CM CM CM CM CM - 7 - CM CM CM CM CM CM CF CF CM CF CM CM CM CM CM CM CM CM CM CM

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

DPI orm-lex T. woods orm-lex 1 2

DPI orm-lex T. woods orm-lex 1 2 DPI orm-lex T. woods orm-lex 1 2 3 4 1 2 7 4 3 0.,,000Nm 0. 3,,000Nm 1 3,3Nm 1,2 3 Nm 0.,0,000Nm 0.7,000Nm NEMMG1. 1 7 0. 1.0 1. E max. P N.4 7.4 1 2.7 3. 4.1 4. 3 0 7.2 07 3 0. 14 0 7 1 7.2 2 0 7 1.

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

Network / PC MFP Mobile PS Mobile Optimized Print Services 2 bizhub 754/654

Network / PC MFP Mobile PS Mobile Optimized Print Services 2 bizhub 754/654 Network / PC MFP Mobile PS Mobile Optimized Print Services 2 bizhub 754/654 bizhub 754/654 3 1 1 4 bizhub 754/654 24 22 20 18 16 14 12 10 8 6 4 2 0 22.5kWh 751 754 601 654 7.12kWh 5.3kWh 16.75kWh 6.40kWh

More information

<898991E896DA8E9F2E696E6464>

<898991E896DA8E9F2E696E6464> 2-A-ICL11 2-A-SL 2-A-S5-1 2-A-S5-2 2-A-S5-3 2-A-S5-4 2-A-S5-5 2-A-S5-6 2-A-ICL12 2-A-ICL13 2-B-ICL14 2-B-M7-1 2-B-M7-2 2-B-M7-3 2-B-M7-4 2-B-M7-5 2-B-M7-6 2-B-M7-7 2-B-IS14 2-B-ICL15 2-B-S6-1 2-B-S6-2

More information

土砂流入対策実施計画〔久著呂川〕

土砂流入対策実施計画〔久著呂川〕 22 52 12 3000 2500 2000 1500 (km 2 ) 1000 500 0 1947 1955 1977 1985 1989 1994 2000 22 30 52 60 6 12 2000 1947 2000 110 100 90 (km 2 ) 30 20 10 1947 2000 0 () ( 10 20 () 30 40 50 60 60 a b b

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Untitled

Untitled 23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

untitled

untitled 007 RESEARCH ON A ROBOT THROWING BO-SHURIKEN OF OLD JAPANESE MILITARY ARTS 06R ... - 4 -... - 5 -.... - 5 -.... - 5 -.... - 6 -... - 7 -.... - 7 -.... - 7 -.....- 7 -.....- 8 -.....- 8 -..4...- 9 -....

More information

4 小川/小川

4 小川/小川 B p p B pp M p T p M p Tp T pt T p T p T p p Tp T T p T p T pt p Tp p p p p p p p p T p p T T M M p p p p p p T p p p T T p T B T T p T T p T p T T T p T p p T p Tp T p p Tp T p T Tp T T p T p T p T p

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

取扱説明書 [F-05E]

取扱説明書 [F-05E] F-05E 12.11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 a b 22 c d e 23 24 a o c d a b p q b o r s e f h i j k l m g f n a b c d e f g h 25 i j k l m n o p q r s a X b SD 26 27 28 X 29 a b c

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

/i 1,,._ /\YF*r$-/t, /.:/ lrfi-/l ty)t- /:V-fi-)v '+l'y)t * /;v--t:--l.'>l la- ' i>rtv /iv-i.-,v /r/tv /, / 'v1 -;l- /v F;:*#(2) A^*f *#(3) t45.5i *7v>/tvz

More information

エラーコード 一 覧 コード 名 称 : 審 査 チェックエラーコード => 返 戻 事 由 と 共 有 する コード 概 要 : 審 査 において 一 次 チェック 資 格 チェックを 行 ったときにエラーとなった 項 目 に 設 定 するコード 及 び 返 戻 一 覧 に 出 力 する 返 戻

エラーコード 一 覧 コード 名 称 : 審 査 チェックエラーコード => 返 戻 事 由 と 共 有 する コード 概 要 : 審 査 において 一 次 チェック 資 格 チェックを 行 ったときにエラーとなった 項 目 に 設 定 するコード 及 び 返 戻 一 覧 に 出 力 する 返 戻 12.エラーコード 一 覧 表 エラーコードは 随 時 更 新 されます 最 新 のエラーコード 表 については 本 会 ホームページより ダウンロードできます エラーコード 一 覧 コード 名 称 : 審 査 チェックエラーコード => 返 戻 事 由 と 共 有 する コード 概 要 : 審 査 において 一 次 チェック 資 格 チェックを 行 ったときにエラーとなった 項 目 に 設 定 するコード

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 - 1-9 宮城県沖地震 ( 単独 ) 宮城県沖地震 ( 連動 ) 長町 - 利府線断層帯 図 1-4-2 図 1-4-1 液状化危険度判定結果震度分布 1-10 1-1 1-11 1-12 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4 300m 3000m 200m 150m 125m 100m 2000m 1500m

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

飯能市と名栗村の新しいまちづくり計画に関する住民意識調査

飯能市と名栗村の新しいまちづくり計画に関する住民意識調査 - 1 - - 2-299 299 299 - 3-299 299 - 4-30 299 299 JR - 5-10 299 299 12 JR 2K JR - 6 - R299 R299 299 27 299 299 JR - 7 - JR 50 1 2 20 299 299 - 8-299 --- 299 70 299 - 9-299 299 33 - 10 - TV 2/ 299 299 -

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin

Fourier (a) C, (b) C, (c) f 2 (a), (b) (c) (L 2 ) (a) C x : f(x) = a 0 2 + (a n cos nx + b n sin nx). ( N ) a 0 f(x) = lim N 2 + (a n cos nx + b n sin ( ) 205 6 Fourier f : R C () (2) f(x) = a 0 2 + (a n cos nx + b n sin nx), n= a n = f(x) cos nx dx, b n = π π f(x) sin nx dx a n, b n f Fourier, (3) f Fourier or No. ) 5, Fourier (3) (4) f(x) = c n = n=

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

「数列の和としての積分 入門」

「数列の和としての積分 入門」 7 I = 5. introduction.......................................... 5........................................... 7............................................. 9................................................................................................

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

プリント

プリント 1 bizhub C554/C454/C364/C284/C224 bizhub C554/C454/C364/C284/C224 2 3 bizhub C554/C454/C364/C284/C224 Innovation for Usability bizhub C554/C454/C364/C284/C224 4 Save & Grow Ecology bizhub C554 bizhub C552DS

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

boost_sine1_iter4.eps

boost_sine1_iter4.eps 3 (, 3D ) 2. 2 3.. 3D 3D....,,. a + b = f, a, f. b a (.) b a.: b f (.2), b f., f.2. 2 Y y Q(X,Y,Z) O f o q(x,y) Z X x image plane.2:.2, O, z,. O..2 (X, Y, Z) 3D Q..2 O f, x, y X, Y. Q OQ q, q (x, y). x

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

Q E Q T a k Q Q Q T Q =

Q E Q T a k Q Q Q T Q = i 415 q q q q Q E Q T a k Q Q Q T Q = 10 30 j 19 25 22 E 23 R 9 i i V 25 60 1 20 1 18 59R1416R30 3018 1211931 30025R 10T1T 425R 11 50 101233 162 633315 22E1011 10T q 26T10T 12 3030 12 12 24 100 1E20 62

More information

16 6 12 1 16 6 23 23 11 16 START 1 Out Ok 1,2 Ok END Out 3 1 1/ H24.2 2 1 L2-1 L2-2 H14.3 3 H9.10 PHC SC 19 1 24 3 18N/mm 2 24N/mm 2 30N/mm 2 25 10 13 12 13 12 11 11 11 11 19 7 25 10 24N 8cm 25(20)mm 45

More information

再・ 音の印象の操作を目指した基礎的研究.doc

再・ 音の印象の操作を目指した基礎的研究.doc 0151020 1.1 3 1.2 5 1.3 5 2.1 2.1.1 2.1.2 2.1.3 9 2.2 2.2.1 2.2.2 13 2.3 2.3.1 2.3.2 6 6 10 16 17 3.1 18 3.2 3.2.1 3.2.2 3.4 3.5 19 21 27 28 1 4.1 [ ] 4.1.1 29 4.1.2 29 4.1.3 4.1.4 33 4.2 1 [ ] 4.2.1 4.2.2

More information

untitled

untitled No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46

More information

閨 [

閨 [ 1303000709 000 03. 070503 170, 0 3 0806 タ07 09 090908090107060109 04030801 縺0408 縺0505 03010708030060405 タ05 縺0400703 060504050ィ 03090405080050400909 03.03. 030007030000908 060005090809 0501080507 080500705030504040701

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

web総合カタログ_ブック.indb

web総合カタログ_ブック.indb SUTURE PRODUCT CATALOG P.3 P.4 /Lot. No P.5 P.6 P.7 P.8 P.8 P.9 P.10 V-Loc V-Loc90 P.15 V-Loc180 P.17 V-LocPBT P.19 P.23 P.24 P.43 P.49 P.50 P.50 P.51 P.51 P.53 P.54 / P.55 P.27 P.30 P.30 P.31 P.31 P.32

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

2004

2004 2008 3 20 400 1 1,222 7 1 2 3 55.8 54.8 3 35.8 6 64.0 50.5 93.5 1 1,222 1 1,428 1 1,077 6 64.0 52.5 80.5 56.6 81.5 30.2 1 2 3 7 70.5 1 65.6 2 61.3 3 51.1 1 54.0 2 49.8 3 32.0 68.8 37.0 34.3 2008 3 2 93.5

More information

縺02 縺07 縺 , 縺05 [

縺02 縺07 縺 , 縺05 [ 1309ィ 0408 2003 03. 070503 173, 02 6 0806 タ07 09 090908090107060109 04030801 030707 縺0609010706010907 08030307070109 縺08050105040405080909 0402090705040909 030008090902 02 ィ 020501090705030003040909040500

More information

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha http://astr-www.kj.yamagata-u.ac.jp/~shibata P a θ T P M Chapter 4 (f4a). 2.. 2. (f4cone) ( θ) () g M θ (f4b) T M L 2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( )

More information