2 A A 3 A 2. A [2] A A A A 4 [3]

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "2 A A 3 A 2. A [2] A A A A 4 [3]"

Transcription

1 1 2 A A 1. ([1]3 3[ ])

2 2 A A 3 A 2. A [2] A A A A 4 [3]

3 Xi () () 1 n () 1 n 0 i i = 1 1 S = S +! X S ( ) 02 n 1 2 Xi ( ) ( 2) n ( 2) n 0 i i = 1 2 S = S +! X 0 k Xip 1 (1-p) 1 ( ) n n k Pr % S 2 = k/ = C p ( 1 -p) k n - k A( ) [2] 1 A p n A r Pr Pr = ncr p ( 1 - p) r n - r 2 3 Xi u (u>0), d (d>0) 3 Xi ( ) ( 3) n ( 3) n 0 i i = 1 3 S = S % X k 0 ( 3) ( 3) ( - ) k n - k n 0 k n k Pr % S = S u d. = nck p ( 1 -p) 3 4 Xi log u, log d ln S S ( 4) n ( 4) 0 n =! X i = 1 ( 4) i

4 ( ) ( 4 ) n ( 4 ) n 0 i i = 1 4 S = S exp d! X n 4 e A A 1 1 A ( B)( C) 1 [2] U A P(A) P( A) A = U [4] P A) P( )=1 B P( B) $ B) {An} P(, A ) =! P( A ) P n = 1 n n = 1 n [5]

5 A [6] EXCEL [7] [4] [8] Shreve [9] [10] [10] 2 A A A ()

6 [2] [11] WEB [12, 13] 3. ( ) 3

7 15 3 {1,2,3,4,5,6} 6 { } { } 3 1,2,3,4,5,6, 2 2

8 ( 1 2) A, B, C 10 A 5 B 3 C 2 3 A 2 C 1 A B, C A: 50 %, B: 30%, C: 20% 1 A 2 C 1 A 2 C U ( 50, 50 ) A1 A2 U 10 3 () 10C3 A 2 C 1 5C2 2C1 U 10C3

9 2 2: U 36 A 41/9 2 1/ A 1 A 1

10 7 3 3 ( ) U 3 7 7C3 A 4C2 3C14C2 3C1 7C A A

11 [1] Luenberger, D.G., Investment Science. 1998: Oxford University Press. [2], A. 2003:. [3],. 2009:. [4],. (. 1999:. [5],. 2004:. [6],. 2005:. [7],. EXCEL :. [8], :. [9] Shreve, S.E., Stochastic Calculus for Finance I: The Binomial Asset Pricing Model. 2004, New York: Springer- Verlag [10],. 2002:. [11], A. 1998:. [12] (, CFV21. ( ). [13],. ( ).

取扱説明書[d-01G]

取扱説明書[d-01G] d-01g 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 T 18 1 2 19 3 1 2 4 3 4 20 21 1 2 3 4 22 1 T 2 T 1 T 2 T 23 1 T 1 2 24 25 1 2 26 1 T 27 1 2 3 1 2 3 28 29 30 1 2 1 2 31 1 2 3 32 1 2 3 4 5 1 2 3 4 33 1

More information

金融機関の資産取引ネットワーク

金融機関の資産取引ネットワーク 103-8660 30 2003 7 30 e-mail: inaoka@eri.u-tokyo.ac.jp e-mail: takuto.ninomiya@boj.or.jp e-mail: ken.taniguchi@boj.or.jp e-mail: tokiko.shimizu@boj.or.jp e-mail: takayasu@csl.sony.co.jp * 2 1 2 1 2 Barabási

More information

1...1 1...1 2...1 2.1...1 2.2...5 2.3...6 1...6 2...6 3...7 4...7 5...7 2.4...8 2...9 1...9 2... 10 2.1... 10 1... 10 2... 11 2.2... 12 1 2... 13 3... 18 4... 22 5... 23 6... 24 2.3... 34 1... 34 2...

More information

PowerPoint Presentation

PowerPoint Presentation 2 9/ 3 3 9/ 9 4 5 , PR () 6 ,,, (11) 7 PR 8 9 10 11 TEL. 106 8/131512/291/3 TEL. 107 12/291/3 12 http://www.f-turn.jp/ 13 21 4 21 14 200910 U 200911 U 200911 20102 15 20102 PR 20103 20103 16 20103 20104

More information

17 17 17 17 11 21 28 1 24 12 36 2,000 2 22 11 3.67 3.38 22 2.97 21 10 1.7 1.12 22 10 13 2.75 11 10 15 24 10 12 14 3 17 17 2006 4 17 10 24 12 17 5 15 17 17 11 40 6 17 40 17 11 7 24 17 24 17 8 40 17 17 9

More information

untitled

untitled ,337 37 35 0,349,09 35 55 988 3 0 0 3,387 7 90 0,369,46 5 57 5 0 90 38 8,369 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 6 8 9 30 3 3 5,400 7,00 9,000 0,800,600 4,400 6,00 8,000 9,800,600 3,400 5,00 7,000 8,800

More information

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767,

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767, 02 02 02 180,771 07 02 01 1,377 07 02 02 1,051,703 07 02 05 220,099 07 03 01 926,597 08 02 04 1,877,566 08 04 02 2,973,603 08 05 03 672,950 10 06 03 778,433 10 06 04 735,789 10 06 06 225,392 10 06 07 365,442

More information

橡matufw

橡matufw 3 10 25 3 18 42 1 2 6 2001 8 22 3 03 36 3 4 A 2002 2001 1 1 2014 28 26 5 9 1990 2000 2000 12 2000 12 12 12 1999 88 5 2014 60 57 1996 30 25 205 0 4 120 1,5 A 1995 3 1990 30 6 2000 2004 2000 6 7 2001 5 2002

More information

O

O 11 2 1 2 1 1 2 1 80 2 160 3 4 17 257 1 2 1 2 3 3 1 2 138 1 1 170 O 3 5 1 5 6 139 1 A 5 2.5 A 1 A 1 1 3 20 5 A 81 87 67 A 140 11 12 2 1 1 1 12 22 1 10 1 13 A 2 3 2 6 1 B 2 B B B 1 2 B 100 B 10 B 3 3 B 1

More information

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n

1 1.1 Excel Excel Excel log 1, log 2, log 3,, log 10 e = ln 10 log cm 1mm 1 10 =0.1mm = f(x) f(x) = n 1 1.1 Excel Excel Excel log 1, log, log,, log e.7188188 ln log 1. 5cm 1mm 1 0.1mm 0.1 4 4 1 4.1 fx) fx) n0 f n) 0) x n n! n + 1 R n+1 x) fx) f0) + f 0) 1! x + f 0)! x + + f n) 0) x n + R n+1 x) n! 1 .

More information

untitled

untitled 1 2 3 4 () 5 6 7 8 9 10 2 22 3 11 12 13 2 1-14 1 4 1 18 4 1 4 () 15 16 17 18 19 20 21 () 26 2 22 23 24 26 2 25 26 27 1 NPO 28 29 30 - 1 31 32 33 34 35 1 36 37 - 38 26 2 39 26 2 40 41 61 42 43 44 45 3 6

More information

untitled

untitled 1 2 3 4 () 5 6 7 8 9 10 2 22 3 11 12 13 2 1-14 1 4 1 18 4 1 4 () 15 16 17 18 19 20 21 () 26 2 22 23 24 26 2 25 26 27 1 NPO 28 29 30 - 1 31 32 33 34 35 1 36 37 - 38 26 2 39 26 2 40 41 61 42 43 44 45 3 6

More information

夏目小兵衛直克

夏目小兵衛直克 39(1906)1222 14(1817) 3(1832)1514(1843) 2628 6 (1853) (1854)3727 3(1856) 1 / 13 5(1858)6(1859) 5(1853) () () () () () () 3(1867)29 504111( 2 / 13 )98 23 18 2(1869)310283 100 50() 58 226 3313200982 5033

More information

nenkin.PDF

nenkin.PDF 1 31 1 WEB 10 3,544 429 13 10 22 11 7 WEB 1 2 41.0 15 80.0 20 46.7% 1000 55.8 1000 34.4 21 18.2 1000 23 25 41.0 49.2 29 90.6 42.7 33 56.4% 79.2% 67.4 51.7 37 39 83.7 1 91.0 93.6 9 2 3 1000 96.3 300 1000

More information

-1-

-1- -1- -2- -3-1 8 6% 2 4 6 8 1 48 63 43 6 55 38 78 58 2 88 67 11 22 78 1 56 22 89 47 34 36 32 38 4 34 26 7 -4- 18-5- 3 25 28 (6.%) (6.%) (.9%) 2 15 18 158 1 (3.8%) (56.4%) 5 2 137 27 8 1 68 119 26 71 28 65

More information

( )

( ) Web Web 1 3 1 21 11 22 23 24 3 2 3 4 5 1 1 11 22 9 2 3 15 11 22 2 11 21 4 5 ( ) 102 ( ) 1 ( 1 2001 Web 1 5 4 1 1 - 7 - [] - 7 10 11 12 12 1 10 1 12 - [] 1 1 2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 3 1 47

More information

untitled

untitled 1 2 3 4 5 13.5% 20.6% 296 5.8% 10.1% 27.4% 28.4% 826 20.3% 31.2% 19.7% 20.2% 2.7% 31.2% 64.8% 644 儲 儲 0.0 10.0 10.1 20.0 19.8 18.0 30.0 40.0 33.5 8.8 9.8 325 6 4.0% 2.5% 9.9% 17.2% 1,019 13.2% 1.4% 1,024

More information

30 Yamasaki Aki 1980 NHK 1980 2000 7 1980 1981-88 NHK 2007 13

30 Yamasaki Aki 1980 NHK 1980 2000 7 1980 1981-88 NHK 2007 13 30 Yamasaki Aki 1980 NHK 1980 2000 7 1980 1981-88 NHK 2007 13 31 156 interesting 2004? 2003 pp.140-171. 2003 pp.21-46. 2007 70! pp.9-25. Hoersschelmann,Olaf. 2006 Rules of the Game, New York:State University

More information

FP....10

FP....10 10 11 1 2 3 4 5 6 12 123 4 1 2 3 4 2 1 13 23 14 Nofsinger, John R., The Psychology of Investing, First Edition, Pearson Education Inc Shefrin, H., Beyond Greed And Fear : Understanding Behavioral Finance

More information

7983 5 5 54 4 5 5 6 7 7 7 7 8 9 3 4 6 () The Bulletin of Medical and Dental University,m 2 75m 2 34,m 2 328m 2 4 5 JOIS 2 (345),m 2 CALISDECPDF/73 edline()current Contents OPAC ILL() ()222 LINUS U 8 Journal

More information

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n ( ), Jürgen Berndt,.,. 1, CH n.,,. 1.1 ([6]). CH n (n 2), : (i) CH k (k = 0,..., n 1) tube. (ii) RH n tube. (iii). (iv) ruled minimal, equidistant. (v) normally homogeneous submanifold F k tube. (vi) normally

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

... 4... 5... 5... 6... 7... 8... 9... 10... 12... 14... 15... 16... 17... 17... 17... 17... 19... 20... 21... 22... 23... 24... 32... 41... 41... 42.

... 4... 5... 5... 6... 7... 8... 9... 10... 12... 14... 15... 16... 17... 17... 17... 17... 19... 20... 21... 22... 23... 24... 32... 41... 41... 42. ... 4... 5... 5... 6... 7... 8... 9... 10... 12... 14... 15... 16... 17... 17... 17... 17... 19... 20... 21... 22... 23... 24... 32... 41... 41... 42... 43... 45... 48... 48 PR WEB... 50 2 ... 56... 57...

More information

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代

スプレッド・オプション評価公式を用いた裁定取引の可能性―電力市場のケース― 藤原 浩一,新関 三希代 403 81 1 Black and Scholes 1973 Email:kfujiwar@mail.doshisha.ac.jp 82 404 58 3 1 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 2 Deng, Johnson and Sogomonian 1999 Margrabe 1978 Black and Scholes 1973

More information

( 2 / 35

( 2 / 35 Office 1 / 35 ( 2 / 35 3 / 35 ( 4 / 35 ( 5 / 35 6 / 35 =SUMPRODUCT((C$3:C$42>=$A46)(C$3:C$42

More information

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an

BIS CDO CDO CDO CDO Cifuentes and O Connor[1] Finger[6] Li[8] Duffie and Garleânu[4] CDO Merton[9] CDO 1 CDO CDO CDS CDO three jump model Longstaff an CDO 2010 5 18 CDO(Collateralized Debt Obligation) Duffie and Garleânu[4] CDO CDS(Credit Default Swap) Duffie and Garleânu[4] 4 CDO CDS CDO CDS CDO 2007 CDO CDO CDS 1 1.1 2007 2008 9 15 ( ) CDO CDO 80 E-mail:taiji.ohka@gmail.com

More information

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2 2013 1 nabe@ier.hit-u.ac.jp 2013 4 11 Jorgenson Tobin q : Hayashi s Theorem : Jordan : 1 investment 1 2 3 4 5 6 7 8 *1 *1 93SNA 1 p.180 1936 100 1970 *2 DSGEDynamic Stochastic General Equilibrium New Keynesian

More information

untitled

untitled 24 2016 2015 8 26,,,,,,,,,,,, D.,,, L.,,, E.,,,,,, 1 1,,,,, 2,,, 7 1 2, 3 4 5 6 7 Contribution No.: CB 15-1 20 40,,,,,,,, 3,,,,, 10,,,,,,, 2, 3 5, 7 ,,, 2,, 3,, 4,,,,,,,,,,,,, 4,,,,,,,,, 1, 50, 1, 50 50,

More information

WECPNL = LA +10log10 N 27 N = N 2 + 3N3 + 10( N1 + N 4) L A N N N N N 1 2 3 4 Lden Lden Lden Lden LAE L pa pa 2 a /10 LpA = 20 log 10 ( pa = p 10 ) n na p0 p na n an n p0 2 Lp p L p

More information

2 log 3 9 log 0 0 a log 9 3 2 log 3 9 y 3 y = 9 3 2 = 9 y = 2 0 y = 0 a log 0 0 a = a 9 2 = 3 log 9 3 = 2 a 0 = a = a log a a = log a = 0 log a a =. l

2 log 3 9 log 0 0 a log 9 3 2 log 3 9 y 3 y = 9 3 2 = 9 y = 2 0 y = 0 a log 0 0 a = a 9 2 = 3 log 9 3 = 2 a 0 = a = a log a a = log a = 0 log a a =. l 202 7 8 logarithm a y = y a y log a a log a y = log a = ep a y a > 0, a > 0 log 5 25 log 5 25 y y = log 5 25 25 = 5 y 25 25 = 5 3 y = 3 log 5 25 = 3 2 log 3 9 log 0 0 a log 9 3 2 log 3 9 y 3 y = 9 3 2

More information

卓球の試合への興味度に関する確率論的分析

卓球の試合への興味度に関する確率論的分析 17 i 1 1 1.1..................................... 1 1.2....................................... 1 1.3..................................... 2 2 5 2.1................................ 5 2.2 (1).........................

More information

特許侵害訴訟における無効の主張を認めた判決─半導体装置事件−

特許侵害訴訟における無効の主張を認めた判決─半導体装置事件− [*1847] 12 4 11 10 364 54 4 1368 1710 68 1032 120 X Y 6.8.31 29 3 875 X Y 9.9.10 29 3 819 Y 320275 391468 46 12 21 35 2 6 3513745 39 1 30 320249 1) 1 39 1 [*1848] 2) 3) Y 10 51 2 4 39 5 39 1 3 139 7 2

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

ナ畜ナ・カ06 091--102 (窶凖・

ナ畜ナ・カ06  091--102 (窶凖・ 15, 2005 11 * : (Frame) (2002) q w e 1. (Frame) (Gumperz 1982, Goffman 1986, Tannen 1993) * CHEN Ming-jan: [ 91 ] 92 2. (Watanabe 1993 2000 2002 2002) Watanabe (1993) q w e (2002) 1 ( ) ( )( ) 93 1 1 1

More information

mf.dvi

mf.dvi 21 9 29 1 2 3....................................... 3 :......................... 3....................................... 4................................ 4..................................... 5................................

More information

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich Vol. 3 No. 2 51 64 (Mar. 2010 1 1 1 An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koichi Miyazaki 1 and Koji Nishiki 1 Preceding researches

More information

K

K 2015.2.27 1 1 OECD 1 1 2 50 53.6 K. 21 2010 6 18 7 2009 20.121.3 5.2 7.0 53.626.0 0.3 18.41.6 http://www.tse.or.jp/market/data/examination/distribute/b7gje6000001we32-att/report2009.p df 2014 10 21 2 50

More information

報告書

報告書 1 2 3 4 5 6 7 or 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2.65 2.45 2.31 2.30 2.29 1.95 1.79 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 60 55 60 75 25 23 6064 65 60 1015

More information

University of New South WalesSchool of Safety Science Indiana University of Pennsylvania University of Central Missouri Department of Safety Science (

University of New South WalesSchool of Safety Science Indiana University of Pennsylvania University of Central Missouri Department of Safety Science ( GDP 2 WHO SARS O157 JR 1 University of New South WalesSchool of Safety Science Indiana University of Pennsylvania University of Central Missouri Department of Safety Science () 2 CSR BCP () 3 () 2 4 2

More information

2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1% 15.2% 16.9% 15.7% 17.1% 18.6% 0.4% 21.4% 15.8% 14.8

2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1% 15.2% 16.9% 15.7% 17.1% 18.6% 0.4% 21.4% 15.8% 14.8 15 7 8,000 15 4 1 0 5 15 4 2 15 10 1 15 4 1 6 11 4,500 3,500 16 26 35 27 34 16 2 19 16 2 24 16 3 15 1 2 94.3 91.3 5.1 7.5 0.0 0.0 0.1 0.5 0.6 0.1 0.1 0.4 21.4% 15.8% 14.8% 15.0% 16.0% 16.5% 0.5% 16.1%

More information

1 2 3 4 5 6 140,000 70,000 116,797 120,000 111,322 114,180 60,000 103,204 114,395 115,479 100,000 91,713 106,508 50,000 98,664 40,691 37,846 38,941 80,000 40,000 85,214 34,974 32,328 (29,256 60,000 27,383

More information

橡HP用.PDF

橡HP用.PDF 1 2 3 ... 1... 2... 2... 3... 4... 12...12...12... 14...14...15...16... 17...17... 17...18...18...20...22... 26... 26 ... 27...27...28 32 1 2 3 8 9 O 1 2 7 C ln 6 O 4 3 C ln m + n = 8 8 9 1 2 7 3 C ln

More information

119 22 (etax) 10 1 3 5 10 1 3 2

119 22 (etax) 10 1 3 5 10 1 3 2 1 119 22 119 22 17 JR JR JR 119 22 (etax) 10 1 3 5 10 1 3 2 22 119 872 2,045 21 5225,443 () ( ) ( ) 3 119 22 e-tax PR e-tax ( 4 22 119 5 119 22 6 22 119 7 119 22 31 22 232 10 15 43 19 22 8 31 1130 /0798391512

More information

新入_本文.smd

新入_本文.smd 52 28 220 28 4 1 017-777-1511 2 2 8 2 9 8 9 47.2% 12.8% 11.5% 6.0% 4 2 (49.6%)(13.0%) (14.7%) (7.4%)(8.4%) (52.3%)(9.1%) (11.4%) (10.0%) 33.0% 23.4% 15.6% 9.6% (26.0%) (18.3%) (46.5%) (30.0%) (20.0%) 2

More information

1 Tokyo Daily Rainfall (mm) Days (mm)

1 Tokyo Daily Rainfall (mm) Days (mm) ( ) r-taka@maritime.kobe-u.ac.jp 1 Tokyo Daily Rainfall (mm) 0 100 200 300 0 10000 20000 30000 40000 50000 Days (mm) 1876 1 1 2013 12 31 Tokyo, 1876 Daily Rainfall (mm) 0 50 100 150 0 100 200 300 Tokyo,

More information

01.Œk’ì/“²fi¡*

01.Œk’ì/“²fi¡* AIC AIC y n r n = logy n = logy n logy n ARCHEngle r n = σ n w n logσ n 2 = α + β w n 2 () r n = σ n w n logσ n 2 = α + β logσ n 2 + v n (2) w n r n logr n 2 = logσ n 2 + logw n 2 logσ n 2 = α +β logσ

More information

untitled

untitled 21 1 28 () 21 2 10 () 2,000 814 40.7% 65 4 2 30.61 19.23 19.0 7074 105 12.9% 75 121 14.9% 6569 107 13.1% 4 0.5% 6064 99 12.2% 19 0 0.0% 2029 36 4.4% 5559 67 8.2% 3039 107 13.1% 4049 102 12.5% 5054 66 8.1%

More information

( ) () ( ) 12/6

( ) () ( ) 12/6 ( ) () ( ) 12/6 ( ) 21 20 167 167 25 25 36.08 36.65 0.57 52 73 51 99 142 36.65 138 36.08 2500 99 5000 99 51 158 51 51 52 52 73 110 158 165 165 99 166 48.04 138 36.08 28 11.96 PR 51 52 158 99 52 51 73 52

More information

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg (

1: 3.3 1/8000 1/ m m/s v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt kg ( 1905 1 1.1 0.05 mm 1 µm 2 1 1 2004 21 2004 7 21 2005 web 2 [1, 2] 1 1: 3.3 1/8000 1/30 3 10 10 m 3 500 m/s 4 1 10 19 5 6 7 1.2 3 4 v = 2kT/m = 2RT/M k R 8.31 J/(K mole) M 18 g 1 5 a v t πa 2 vt 6 6 10

More information

23_02.dvi

23_02.dvi Vol. 2 No. 2 10 21 (Mar. 2009) 1 1 1 Effect of Overconfidencial Investor to Stock Market Behaviour Ryota Inaishi, 1 Fei Zhai 1 and Eisuke Kita 1 Recently, the behavioral finance theory has been interested

More information

PR

PR 1-4 29 1-13 41 1-23 43 1-39 29 PR 1-42 28 1-46 52 1-49 47 1-51 40 1-64 52 1-66 58 1-72 28 1-74 48 1-81 29 1-93 27 1-95 30 1-97 39 1-98 40 1-100 34 2-1 41 2-5 47 2-105 38 2-108 44 2-110 55 2-111 44 2-114

More information

2.2.1............... 20 2.2.2................................ 20 2.2.3......... 21 2.3....................................... 21 2.3.1.......... 21 2.

2.2.1............... 20 2.2.2................................ 20 2.2.3......... 21 2.3....................................... 21 2.3.1.......... 21 2. 1 6 1.1.............................................. 6 1.1.1.................... 6 1.1.2................... 6 1.1.3....................... 7 1.2................................................ 8 1.2.1..............

More information

202 2 9 Vol. 9 yasuhisa.toyosawa@mizuho-cb.co.jp 3 3 Altman968 Z Kaplan and Urwitz 979 Merton974 Support Vector Machine SVM 20 20 2 SVM i s i x b si t = b x i i r i R * R r (R,R, L,R ), R < R < L < R

More information

( )

( ) ) ( ( ) 3 15m t / 1.9 3 m t / 0.64 3 m ( ) ( ) 3 15m 3 1.9m / t 0.64m 3 / t ) ( β1 β 2 β 3 y ( ) = αx1 X 2 X 3 ( ) ) ( ( ) 3 15m t / 1.9 3 m 3 90m t / 0.64 3 m ( ) : r : ) 30 ( 10 0.0164

More information