Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

Size: px
Start display at page:

Download "168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad"

Transcription

1 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H = B/µ C S 167

2 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Faraday B B E ds = ds (13.9) L S rot E = B (13.10) (1) (2) ρ j (3) (4) D = ε E (13.11) B = µ H (13.12) j = σ E. (13.13) ε µ σ

3 Ampère Maxwell Maxwell Maxwell Hertz 1888 Maxwell ρ =0 j =0 E B Maxwell div E = 0 (13.14) div B = 0 (13.15) rot E = B (13.16) rot B = ε 0 µ 0 B. (13.17) x y z E(x, t) B(x, t) (13.14) (13.15) E x =0, B x = 0 (13.18) (13.16) (13.17) 0= B x, E z = B y, E y = B z (13.19) 0= E x, B z = ε 0µ 0 E y, B y = ε 0µ 0 E z. (13.20) x (13.18)(13.19) (13.20) E x = E x =0, B x = B x =0

4 Maxwell E x B x x t E x = B x = 0 (13.21) y z (13.19) (13.20) B y E z 2 E z 2 = 1 2 E z ε 0 µ B y 2 = 1 ε 0 µ 0 2 B y 2 (13.22) (13.19) (13.20) B z E y 2 E y 2 = 1 2 E y 2 B ε 0 µ 0 2 z 2 = 1 2 B z ε 0 µ 0 2 (13.23) x E z E z (x, t) =f(x vt)+g(x + vt) (13.24) f g f(x vt) x v g(x + vt) x v (13.24) (13.19) s = x vt s = x + vt E z x E z = f + g = f s s + g s s = f s + g s B y t B y = f s + g s B y f(x vt) g(x + vt) a b B y = af(x vt)+bg(x + vt). B y = a f + b g = a f s s + b g s s = av f g + bv s s a = 1 v, b = 1 v

5 B y B y = 1 [ f(x vt) g(x + vt)] v E z B y E z = f(x vt)+g(x + vt) B y = 1 (13.25) v [ f(x vt) g(x + vt)] f g v x electromagnetic wave E z B y x E x B x z y x z E z > 0 y B y < x y E y = E 0 sin(kx ωt) (1) k ω (2) E =(0,E 0 sin(kx ωt), 0). (1) 2 E y 2 = 1 2 E y ε 0 µ 0 2 = c 2 2 E y 2 = ( ω) 2 E 0 sin(kx ωt), = c 2 k 2 E 0 sin(kx ωt) c ω 2 = c 2 k 2 c = ω k

6 Maxwell (2) x B x =0 z E y = B z E y B z = E y = ke 0 cos(kx ωt) B z = k ω E 0 sin(kx ωt) = 1 c E 0 sin(kx ωt) 0 z H =(0, 0, H z ) H z = H 0 sin(kx ωt), H 0 = 1 µ 0 c E 0 = ε0 µ 0 E x y z 13.1: x 13.2 E Faraday rot ( rot E )= ( ) rot B

7 div E = ρ/ε 0 rot ( rot E ) = grad ( div E ) 2 E = 1 ε 0 grad ρ 2 E, D rot B = µ 0 j + µ 0, D = ε 0 E ( ) j rot B = µ 0 ε 0 µ 2 E 0 2 ρ =0 j =0 ε 0 µ 0 =1/c 2 ( ) 1 2 E c 2 2 = 2 2 E = y z 2 E (13.24) x t 2 ( E z 2 = v 2 2 ) f g 1 2 E 2, z ε 0 µ 0 2 = 1 ( 2 ) f ε 0 µ g 2, ε 0 µ 0 v = 1 ε0 µ 0 ε 0 = 107 4πc 2 [C N 1 m 2 ] µ 0 = 4π 10 7 [N A 2 ] v = 1 ε0 µ 0 = c Maxwell

8 Maxwell Hertz Newton Michelson- Morley 1887 Maxwell Einstein 1905 Maxwell Newton Einstein m Hz Gamma rays X-rays Ultraviolet Visible light Infrared Millimeter waves, Telemetry Radar Microwaves FM radio Television Short waves radio AM radio 13.2:

9 S poynting vector S = E H (13.26) E H 13.1 x y E =(0,E y, 0), E y = E 0 sin(kx ωt), (13.27) z H =(0, 0, H z ), H z = H 0 sin(kx ωt). (13.28) H 0 = 1 µ 0 c E 0 = ε0 µ 0 E 0 (13.29) S = E H =(S x, 0, 0) x x S x = E 0 H 0 sin 2 (kx ωt). 2π t =0 x =0 x =2π/k 2π λ λ = 2π k. x t =0 x 0 λ λ S x S x = 1 λ λ 0 S x (x, t =0)dx = 1 2 E 0H 0 (13.30) x

10 Maxwell (13.28) (13.27) (13.30) 1 2 ε 0E 2 y = 1 4 ε 0E 2 0, 1 2 µ 0Hz 2 = 1 4 µ 0H0 2 (13.29) (13.30) 1 2 E 0H 0 = 1 2 ε 0E0 2 1 = c 1 ε0 µ 0 2 ε 0E0 2 S x = c ( 1 2 ε 0 E y ) 2 µ 0 H z 2 x x E x = B x =0 E 0 B 0 x E 0 E y (x, t) = E 0y sin(kx ωt + θ y ) θ y = θ z θ y = θ E z (x, t) = E 0z sin(kx ωt + θ z ) E(x, t) =E 0 sin(kx ωt + θ), E 0 =(0,E 0y,E 0z ) x t E 0 E 0 B 0 E 0y = E 0z = E 0 θ z = θ y + π/2 θ y = θ + π/2 E y (x, t) = E 0 cos(kx ωt + θ) = E 0 cos(ωt kx θ) E z (x, t) = E 0 sin(kx ωt + θ) = E 0 sin(ωt kx θ) x = kx + θ =0 x 0 = θ/k E y (x 0,t)=E 0 cos ωt, E z (x 0,t)=E 0 sin ωt

11 ω θ z = θ y π/2 θ y = θ + π/2 E y (x, t) = E 0 cos(kx ωt + θ) = E 0 cos(ωt kx θ) E z (x, t) = E 0 sin(kx ωt + θ) = E 0 sin(ωt kx θ) x = kx + θ =0 x 0 = θ/k E y (x 0,t)=E 0 cos ωt, E z (x 0,t)= E 0 sin ωt E y0 E z0 ( E y,e z )

12 Maxwell 13.3 Maxwell z (0, 0, L/2) q (0, 0, L/2) q I I>0 dq dt = I ω I(t) =I 0 cos ωt. z k j(r,t)=i(t) δ(x )δ(y ) k A(r,t)= µ 0 j(r,t r r /c) dr 4π r r = k µ L/2 0 I(t r z k /c) 4π L/2 r z dz k r = z k x y r r = r L r z k = r 2 2rz cos θ + z 2 r z cos θ θ r z I t r z k c t r z cos θ c I T =2π/ω z cos θ /c z cos θ < L c c T I t r/c λ L λ (13.31)

13 A(r,t) k µ 0 4π φ L/2 L/2 I(t r/c) r dz = k µ 0 L I(t r/c) (13.32) 4πr div A + 1 φ c 2 =0 Lorentz (13.32) φ c 2 µ 0 L 4π φ(r,t) c 2 µ 0 L 4π [ z z I(t r/c)+ r3 r 2 c I(t r/c) [ ] z z q(t r/c)+ r3 r 2 c I(t r/c) qω I λ/r φ(r,t) µ 0 I 0 czl 4π r 2 cos ω(t r/c) (13.33) (13.33) (13.32) ] LC +Q 0 Q 0 t =0 L =20µH C = µf L C 13.3: LC I(t) Kirchhoff L di dt V C =0

14 Maxwell ±Q(t) I(t) = dq(t), V dt C (t) = Q(t) C Q d 2 Q(t) dt 2 = Q(t) LC. a b t t Q(t) =a cos + b sin LC LC Q(t =0) = Q 0, a = Q 0 b =0 Q(t) =Q 0 cos I(t =0) = dq(t) dt t LC =0 t=0 Q(t) V C (t) E(t) D(t) V C (t) = Q(t) C, E(t) =V C (t), D(t) =ε d 0 E(t) d rot H = D ω = 1 LC c λ c λ = ω/(2π) LC = ( ) ( )= [s] λ =( ) 2π ( )= [m]

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm

E F = q b E (2) E q a r q a q b N/C q a (electric flux line) q a E r r r E 4πr 2 E 4πr 2 = k q a r 2 4πr2 = 4πkq a (3) 4πkq a 1835 4πk 1 ɛ 0 ɛ 0 (perm 1 1.1 18 (static electricity) 20 (electric charge) A,B q a, q b r F F = k q aq b r 2 (1) k q b F F q a r?? 18 (Coulomb) 1 N C r 1m 9 10 9 N 1C k 9 10 9 Nm 2 /C 2 1 k q a r 2 (Electric Field) 1 E F = q

More information

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2.

12 2 E ds = 1 ρdv ε 1 µ D D S S D B d S = 36 E d B l = S d S B d l = S ε E + J d S 4 4 div E = 1 ε ρ div B = rot E = B 1 rot µ E B = ε + J 37 3.2 3.2. 213 12 1 21 5 524 3-5465-74 nkiyono@mail.ecc.u-tokyo.ac.jp http://lecture.ecc.u-tokyo.ac.jp/~nkiyono/index.html 3 2 1 3.1 ρp, t EP, t BP, t JP, t 35 P t xyz xyz t 4 ε µ D D S S 35 D H D = ε E B = µ H E

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

2010 4 3 0 5 0.1......................................... 5 0.2...................................... 6 1 9 2 15 3 23 4 29 4.1............................................. 29 4.2..............................

More information

Untitled

Untitled 23 1 11 A 2 A.1..................................... 2 A.2.................................. 4 A.3............................... 5 A.4.................................... 6 A.5.......................

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved.

Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 766 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts reserved. 3 Copyrght 7 Mzuho-DL Fnancal Technology Co., Ltd. All rghts

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha http://astr-www.kj.yamagata-u.ac.jp/~shibata P a θ T P M Chapter 4 (f4a). 2.. 2. (f4cone) ( θ) () g M θ (f4b) T M L 2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( )

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2

(a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2 (2) 1 1 4 ( beresit ) ( ) ( ) ( ) 1 Makio Uwaha. E-mail:uwaha@nagoya-u.jp; http://slab.phys.nagoya-u.ac.jp/uwaha/ 1 (a) (b) 1: (a) ( ) (b) ( ) : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 ) 2 2 20 [ ]

More information

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp

i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp 8 5 6 i ( ) PDF http://moodle.sci.u-toyama.ac.jp/kyozai/ I +α II II III A: IV B: V C: III V I, II III IV V III IV 8 5 6 krmt@sci.u-toyama.ac.jp ii I +α 3.....................................................

More information

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv

7) ẋt) =iaω expiωt) ibω exp iωt) 9) ẋ0) = iωa b) = 0 0) a = b a = b = A/ xt) = A expiωt) + exp iωt)) = A cosωt) ) ) vt) = Aω sinωt) ) ) 9) ) 9) E = mv - - m k F = kx ) kxt) =m d xt) dt ) ω = k/m ) ) d dt + ω xt) = 0 3) ) ) d d dt iω dt + iω xt) = 0 4) ω d/dt iω) d/dt + iω) 4) ) d dt iω xt) = 0 5) ) d dt + iω xt) = 0 6) 5) 6) a expiωt) b exp iωt) ) )

More information

esba.dvi

esba.dvi Ehrenberg-Siday-Bohm-Aharonov 1. Aharonov Bohm 1) 0 A 0 A A = 0 Z ϕ = e A(r) dr C R C e I ϕ 1 ϕ 2 = e A dr = eφ H Φ Φ 1 Aharonov-Bohm Aharonov Bohm 10 Ehrenberg Siday 2) Ehrenberg-Siday-Bohm-Aharonov ESBA(

More information

hirameki_09.dvi

hirameki_09.dvi 2009 July 31 1 2009 1 1 e-mail: mtakahas@auecc.aichi-edu.ac.jp 2 SF 2009 7 31 3 1 5 1.1....................... 5 1.2.................................. 6 1.3..................................... 7 1.4...............................

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

6 1

6 1 (c) Masaya Kasuga Shaltics 2001 6 1 1 1 2 1 1.1 USO 2 3 4 EPR 5 6 27 2 (Unfinded Superconducting Object) 3 - - - 342K (Physica C 351 (2001) pp.78-81) 4 40K 5 Einstein-Podolsky-Rosen s paradox 1/2 ( 0)

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

木オートマトン•トランスデューサによる 自然言語処理

木オートマトン•トランスデューサによる   自然言語処理 木オートマトン トランスデューサによる 自然言語処理 林 克彦 NTTコミュニケーション科学基礎研究所 hayashi.katsuhiko@lab.ntt.co.jp n I T 1 T 2 I T 1 Pro j(i T 1 T 2 ) (Σ,rk) Σ rk : Σ N {0} nσ (n) rk(σ) = n σ Σ n Σ (n) Σ (n)(σ,rk)σ Σ T Σ (A) A

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2

2 T(x - v τ) i ix T(x + v τ) i ix x T = ((dt/dx),, ) ( q = c T (x i ) v i ( ) ) dt v ix τ v i dx i i ( (dt = cτ ) ) v 2 dx ix,, () i x = const. FIG. 2 Y. Kondo Department of Physics, Kinki University, Higashi-Osaka, Japan (Dated: September 3, 27) [] PACS numbers: I. m cm 3 24 e =.62 9 As m = 9.7 3 kg A. Drude-orentz Drude orentz N. i v i j = N q i v

More information

つベクトルを 電 流 密 度 と 定 義 する 普 通 は j で 表 す 即 ち j = I である また V L は 高 校 で 習 ったとおり 電 場 ( 電 界 )の 大 きさである 電 場 のベクトルを E とすると 以 上 のことから j=σe が 成 り 立 つ(これをオームの 法 則

つベクトルを 電 流 密 度 と 定 義 する 普 通 は j で 表 す 即 ち j = I である また V L は 高 校 で 習 ったとおり 電 場 ( 電 界 )の 大 きさである 電 場 のベクトルを E とすると 以 上 のことから j=σe が 成 り 立 つ(これをオームの 法 則 独 自 試 験 対 策 - 要 点 整 理 項 電 磁 気 学 作 成 者 : 山 中 最 終 更 新 日 10/6 参 考 文 献 電 磁 気 学 入 門 阿 部 龍 蔵 著 サイエンス 社 電 磁 気 学 砂 川 重 信 著 岩 波 書 店 このシケプリに 関 する 注 意 内 容 は 知 識 を 使 う 人 つまり 工 学 部 系 の 人 むきです つまり これをつくっている 人 が 内 容

More information

これについて マクスウェルは 自 らがまとめた Maxwell 方 程 式 から このような 現 象 を 予 測 する 波 動 現 象 の 数 式 を 導 いたのだそうだ その 後 ヘルツ(Hertz)によって 実 際 に 電 磁 波 が 発 見 され このような 考 察 が 妥 当 なものであった

これについて マクスウェルは 自 らがまとめた Maxwell 方 程 式 から このような 現 象 を 予 測 する 波 動 現 象 の 数 式 を 導 いたのだそうだ その 後 ヘルツ(Hertz)によって 実 際 に 電 磁 波 が 発 見 され このような 考 察 が 妥 当 なものであった マクスウェル 方 程 式 とローレンツゲージによるスカラー 電 磁 波 方 程 式 Scalar Electromagnetic Wave Equation by Maxwell Equations & Lorenz Gauge 黒 月 樹 人 (KULOTSUKI Kinohito, treeman9621) 要 旨 マクスウェル 方 程 式 をスカラーポテンシャルΦとベクトルポテンシャル A で

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 電 気 回 路 学 I 秋 田 県 立 大 学 システム 科 学 技 術 学 部 電 子 情 報 システム 学 科 徐 粒 第 1 回 基 本 概 念 : 電 気 回 路 電 気 回 路 解 析 とは? 電 流 電 圧 とは? オームの 法 則 抵 抗 とコンダクタンス その 物 理 的 な 意 味 電 気 回 路 とは? 抵 抗 (R) キャパシタ(C) インダクタ(L) 直 流 電 圧 源 直

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: qliu@res.otaru-uc.ac.jp 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

dvipsj.4131.dvi

dvipsj.4131.dvi 7 1 7 : 7.1 3.5 (b) 7 2 7.1 7.2 7.3 7 3 7.2 7.4 7 4 x M = Pw (7.3) ρ M (EI : ) M = EI ρ = w EId2 (7.4) dx 2 ( (7.3) (7.4) ) EI d2 w + Pw =0 (7.5) dx2 P/EI = α 2 (7.5) w = A sin αx + B cos αx 7.5 7.6 :

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

アナログ・デジタルの仕様とパフォーマンス特性の用語集

アナログ・デジタルの仕様とパフォーマンス特性の用語集 www.tij.co.jp Application Report JAJA127 Σ Σ 2 3 Σ 4 5 Σ Σ 2 2 1 1 Data Out 1 2 3 4 Data 1 2 3 4 Out Data Out 1 2 3 4 6 A CS B CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DOUT D 11 D 10 D 9 D 8 D 7 D 6 D 5

More information

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1...

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1... DT-870/5100 &DT-5042RFB ...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1....39 5-2...40 5-3...43...49

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23

i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2... 23 2 III Copyright c 2 Kazunobu Yoshida. All rights reserved. i 1 1 1.1... 1 1.1.1... 2 1.1.2... 7 1.2... 9 1.3... 1 1.4... 12 1.4.1 s... 12 1.4.2... 12 1.5... 15 1.5.1... 15 1.5.2... 18 2 21 2.1... 21 2.2...

More information

5989_4840JAJP.qxd

5989_4840JAJP.qxd Agilent Application Note 1287-11 2 3 4 5 Zc Z T 1+ G 1 e - γ 1+ G 2 G i G 1 G 2 0 0 G2 G 1 G T 1+ G 2 e - γ 1+ G 1 a b [ T XI ] [ T L ] [ T XO ] [ G L ] Zc Zr ZT Zr Γ1 = Γ2 = Γ1ΓT = (1.1) Zc+ Zr ZT + Zr

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

~ ~.86 ~.02 ~.08 ~.01 ~.01 ~.1 6 ~.1 3 ~.01 ~.ω ~.09 ~.1 7 ~.05 ~.03 ~.01 ~.23 ~.1 6 ~.01 ~.1 2 ~.03 ~.04 ~.01 ~.1 0 ~.1 5 ~.ω ~.02 ~.29 ~.01 ~.01 ~.11 ~.03 ~.02 ~.ω 本 ~.02 ~.1 7 ~.1 4 ~.02 ~.21 ~.I

More information

5988_3484JA.ppt

5988_3484JA.ppt Part 2: 1 1 Part 2: 2 2 (BTS) (MS) Part 2: 3 3 Part 2: 4 4 6 26.666 ms PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q

More information

DVIOUT-J-te

DVIOUT-J-te 情 報 通 信 システム 実 験 第 一 / 第 二 電 子 情 報 システム 実 験 第 一 / 第 二 情 報 通 信 工 学 実 験 AB Ver. 5.3 (2013 年 9 月 ) 目 次 はじめに... 2 1. 基 礎 事 項... 4 1.1 分 布 定 数 回 路 における 基 礎 方 程 式 とその 解 4 1.2 反 射 係 数 とインピーダンス 整 合 6 1.3 定 在 波

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

1

1 1 2 3 4 5 6 7 8 9 10 A I A I d d d+a 11 12 57 c 1 NIHONN 2 i 3 c 13 14 < 15 16 < 17 18 NS-TB2N NS-TBR1D 19 -21BR -70-21 -70-22 20 21 22 23 24 d+ a 25 26 w qa e a a 27 28 -21 29 w w q q q w 30 r w q!5 y

More information

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます.  このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の 最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/047143 このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 のものです. 3 10 GIS 3 1 2 GPS GPS GNSS GNSS 23 3 3 2015

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

3 - { } / f ( ) e nπ + f( ) = Cne n= nπ / Eucld r e (= N) j = j e e = δj, δj = 0 j r e ( =, < N) r r r { } ε ε = r r r = Ce = r r r e ε = = C = r C r e + CC e j e j e = = ε = r ( r e ) + r e C C 0 r e =

More information

有機性産業廃棄物の連続炭化装置の開発

有機性産業廃棄物の連続炭化装置の開発 ( ) Development of the apparatus conveyer type which carbonizes continuously organic industrial waste (About the form of blade in conveyer) 1055047 1 1-1 1 1-2 1-3 2 2 2-1 2-2 2-3 2-4 7 3 3-1 20 3-2 3-3

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 第 回 の 演 習 問 題 1. シリコン Si は 原 子 番 号 14の 原 子 である シリコンの 原 子 軌 道 を 記 せ. 近 似 的 波 動 関 数 ψ を 用 いて 見 積 もった 基 底 状 態 エネルギー E r * ψ Hψdr r dr = * ψψ と 厳 密 な 基 底 状 態 エネルギー E 0 を 比 べるとき 常 に E E 0 となることを 証 明 せよ. 3.

More information

Microsoft Word - Wordで楽に数式を作る.docx

Microsoft Word - Wordで楽に数式を作る.docx Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 0 1 2 3 4 5 6 1964 1978 7 0.0015+0.013 8 1 π 2 2 2 1 2 2 ( r 1 + r3 ) + π ( r2 + r3 ) 2 = +1,2100 9 10 11 1.9m 3 0.64m 3 12 13 14 15 16 17 () 0.095% 0.019% 1.29% (0.348%) 0.024% 0.0048% 0.32% (0.0864%)

More information

1

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Ni-Cd 19 1 1 2 3 4 5 6 7 20 21 1 2 3 22 1 2 3 1 2 3 23 1 2 1 1 1 24 25 1 1 2 3 2 26 1 2 1 27 1 2 3 28 1 2 3 29 30 31 32 33 34 35 1 1 36 1 2 37 38 1 2 3 1 39

More information

Netcommunity SYSTEM X7000 IPコードレス電話機 取扱説明書

Netcommunity SYSTEM X7000 IPコードレス電話機 取扱説明書 4 5 6 7 8 9 . 4 DS 0 4 5 4 4 4 5 5 6 7 8 9 0 4 5 6 7 8 9 4 5 6 4 0 4 4 4 4 5 6 7 8 9 40 4 4 4 4 44 45 4 6 7 5 46 47 4 5 6 48 49 50 5 4 5 4 5 6 5 5 6 4 54 4 5 6 7 55 5 6 4 56 4 5 6 57 4 5 6 7 58 4

More information

.A. D.S

.A. D.S 1999-1- .A. D.S 1996 2001 1999-2- -3- 1 p.16 17 18 19 2-4- 1-5- 1~2 1~2 2 5 1 34 2 10 3 2.6 2.85 3.05 2.9 2.9 3.16 4 7 9 9 17 9 25 10 3 10 8 10 17 10 18 10 22 11 29-6- 1 p.1-7- p.5-8- p.9 10 12 13-9- 2

More information