1. 2. ( ) 3. ( ) 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "1. 2. ( ) 3. ( ) 2"

Transcription

1 IV 3 :

2 1. 2. ( ) 3. ( ) 2

3 1. 3

4 (procurement auctions) etc. ( ) : : 4

5 5

6 : (sealed-bid auctions) : (1st-price auctions) (2nd-price auctions) 6

7 : ( ) (open auctions) (English auctions) (Dutch auctions) 7

8 : (private value models) : 8

9 : ( ) (interdependent value models) (i.e., ) : (common value models) 9

10 : 1: ( ) 2: u({x 1 }) + u({x 2 }) u({x 1, x 2 }). (package auctions) (combinatorial auctions) 10

11 : (double auctions) : (all-pay auctions) : (scoring auctions) : 11

12 1. :. 2. :. ( ) a 3. :. 4. : u i : A Θ i R. t(a): (1) 5. : θ i [0, 1] : f(θ i ) = 1 θ i [0, 1]. 12

13 : X X X : 1 X : 1/6. X : 1 X = a X = b X [a, b] 13

14 : ( ) 1. X x F : R [0, 1] : (2) : X a b (X [a, b]) P r.({a X b}) =. X x (X x). P r.({x x}) =. 14

15 : ( ) x P r.({x X x + ϵ}) =. F ( ) f( ), f = F, : F (x + ϵ) F (x) (3) X [x, x + ϵ] ϵ f(x) 2 X F ( ) F = f f : R R + 15

16 : ( ) x 0 0 x X [a, b] : F (b) F (a) = (4) F ( ) 16

17 : ( ) E[X] : (5) x f(x)dx X [0, 1] : (6) (7) 17

18 f( ) 18

19 2. 19

20 : 2 : (8) 20

21 ( ) θ 1 = 100, θ 2 = 200. a 1 = 70, a 2 = 150. : : u 1 (a, 100) =. u 2 (a, 200) =. S i : i (S i R [0,1] + ) S i S 1 S i 1 S i+1 S n. 21

22 (strategy-proofness) 2nd 1 : 3 in s D i : Θ i A i i : (9) (9) θ i i s i 22

23 (strategy-proofness) 2nd / BNE 2 s = (s 1, s 2,, s n) :. : θ 1st > θ 2nd > > θ nth. : θ 1st : x 2 (s ) = θ 2nd. 23

24 (strategy-proofness) 4 ( ) : (10) 24

25 BNE : Θ 1 = Θ 2 = {10, 20}. f i (10) = f i (20) = 1/2. : θ i Θ i s 1 (θ i ) = 100. (11) s 2 (θ i ) = 0. (12) BNE 25

26 b A i R + : i 26

27 ( ) ( ) a (a 1, a 2,, a n ): x(a) (x 1 (a), x 2 (a),, x n (a)):. a ( i ) :. ; s i : Θ i R +. 27

28 ( ) i θ i b 1. b > θ i θ i b < b < θ i b θ i b > 0. 1, 2 i. 28

29 θ ( ) θ : θ 1st > θ 2nd > > θ nth. s i ( ) : a θ (θ 1st ) (b = θ : 29

30 ( ) 3 s = (s 1, s 2,, s n ) :. ( ) 30

31 3. 31

32 : : (13) (s i = s ) s : 1. θ i > θ i s (θ i ) > s (θ i )

33 i s ( ) θ i i a i : (14) i i s ( ) j a i : s 1 ( ): s ( ). s ( ) 33

34 ( ) θ i i a i : ( ) i : j s 1 (a i ) :. s 1 (a i ) :. i :. a i i : (15) (15) a i (s ) : (15) a i ( ) 34

35 ( ) (15) a i (s ) ( ) : (16) : (f(x)g(x)) = f (x)g(x) + f(x)g (x). f 1 (x) = 1/(f (y)). y = f 1 (x). i s ( ) a i = s (θ i ) i : s 1 (a i ) = θ i. 35

36 ( ) s ( ) : (17) (17) : (18) (18) : (19) 36

37 (19) (20) (20) 37

38 (20) i (20) i a i = s (1) i a i s (1) θ i i z : Π(z, θ i ) = = (21) 38

39 s ( ) z : Π(θ i, θ i ) Π(z, θ i ) = θ i n 1 (θ i θ i ) + θ i n = z n 1 (z θ i ) 1 n (zn θ i n ) n zn 1 (θ i z) zn n = (22) (22) z θ i z θ i 39

40 Ý Ý Ý Ü Ò ½ Ý Ü Ò ½ Þ Ò ½ Þ Ò ½ ¼ ( ) z θ i ( ): (22) = z n 1 (z θ i ) z θ i ( ): Þ Ü z ¼ θ i x n 1 dx = > 0. Þ Ü (22) = θi z x n 1 dx z n 1 (θ i z) = > 0. 40

41 4 s ( ) : (23) 4 : : : (2nd ) (23) 41

42 b : 1. 42

43 ( ) : 2. 1st 2nd 43

44 1996 : Vickrey(1961): 2nd 44

45 : : : 2nd ( ) 1st BNE 45

扉*-p02_OCF4.1

扉*-p02_OCF4.1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 ü 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

1‘Í-1Łfl4’ß.qxd

1‘Í-1Łfl4’ß.qxd 86 8 6 8 4 6 2 4 7 8 9 1 11 12 2 535 23 12 1 49 62 14 34 11 12 1 2 3 4 5 6 7 87 88 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 7 67.1 64.7 6 53.7 5 4 3 2 1 45. 41.937.9 14.2 38.5 42.342.2 41.2 27.3 31. 33.3 28.2 65.7

More information

Microsoft Word - 01マニュアル・入稿原稿p1-112.doc

Microsoft Word - 01マニュアル・入稿原稿p1-112.doc 4 54 55 56 ( ( 1994 1st stage 2nd stage 2012 57 / 58 365 46.6 120 365 40.4 120 13.0 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 4 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

More information

<986182CC82D382E982B382C68370839383748366815B835E2E7064662D66696C656E616D653D986182CC82D382E982B382C68370839383748366815B835E2E706466>

<986182CC82D382E982B382C68370839383748366815B835E2E7064662D66696C656E616D653D986182CC82D382E982B382C68370839383748366815B835E2E706466> USA 1 2 3 45 2 13 7 3 45 3 45 4 13 8~10 4 3 3 20 6 3 20 3 20 3 20 10 3 10 12 3 10 3 10 3 5 2~9 3 3 20 10 2 3 67 3 5 67 2 6 35 4 30 6 4 30 10 2 30 78 3 40 6~9 3 45 2~6 2 40 7~810~12 4 8 4 8 3 20 2~4 3 15

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

2 1 2 3 27 2 6 2 5 19 50 1 2

2 1 2 3 27 2 6 2 5 19 50 1 2 1 2 1 2 3 27 2 6 2 5 19 50 1 2 2 17 1 5 6 5 6 3 5 5 20 5 5 5 4 1 5 18 18 6 6 7 8 TA 1 2 9 36 36 19 36 1 2 3 4 9 5 10 10 11 2 27 12 17 13 6 30 16 15 14 15 16 17 18 19 28 34 20 50 50 5 6 3 21 40 1 22 23

More information

土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課)

土壌環境行政の最新動向(環境省 水・大気環境局土壌環境課) 201022 1 18801970 19101970 19201960 1970-2 1975 1980 1986 1991 1994 3 1999 20022009 4 5 () () () () ( ( ) () 6 7 Ex Ex Ex 8 25 9 10 11 16619 123 12 13 14 5 18() 15 187 1811 16 17 3,000 2241 18 19 ( 50

More information

syuryoku

syuryoku 248 24622 24 P.5 EX P.212 2 P271 5. P.534 P.690 P.690 P.690 P.690 P.691 P.691 P.691 P.702 P.702 P.702 P.702 1S 30% 3 1S 3% 1S 30% 3 1S 3% P.702 P.702 P.702 P.702 45 60 P.702 P.702 P.704 H17.12.22 H22.4.1

More information

人芯経営論 ・・・リーダーシップ考②

人芯経営論 ・・・リーダーシップ考② 2009/12/15 2009/11/17 2009/11/16 2009/10/19 2009/10/15 2009/10/1 2009/9/17 2009/9/1 2009/8/17 2009/8/17 2009/8/14 2009/8/12 2009/7/28 2009/7/17 2009/7/15 2009/6/24 2009/6/18 2009/6/15 2009/5/20 2009/5/15

More information

新郷村ホームページ

新郷村ホームページ ò ò ò ò ò ò ò ò ò 022012 ò ò ò I½ ½ ò ò ò ò ò ò ò ò ò ò ò 022021 http://www.city.hirosaki.aomori.jp/ ò ò ò I½ ½ ò ò ò ò ò ò ò ò ò ò ò 022039 http://www.city.hachinohe.aomori.jp ò ò ò I½ ½ ò ò ò ò ò

More information

第122号.indd

第122号.indd -1- -2- -3- 0852-36-5150 0852-36-5163-4- -5- -6- -7- 1st 1-1 1-2 1-3 1-4 1-5 -8- 2nd M2 E2 D2 J2 C2-9- 3rd M3 E3 D3 J3 C3-10- 4th M4 E4 D4 J4 C4-11- -12- M5 E5 J5 D5 C5 5th -13- -14- NEWS NEWS -15- NEWS

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

F

F F F F QF Y M PAI MQ P A Q F P Q F P M P Q F P Q F P Q F P Q F P I Q F P A I M F PNAIYMQ RX Y M F A Q F P A I M F A Q F M PM I P Q F QF M F I A I PNAIYMQ RX F Q P A I M F P A I M F A A M A M A M F Q F

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

1. :. ( ) etc. etc.

1. :. ( ) etc. etc. IV 5 : 2013 11 25 1. :. ( ) etc. etc. 1. : : : ( ) etc. : 1. 2. 2 : 1. 2. : (agents): i N {1, 2,, n}: n( 1) x X: (alternatives) : X ( ) θ i Θ i : i : θ (θ 1, θ 2,, θ n ): (state). Θ Θ 1 Θ 2 Θ n θ: ψ(

More information

DiMAGE Scan Multi PRO

DiMAGE Scan Multi PRO J 9229-2887-26 P-A111 9229-2887-24 X-A110 9229-2887-24

More information

CharacterSets.book Japanese

CharacterSets.book Japanese FRAMEMAKER 9 ADOBE i................................................. 2 1 2 1 2 3 4 ú þ ý! " # $ % & ( ) * +, -. / 0 1 2 3 4 5 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U 6 V W X

More information

( š ) 4,000,000 i 200,000,000 300,000 1,697,600,000 14.12.17 3,316.63fl 306,200,000 14.12.17 656.46fl 201,000,000 14.12.17 991.92fl 33,300,000 14.12.1

( š ) 4,000,000 i 200,000,000 300,000 1,697,600,000 14.12.17 3,316.63fl 306,200,000 14.12.17 656.46fl 201,000,000 14.12.17 991.92fl 33,300,000 14.12.1 ( š ) ( ) J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 15 16. 3.30 24,991,213,640 7,582,598,663 17,408,614,977 17,387,622,157 (434,864) 1,304,592,530 204,300,000 4,000,000 200,300,000

More information

ò ò ò ò ò òò ò ò ò ò http://www.kyotobe.ne.jp/ed center/ òòò ò http://tochi.mlit.go.jp/tocchi/chikakouji/point_03.html#1 Assistant English Teacher The Japan Exchange and Teaching Programme

More information

2

2 1 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234 12123456789012345678901234

More information

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology) 3 1 3.1. (set) x X x X x X 2. (space) Hilbert Teichmüller 2 R 2 1 2 1 / 2 ( ) ( ) ( ) 1 0 1 + = R 2 0 1 1 ( ) ( ) 1 1 1/ 3 = 3 2 2/ R 2 3 3.1:. (topology) 3.2 30 3 3 2 / 3 3.2.1 S O S (O1)-(O3) (O1) S

More information

untitled

untitled Contents 01 02 03 1 05 07 09 2 13 15 17 19 3 21 23 25 4 27 28 29 31 33 35 35 35 01 46 02 36 03 1 3 2 1 4 5 6 7 8 9 05 1 2 3 4 5 6 7 8 9 06 2 4 3 5 1 8 6 7 1!3 A B C C 2 A B C 07 1 A 2 B 3 A 4 C 5 A 6 B

More information

ç í ç

ç í ç ç í ç Contents 01 02 03 05 1 07 09 11 13 15 2 17 19 21 23 25 3 27 31 4 35 36 39 41 43 43 43 01 . 02 1. 03 04 05 1 1 2 3 4 07 08 1 A 2 B 3 C 4 D 5 E 09 1 C 2 A 3 D 4 B 5 E, 10 1 2 3 4 5 11 12 1 2 3 4 5

More information

PRI Protocol Monitor bit i

PRI Protocol Monitor bit i PRI Protocol Monitor PRI Protocol Monitor bit i : : ( ) ii ( ) ( ) iii iv ... 1... 2... 3... 3... 3... 4... 4... 5... 5... 5... 6... 6... 8 v 1 9 PRI Protocol Monitor 2 PRI Protocol Monitor PRI Protocol

More information

2 5 * * *2 *2 7 'm arhi Szmiya from ast jnior high irst off 'm not interested in ordinary peope t if any of yo are aiens timetraveers or espers pease ome see me That is a i * * * *irosoft ffie 9 *5 *

More information

untitled

untitled 2 3-22 23-24 25-1 - - 2 - 2-3 - 1848 1901 1936 3 1960 2005 10 27.8 1-4 - 2 5 A 3000 4-5 - 4 20 120 160 70 10-6 - 12 40 6070 80 20 20 7 5 9 15 130 I U 8 4 2 3-7 - 4 1,600 500 200 48 100 80-8 - - 9 - 1 12

More information

表1票4.qx4

表1票4.qx4 iii iv v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 10 11 24 25 26 27 10 56 28 11 29 30 12 13 14 15 16 17 18 19 2010 2111 22 23 2412 2513 14 31 17 32 18 33 19 34 20 35 21 36 24 37 25 38 2614

More information

( ) ( ) 20 11 11-13 15 20 21 ( ) 114cm 100cm 85cm () () 11 18 19 19-25 26 ( 1 ) 1 2 10 ( ) () 11 16 19 21 24-13 20 3 20 ( ) ( ) 14 15 19 20 23 29 13 20 4/15 600 400 5 7 1 8 5 7 20 3 1999 1000 100 86

More information

122

122 121 122 123 1 124 2 3 125 4 5 126 7 127 8 9 128 17301 10 1. 2. 3. 4. 5. 11 129 12 13 130 211822 14 15 131 16 17 132 5 19 133 20 21 134 22 23 135 24 25 136 26 137 1. 2. 3. 4. 5. 5 28 1. 5 2. 3. 3 29 138

More information

PR

PR 1-4 29 1-13 41 1-23 43 1-39 29 PR 1-42 28 1-46 52 1-49 47 1-51 40 1-64 52 1-66 58 1-72 28 1-74 48 1-81 29 1-93 27 1-95 30 1-97 39 1-98 40 1-100 34 2-1 41 2-5 47 2-105 38 2-108 44 2-110 55 2-111 44 2-114

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

総研大「大学共同利用機関の歴史とアーカイブズ」プロジェクト全体会(2008年度)

総研大「大学共同利用機関の歴史とアーカイブズ」プロジェクト全体会(2008年度) ß ½º ½ ¼ ½ ÁÁ ½ ¾ ½ ½ ½ ¼ ¾ ½ ½ ¾ ¾º ½ ½¼ ¾¼¼ ¼¼ ½ ÁÁ º ½ ¼¼ ½ ½ ½ ¾º ½¾ ½ ½ Ñ ½¼ ½ ÁÁ ½ ½ ¼ ½¼ ½ ½ ÁÁ ¾¼¼ ½½ ½½ ½ ½¾ ½½ ½¾ ½½ ¾¼¼ º ¹½½ ½ ½¾ ¾¼¼ º½¼ ½ ¾ º º½º ½ ½ ¼¼ ¾¼¼ Ñ ½ ¾ ½ ½¼¼ È ÐÓ ÓÔ Ð ÌÖ Ò Ø ÓÒ

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

untitled

untitled 1 2 1 1 2 3 1 2 1 2 4 0,76 4 5 0,1 1970 1974 1993 6 7 8 9 4 1920 10 1960 1971 ( ) IC 11 1980 1990 1992 1987 0,269 1996 0,023 2001 2002 1996 1996 1 98 27 70 1 3 7 12 2003 63 2 13 3 5 1 13 5 14 2 14 2 14

More information

ISBN4-902715-40-6 i ii iii iv 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Régime de la Terreur 35 é è 36 37 38 39 40 41 42 43 44 45 46 ü 47 48 49 50

More information

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) +

I.2 z x, y i z = x + iy. x, y z (real part), (imaginary part), x = Re(z), y = Im(z). () i. (2) 2 z = x + iy, z 2 = x 2 + iy 2,, z ± z 2 = (x ± x 2 ) + I..... z 2 x, y z = x + iy (i ). 2 (x, y). 2.,,.,,. (), ( 2 ),,. II ( ).. z, w = f(z). z f(z), w. z = x + iy, f(z) 2 x, y. f(z) u(x, y), v(x, y), w = f(x + iy) = u(x, y) + iv(x, y).,. 2. z z, w w. D, D.

More information

3 3.1 *2 1 2 3 4 5 6 *2 2

3 3.1 *2 1 2 3 4 5 6 *2 2 Armitage 1 2 11 10 3.32 *1 9 5 5.757 3.3667 7.5 1 9 6 5.757 7 7.5 7.5 9 7 7 9 7.5 10 9 8 7 9 9 10 9 9 9 10 9 11 9 10 10 10 9 11 9 11 11 10 9 11 9 12 13 11 10 11 9 13 13 11 10 12.5 9 14 14.243 13 12.5 12.5

More information

Acr tmp.pdf

Acr tmp.pdf 12 20 12 50 12 50 14 00 9/5 14 10 15 10 1 1 4 5 2 3 6 4 9 7 10 8 11 4 13 12 14 14 3 15 17 18 16 3 19 21 23 16 22 20 8 Open College 2015 1 2 2 3 Open College 2015 4 3 Open College 2015 5 4 5 Open College

More information

表紙オモテ

表紙オモテ 1 2 http://www.mlit.go.jp/kankocho/shisaku/sangyou/taiou_manual.html 3 4 . 5 . 6 . 7 8 . 9 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 18 . EX). 19 . 20 . 21 . 22 . 23 . 24 25. 26. . 27 28 . pork 29 . 30 .

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

#2 3 USA FCC Milgrom Willson FCC FCC USA NFS Market Design USA CO A. Roth #4

#2 3 USA FCC Milgrom Willson FCC FCC USA NFS Market Design USA CO A. Roth #4 #1 ( ) 1 1. 2. 3. Yahoo! 4. #2 #2 3 USA FCC Milgrom Willson FCC FCC USA NFS Market Design USA CO A. Roth #4 #3 #1 #5 #2 200 1 2 1 1000 1000 2 2000 2000 #6 #4 #3 200 500 1000 1000 2000 #7 1 2 1 8 #5 2007

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

保 険 金 の 支 払 100% 50%50% 5%5% 10 1 50 70 80 68 2050 320 2070 45cm 3080 1030 2 45cm 1.7/1001 0.9/1000.5 1.7/1001 30cm 15cm 30cm 0.4/1000.2 0.9/1000.5 10

保 険 金 の 支 払 100% 50%50% 5%5% 10 1 50 70 80 68 2050 320 2070 45cm 3080 1030 2 45cm 1.7/1001 0.9/1000.5 1.7/1001 30cm 15cm 30cm 0.4/1000.2 0.9/1000.5 10 P2768 補 償 される 損 害 保 険 の 対 象 30 保 険 期 間 12 5 保 険 金 額 30 50 5,0001,000 5,000 22 2013 保 険 金 の 支 払 100% 50%50% 5%5% 10 1 50 70 80 68 2050 320 2070 45cm 3080 1030 2 45cm 1.7/1001 0.9/1000.5 1.7/1001 30cm 15cm

More information

The English Vocabulary.cwk (DB)

The English Vocabulary.cwk (DB) The English Vocabulary The English Vocabulary The English Vocabulary The English Vocabulary The English Vocabulary The English Vocabulary The English Vocabulary The English Vocabulary The English Vocabulary

More information

2 3

2 3 http://text.univ.coop/noto/start/keio/ http://www.univcoop.jp/keio/index.html https://www.facebook.com/keiocoop.sfc 252-08165322 Tel: 0466-47-5300Fax: 0466-47-5353 E-mail:sfc.bk@fc.univcoop.or.jp 2 3 4

More information

untitled

untitled ÎÓк ½ ÆÓº ¾ ¾¼¼ ¼ ß ½ ÆÈÇ ½ ÆÈÇ ½ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ½ ÆÈÇ ÆÈÇ ÆÈÇ ¾ ÆÈÇ ÆÈÇ ¾ ¾ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ½ ¼½¹¼½ ¾ ¹Å Ð Ø Ò Ñ ØÙÑÛº Û ¹Ñº º Ô ¼ ¼ ÆÈÇ ½ ½ ½ ½ ¾ ½ ½ ¾ ½ ½ ÆÈÇ ¼ ÆÈÇ ÆÈÇ ÆÈÇ ÆÈÇ ¾ ½ ¾ ¾

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118 7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information