Twitter‡Ì”À‰µ…c…C†[…g‡ðŠŸŠp‡µ‡½…^…C…•…›…C…fi‘ã‡Ì…l…^…o…„‘îŁñ„�™m

Size: px
Start display at page:

Download "Twitter‡Ì”À‰µ…c…C†[…g‡ðŠŸŠp‡µ‡½…^…C…•…›…C…fi‘ã‡Ì…l…^…o…„‘îŁñ„�™m"

Transcription

1 27 Twitter

2 1 Twitter,,.,.,., Twitter,.,,.,,. URL,,,. BoW(Bag of Words), LSI(Latent Semantic Indexing)., URL,,,,., Accuracy, AUC(Area Under the Curve), Precision, Recall, F,. URL,,,., 3.,,,.

3 [1] Twitter [2] Twitter [3] [4] Twitter [5] [6] URL

4 K Accuracy( ) Precision( ) Recall( ) F1-score(F ) AUC(Area Under the Curve) LSI URL LSI URL [2]

5

6 ROC AUC ROC ROC ROC ( ) (+URL) (+ ) (+ ) (+all)

7 6 2.1 [2] ( ) ( ) ( ) (+URL) (+URL) (+URL) (+ ) (+ ) (+ ) (+ ) (+ ) (+ ) (+all) (+all) (+all) (True Positive) (True Negative) (False Positive) (False Negative)

8 SNS., SNS. Twitter 1,,., Twitter,.,.,.,,. Twitter,. Twitter,. 1.2, 1.,.,,.,.., Twitter,., Twitter,.. Twitter,. ( 1.1).,,..,. 1 https://twitter.com/

9 1 8,,. 1.1: 1.3,..,,., 3 URL,,.

10 ,,,,.,.,,,.,,., Twitter,,, ( ), ,,,,. 2,. 3,. 4, ,. 6,. 7,. 8,.

11 10 2, Twitter. 2.1 [1] [1],.,., ( ).,, ,. 4...,..,..,,,. ( ),.,.

12 ,.,, Twitter [2] Sungho Jeon [2], Twitter 4, SVM,., , ,... URL URL URL. URL URL. URL. URL,.,..,,,.,.,.,. 2.1., URL F SVM.,,. 4 SVM

13 : [2] Step Entered feature Recall Precision F-score URL , F,.,,. 2.3 Twitter [3] [3],, B 2, B. A,. 2.1: ( ).,.,., ( ) ( ), ( ) ( ).,,,.

14 2 13.,.,, [4] [4], ( ).,. A, A ( ). A, A.,,.., ,.,.,. 2.4 Twitter [5] [5],, TV TV.,. 2.2.,,. Twitter., SVM,. 3.,.,,,, 5.,.

15 : 20 1,.,.,.,, , 1.,..,.,, [6] [6], 2,..

16 2 15,.,, 2-1.,,.,.,.,..,.,,,.,,.,.,.,. 2.5 Samuel Brody [7],.,,,.,,.,.

17 (SVM),...,, Bag of Words.,,.,. SVM. K (K-fold cross-validation). 3.2, twitter. twitter , (OR NOT,,, ), ( ),, (, )., 2 /twport 3 Web ,.,, (,, ),,,.,,,,,, , 0. 1 https://twitter.com/search-advanced 2 3

18 : 3.4, MeCab 4..,,. 3.5 Bag of Words 5.,., Latent Semantic Indexing(LSI) BoW. 6 Latent Semantic Analysis(LSA). 7

19 : #joqr #npb #allstar 1 HR! #allstar 1 1 #npb 2 1 #allstar #seibulions #npb #AllStarGame 1 ( )! #allstar 1 #npballstar #allstar #npb #tvasahi 1 MVP #carp #npb #npballstar # 1 #joqr #allstar #npb 1 1 #npb #npballstar #allstar #hanshin #tigers 0 #joqr #npb #allstar 0 #joqr #npb #allstar 0 0 #npb #AllStarGame #AllStar 0 #NPB #npballstar #npb 0 #allstar #npb 0 #allstar 0 #allstar 0 #npb 0 #NpbALLSTAR LSI, 2., LSI

20 URL 2.2 [2], URL,., Twitter, URL.. URL, [7],.,.,., , 10. = ( ) 3.2.,,,.,., 3.2,. Yuxin Peng [8], SVM 2,.,, K ,, ,.

21 : K K, K, K-1, 1. K, K-1 1, K.,,. 3.5., 10,. 3.8, Accuracy( ), Precision( ), Recall( ), F1-score(F ), Area Under the Curve(AUC). 3.2: True Positive(TP) False Positive(FP) False Negative(FN) True Negative(TN)

22 : 3.4:

23 : Accuracy( ) Accuracy,.. Accuracy = T P + T N T P + T N + F P + F N Precision( ) Precision,,. Web,, Web Precision. Recall, F.. P recision = T P T P + F P Recall( ) Recall,,. Web, Web, Web Recall. Precision, F..

24 3 23 Recall = T P T P + F N F1-score(F ) F,, Precision Recall.. F 1 score = 2Recall P recision Recall + P recision = 2 T P T P +F N T P T P +F P = T P T P +F N + T P T P +F P 2T P 2T P + F P + F N AUC(Area Under the Curve) Area Under the Curve,, ROC(Receiver Operating Characteristic). ROC, True Positive Rate, False Positeve Rate,,. AUC. 3.6 ROC AUC. ROC AUC. 2, AUC 3.6., ROC AUC. AUC. 3.6: ROC AUC

25 24 4 LSI 2, , (2014/11/14 ), (2015/7/3 ), (2016/1/2 ) 3000.,, 3, 2. 7:3 10, ,, 3 4.1, 4.2., ROC 4.1, 4.2, : 1 Precision Recall F1-score class baseball class wimbledon average Precision Recall F1-score class wimbledon class hakone average Precision Recall F1-score class baseball class hakone average

26 : ROC 4.2: ROC 4.3: ROC

27 : 2 Accuracy AUC , : Accuracy 0.973(+/ ) 0.990(+/ ) 0.990(+/ ) AUC 0.996(+/ ) 0.999(+/ ) 0.998(+/ ) Precision 0.974(+/ ) 0.990(+/ ) 0.990(+/ ) Recall 0.973(+/ ) 0.990(+/ ) 0.990(+/ ) F1-score 0.973(+/ ) 0.990(+/ ) 0.990(+/ ) 4.3, LSI 2, 2. 2.

28 ,,. Python2.7. MeCab. (BoW, LSI) Python gensim 1. Python scikit-learn Twitter, 5500,..,,,,.,,,,,,., 1:10. F (3.6.3 ).,, , SVM,.,... URL,, #. URL URL. https://,. 1 https://radimrehurek.com/gensim/ 2

29 ( ) ( ). RT 2,., #. # 1.. MeCab...,,,... [5].,,,, :, 5.1.,...,,.,.,.,..

30 :, Bag of Words (BoW ),. Bag of Words Bag of Words Python gensim., N. BoW. 3...,,,,,,,,, 3. 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1 BoW. 11, 11 BoW. BoW. 3.5 LSI,

31 URL,,. LSI , 3.1.,,. ( ), ( ).,,.

32 ,, LSI.,,, , 2100,.,. 6.2., %., , LSI 2, % 0.5%, % 5%. 5 Accuracy F. Accuracy , F F, , Accuracy F.. 1.0% 80%, Accuracy 1, F 3,. 1.0%, 80%.

33 : (%) (%) Accuracy Accuracy F F LSI LSI 1 128,.,.., , , Accuracy , Accuracy 32. AUC,. Accuracy 32. F, 32,. 32, F 32., 32.

34 : 1( ) 1 precision recall f1-score 16 precision recall f1-score avg/total avg/total precision recall f1-score 32 precision recall f1-score avg/total avg/total precision recall f1-score 64 precision recall f1-score avg/total avg/total precision recall f1-score 128 precision recall f1-score avg/total avg/total : 2( ) Accuracy AUC Accuracy AUC : ( ) Accuracy AUC Precision Recall f1score (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ )

35 URL URL., , , 6.3., 6.3, , , , , Accuracy F 8, AUC 32, , , , 6.3., , Accuracy, AUC, F 32, , , , 6.3..,. 2, 4.

36 : (+URL) 1 precision recall f1-score 16 precision recall f1-score avg/total avg/total precision recall f1-score 32 precision recall f1-score avg/total avg/total precision recall f1-score 64 precision recall f1-score avg/total avg/total precision recall f1-score 128 precision recall f1-score avg/total avg/total : 2(+URL) Accuracy AUC Accuracy AUC : (+URL) Accuracy AUC Precision Recall f1score (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ )

37 : 1(+ ) 1 precision recall f1-score 16 precision recall f1-score avg/total avg/total precision recall f1-score 32 precision recall f1-score avg/total avg/total precision recall f1-score 64 precision recall f1-score avg/total avg/total precision recall f1-score 128 precision recall f1-score avg/total avg/total : 2(+ ) Accuracy AUC Accuracy AUC : (+ ) Accuracy AUC Precision Recall f1score (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ )

38 : 1(+ ) 1 precision recall f1-score 16 precision recall f1-score avg/total avg/total precision recall f1-score 32 precision recall f1-score avg/total avg/total precision recall f1-score 64 precision recall f1-score avg/total avg/total precision recall f1-score 128 precision recall f1-score avg/total avg/total : 2(+ ) Accuracy AUC Accuracy AUC : (+ ) Accuracy AUC Precision Recall f1score (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ )

39 : 1(+all) 1 precision recall f1-score 16 precision recall f1-score avg/total avg/total precision recall f1-score 32 precision recall f1-score avg/total avg/total precision recall f1-score 64 precision recall f1-score avg/total avg/total precision recall f1-score 128 precision recall f1-score avg/total avg/total : 2(+all) Accuracy AUC Accuracy AUC : (+all) Accuracy AUC Precision Recall f1score (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ ) (+/ )

40 : ( ) 6.2: (+URL)

41 : (+ ) 6.4: (+ ) 6.5: (+all)

42 LSI BoW,. LSI , URL URL URL. 2.2 URL,.,,.,.,.,. URL ,,..., ( ) ( ).,.

43 ,,,..,,...,.,,., ( )( ) ( )( )( ),.,., , 7.2, 7.3, 1, , 0 (1 ) 0,.,,.,,.,. 7.1: #joqr #npb #allstar : #allstar #npb 1 0 #tvasahi #allstar 1 0 #joqr #npb #allstar #allstar #npb ,

44 7 43,. 7.2: #allstar 1 0 #npb #baystars 1 0 #allstar #baystars #allstar 1 1 #carp #npb 1 1 #AllStar #NPB #npballstar #AllStarGame ,,,.,,,,,. 7.3.,.,.,,,. 7.3: #npb 0 1 #allstar #npb 0 1 #allstar 0 1 #allstar #npb 0 1 #allstar 0 1 #AllStarGame #npb 0 1 #allstar 0 1 #npb #AllStarGame 0 1 #npb #allstar MVP #npb

45 [2] 2.1 F F, 0.04., F 0.7,.,.,,.,.,,.,,.,,..

46 ,.,,. URL,,,. BoW, LSI., URL,,,,., Accuracy, AUC, Precision, Recall, F,. URL,,,., 3.,,, , 0-0, 0 (1 ) ,,, , URL,,..,

47 8 46 Like ,., , SVM.,,.,., URL,,,.

48 47,,.,,,.., 2,, 1,,,, 4,,,,,..

49 48 [1].. WISS2010, 41-46, [2] Sungho Jeon, Sungchul Kim, and Hwanjo Yu. Don t Be Spoiled by Your Friends: Spoiler Detection in TV Program Tweets. Seventh International AAAI Conference on Weblogs and Social Media, [3],,,. Twitter. 19, , [4],,,,,. Twitter.. MVE, 110(457), , [5],.. 96 (GN), [6],. SNS. 96 (GN), [7] Samuel Brody, Nicholas Diakopoulos. Cooooooooooooooollllllllllllll!!!!!!!!!!!!!!: using word lengthening to detect sentiment in microblogs. Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, , [8] Yuxin Peng, Jia Yao. AdaOUBoost: adaptive over-sampling and under-sampling to boost the concept learning in large scale imbalanced data sets. Proceedings of the international conference on Multimedia information retrieval. ACM, 2010.

50 8 49, (True Positive, True Negative, False Positive, False Negative, 25 ). 8.1: (True Positive) 2 #allstar #npb #allstar #npb 1 1 #NPB #npballstar 1 1 ( ) #NPB #npballstar 1 1 #npb #allstar #npballstar 1 1 #joqr #npb #allstar 1 1 #allstar 1 1 #joqr #npb #allstar 1 1 #npb 1 1 #npballstar #joqr #npb #allstar #TVasahi # # #allstar #allstargame #npballstar #npb #allstar 1 1 #npb #allstar #npballstar 1 1 #allstar #npb #allstar #npb #seibulions #npb 3!! #allstar #TVasahi MVP #carp #npb #npballstar # 1 1 MVP #allstar 1 1 #joqr #allstar #npb 1 1 #npb #npb 38 # 1 1 #NPB 1 1 #npb # #NPB 1 1

51 : (True Negative) #allstar #npb 0 0 #baystars #allstar 0 0 #TVasahi 0 0 # # #allstar #allstargame #npballstar #npb ( ) ( 0 0 )!!!!! #allstar MLB 0 0 #npb # #npb #AllStarGame #npballstar #allstar #npb!! #allstar 0 0 #BSasahi 0 0 #TVasahi # # #allstar #allstargame #npballstar #npb 2 #TVasahi # # 0 0 #allstar #allstargame #npballstar #npb 0 0 #allstar #AllStarGame #AllStar #NPB 0 0 #npballstar #allstar 0 0 #npb 0 0 #npb 0 0 ww #allstar #AllStar #NPB #npballstar 0 0 #AllStarGame AS.520 #npb 0 0 #npb #npb #npb #allstar 0 0 #allstar 0 0 w #npb 0 0 #allstar 0 0 #TVasahi # # #allstar 0 0 #allstargame #npballstar #npb

52 : (False Positive) #allstar 0 1 #npb #allstar 0 1 #npb #AllStarGame 0 1 #npb 0 1 #allstar #npb #npb #joqr #npb #allstar 0 1 #joqr #npb #allstar 0 1 #allstar 0 1 P #allstar #npb 0 1 #allstar 0 1 PL #allstar 0 1 k #allstar #npb 0 1 #allstar 0 1 #joqr #npb 0 1 #allstar #TVasahi # # 0 1 #allstar #allstargame #npballstar #npb #AllStar #NPB #npballstar #AllStarGame 0 1 #allstar 0 1 #allstar 0 1 #allstar #joqr 0 1 #TVasahi # # #allstar #allstargame 0 1 #npballstar #npb 9 #allstar #npb 0 1! #allstar #npballstar #allstar #npb #tvasahi 0 1 MVP www #allstar 0 1

53 : (False Negative) #ALLSTAR 1 0 #npballstar #AllStarGame #AllStar #NPB #Baseball #NPB HR #npb 1 0 #carp #npb 1 0 #allstar 1 0 #allstar 1 0 HR #allstar 1 0 #allstar #npb 1 0 #allstar 1 0 #allstar #npb #AllStar #NPB #npballstar 1 0 #AllStarGame #allstar 1 0 #allstar 1 0 #allstar 1 0 #sbhawks #allstar 1 0 #allstar #allstar 1 0 MVP #allstar 1 0 MVP ( ) #npb 1 0 #allstar #allstar 1 0 # #NPB #baseball 1 0

...6...6...7...10...11...12...12...12...12...12...13...13...13...13...13...13...13 NPB...14...14...14...17...19...20...20 MLB NPB...23...25...25...27.

...6...6...7...10...11...12...12...12...12...12...13...13...13...13...13...13...13 NPB...14...14...14...17...19...20...20 MLB NPB...23...25...25...27. 1 ...6...6...7...10...11...12...12...12...12...12...13...13...13...13...13...13...13 NPB...14...14...14...17...19...20...20 MLB NPB...23...25...25...27...29...30...31...32...33 2 34...37...37...37...38...40...40...44...44...45...45...45...45...46...46...46...47...47...48

More information

. Yahoo! 1!goo 2 QA..... QA Web Web 2 3 4 5 6 7 8 2. [1]Web Web Yin [2] Web Web Web. [3] Web Wikipedia 1 2

. Yahoo! 1!goo 2 QA..... QA Web Web 2 3 4 5 6 7 8 2. [1]Web Web Yin [2] Web Web Web. [3] Web Wikipedia 1  2 DEIM Forum 211 F6-3 Web 35 855 1 2 35 855 1 2 11 843 2 1 2 E-mail: s913153@klis.tsukuba.ac.jp, {yohei,satoh}@slis.tsukuba.ac.jp, kando@nii.ac.jp QA Web Web Web QA Diversified-query Generating System Using

More information

橡ボーダーライン.PDF

橡ボーダーライン.PDF 1 ( ) ( ) 2 3 4 ( ) 5 6 7 8 9 10 11 12 13 14 ( ) 15 16 17 18 19 20 ( ) 21 22 23 24 ( ) 25 26 27 28 29 30 ( ) 31 To be or not to be 32 33 34 35 36 37 38 ( ) 39 40 41 42 43 44 45 46 47 48 ( ) 49 50 51 52

More information

Twitter 2016 3 201413127

Twitter 2016 3 201413127 Twitter Twitter Twitter Twitter 2 2 Twitter Twitter Twitter SVM(Support Vector Machine) Distant Supervision 2 1000 F. Twitter 2016 3 201413127 1 1 1.1....................................... 1 1.2.......................................

More information

1 AND TFIDF Web DFIWF Wikipedia Web Web 2. 3. 4. AND 5. Wikipedia AND 6. Wikipedia Web 7. 8. 2. Ma [4] Ma URL AND Tian [8] Tian Tian Web Cimiano [3] [

1 AND TFIDF Web DFIWF Wikipedia Web Web 2. 3. 4. AND 5. Wikipedia AND 6. Wikipedia Web 7. 8. 2. Ma [4] Ma URL AND Tian [8] Tian Tian Web Cimiano [3] [ DEIM Forum 2015 B1-5 606 8501 606 8501 E-mail: komurasaki@dl.kuis.kyoto-u.ac.jp, tajima@i.kyoto-u.ac.jp Web Web AND AND Web 1. Twitter Facebook SNS Web Web Web Web [5] Bollegala [2] Web Web 1 Google Microsoft

More information

Wikipedia 2 Wikipedia Web Wikipedia 2. Web [6] [11] [8] 2 SVM Bollegala [1] 5-gram URL URL 2-gram [6] [11] SVM 3 SVM [8] Bollegala [1] SVM [7] [9] [6]

Wikipedia 2 Wikipedia Web Wikipedia 2. Web [6] [11] [8] 2 SVM Bollegala [1] 5-gram URL URL 2-gram [6] [11] SVM 3 SVM [8] Bollegala [1] SVM [7] [9] [6] DEIM Forum 2012 F3-5 305 8550 1-2 305 8550 1-2 E-mail: {yamaguchi,satoh}@ce.slis.tsukuba.ac.jp, sat@slis.tsukuba.ac.jp Wikipedia SVM Abstract A study of Retrieval in Microblogging based on Person s Aliases

More information

untitled

untitled c OR 21 OR 1. 21 21 IoT OR OR OR 260 8672 1 8 1 OR 2. 2.1 public health [1] communicable (infectious) diseases vehicle burden HIV/AIDS (SARS) 258 60 Copyright c by ORSJ. Unauthorized reproduction of this

More information

<> <> <> 11 ... 1 XML Web XML HTML 1 name item 2 item item HTML

<> <name> </name> <body> <></> <> <title> </title> <item> </item> <item> 11 </item> </>... </body> </> 1 XML Web XML HTML 1 name item 2 item item HTML DEWS2008 C6-4 XML 606-8501 E-mail: yyonei@db.soc.i.kyoto-u.ac.jp, {iwaihara,yoshikawa}@i.kyoto-u.ac.jp XML XML XML, Abstract Person Retrieval on XML Documents by Coreference that Uses Structural Features

More information

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: matsunagah@murase.m.is.nagoya-u.ac.jp, {ide,murase,hirayama}@is.nagoya-u.ac.jp,

More information

2 21,238 35 2 2 Twitter 3 4 5 6 2. 2.1 SNS 2.2 2. 1 [8] [5] [7] 2. 2 SNS SNS 2 2. 2. 1 Cheng [2] Twitter [6] 2. 2. 2 Backstrom [1] Facebook 3 Jurgens

2 21,238 35 2 2 Twitter 3 4 5 6 2. 2.1 SNS 2.2 2. 1 [8] [5] [7] 2. 2 SNS SNS 2 2. 2. 1 Cheng [2] Twitter [6] 2. 2. 2 Backstrom [1] Facebook 3 Jurgens DEIM Forum 2016 B4-3 地域ユーザに着目した口コミツイート収集手法の提案 長島 里奈 関 洋平 圭 猪 筑波大学 情報学群 知識情報 図書館学類 305 8550 茨城県つくば市春日 1 2 筑波大学 図書館情報メディア系 305 8550 茨城県つくば市春日 1 2 つくば市役所 305 8555 茨城県つくば市研究学園 1 1 1 E-mail: s1211530@u.tsukuba.ac.jp,

More information

( )

( ) NAIST-IS-MT1051071 2012 3 16 ( ) Pustejovsky 2 2,,,,,,, NAIST-IS- MT1051071, 2012 3 16. i Automatic Acquisition of Qualia Structure of Generative Lexicon in Japanese Using Learning to Rank Takahiro Tsuneyoshi

More information

Web 1 q q 2 1 2 Step1) Twitter Step2) (w i, w j ) S(w i, w j ) Step3) q 2 2 2.1 I Twitter MeCab[6] URL http:// @ 2.2 (w i, w j ) S(w i, w j ) I w i w

Web 1 q q 2 1 2 Step1) Twitter Step2) (w i, w j ) S(w i, w j ) Step3) q 2 2 2.1 I Twitter MeCab[6] URL http:// @ 2.2 (w i, w j ) S(w i, w j ) I w i w ARG WI2 No.6, 2015 a b b 565-0871 2-1 a) yoshitake@nanase.comm.eng.osaka-u.ac.jp b) {naoko, babaguchi}@comm.eng.osaka-u.ac.jp 1 Citizen Sensor [1] Twitter 140 Twitter Sakaki [2] [3] Massoudi [4] [5] Copyright

More information

Twitter‡É‡¨‡¯‡éŁ”¦…V…X…e…•‡Ì™ñ‹Ä

Twitter‡É‡¨‡¯‡éŁ”¦…V…X…e…•‡Ì™ñ‹Ä Twitter 1 Twitter Twitter Twitter Twitter Streaming API 18 2 1 6 1.1.................................................. 6 1.2................................................. 7 1.3..................................................

More information

WEST MLBNFL MLB NFL 2

WEST MLBNFL MLB NFL 2 WEST 2008 1 2008 12 14 WEST 2008 1 WEST 2008 1994 2004 3 MLBNFL MLB NFL 2 WEST 2008 3 WEST 2008 4 21 4 WEST 2008 4 21 3 5,000 21 3.05 2,200 1 3,000 3,000 5 WEST 2008 1 1 1 5 5 123 45 5 6 WEST 2008 5 7

More information

[15] Twitter Twitter 13 13 4 5 2. *2 [4], [6], [13], [14], [16] [1], [2], [3], [8], [10], [11], [12] 3. 13 1 13 10 *2 SNS 1: (On) (Sp) (Hf) (As) (Dp)

[15] Twitter Twitter 13 13 4 5 2. *2 [4], [6], [13], [14], [16] [1], [2], [3], [8], [10], [11], [12] 3. 13 1 13 10 *2 SNS 1: (On) (Sp) (Hf) (As) (Dp) Twitter 1,a) 1,b) Twitter Weibo Twitter Twitter 13 Twitter An Investigation and Analysis on the Relationship between Profile Images and User Behaviors on Twitter Tominaga Tomu 1,a) Hijikata Yoshinori 1,b)

More information

main.dvi

main.dvi 305 8550 1 2 CREST fujii@slis.tsukuba.ac.jp 1 7% 2 2 3 PRIME Multi-lingual Information Retrieval 2 2.1 Cross-Language Information Retrieval CLIR 1990 CD-ROM a. b. c. d. b CLIR b 70% CLIR CLIR 2.2 (b) 2

More information

untitled

untitled 1 211022 2 11150 211022384 3 1000 23% 77% 10% 10% 5% 20% 15% 40% 5% 3% 8% 16% 15% 42% 5% 6% 4 =1000 = 66 5 =1000 = 59 6 52%(42% 1000 7 56% 41% 40% 97% 3% 11%, 2% 3%, 41 7% 49% 30%, 18%, 40%, 83% =1000

More information

Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i

Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i 21 Stock price forecast using text mining 1100323 2010 3 1 Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i Abstract Stock price forecast using text

More information

【生】④木原資裕先生【本文】/【生】④木原資裕先生【本文】

【生】④木原資裕先生【本文】/【生】④木原資裕先生【本文】 WBC MLB J MLB MLB J J J http : //www.zen koutairen.com/: NHK NHK ABC Live NHK NHK ABC NHKABC NHK PTA NHK ABC WORLD BASEBALL CLASSIC WBC http : //www.topics.or.jp/kaishaannai/ http : //adv.yomiuri.co.jp/yomiuri/n

More information

2

2 2 485 1300 1 6 17 18 3 18 18 3 17 () 6 1 2 3 4 1 18 11 27 10001200 705 2 18 12 27 10001230 705 3 19 2 5 10001140 302 5 () 6 280 2 7 ACCESS WEB 8 9 10 11 12 13 14 3 A B C D E 1 Data 13 12 Data 15 9 18 2

More information

24 No. 34 (2013) 1. SNS 25 1 24 9,652 79.5% 13 49 94% 97% 1 2012 2 twitter Facebook mixi Blog GREE mobage SNS 10 85.1% 57.3% 31.4% 7.9% 23 16.2% 4.2%

24 No. 34 (2013) 1. SNS 25 1 24 9,652 79.5% 13 49 94% 97% 1 2012 2 twitter Facebook mixi Blog GREE mobage SNS 10 85.1% 57.3% 31.4% 7.9% 23 16.2% 4.2% 23 Twitter A well - known novelist started using social media a case of TSUBASA by Kazufumi Shiraishi Taichi Sakuraba School of Commerce, School of Letters, Senshu University Social media ex.facebook and

More information

aca-mk23.dvi

aca-mk23.dvi E-Mail: matsu@nanzan-u.ac.jp [13] [13] 2 ( ) n-gram 1 100 ( ) (Google ) [13] (Breiman[3] ) [13] (Friedman[5, 6]) 2 2.1 [13] 10 20 200 11 10 110 6 10 60 [13] 1: (1892-1927) (1888-1948) (1867-1916) (1862-1922)

More information

27 28 2 15 14350922 1 4 1.1.................................... 4 1.2........................... 5 1.3......................... 6 1.4...................................... 7 2 9 2.1..........................

More information

189 2015 1 80

189 2015 1 80 189 2015 1 A Design and Implementation of the Digital Annotation Basis on an Image Resource for a Touch Operation TSUDA Mitsuhiro 79 189 2015 1 80 81 189 2015 1 82 83 189 2015 1 84 85 189 2015 1 86 87

More information

タイトル 著 者 情 報 の 保 護 と 活 用 佐 々 木, 俊 尚 引 用 社 会 情 報 = Social Information, 20(2): 発 行 日 2011-03 URL http://hdl.handle.net/10742/1410 札 幌 学 院 大 学 総 合 研 究 所 069-8555 北 海 道 江 別 市 文 京 台 11 番 地 電 話 :011-386-8111

More information

Copyright 2002-2003 SATO International All rights reserved. http://www.satoworldwide.com/ This software is based in part on the work of the Independen

Copyright 2002-2003 SATO International All rights reserved. http://www.satoworldwide.com/ This software is based in part on the work of the Independen SATO Label Gallery SATO International Pte Ltd Version : BSI-021227-01 Copyright 2002-2003 SATO International All rights reserved. http://www.satoworldwide.com/ This software is based in part on the work

More information

6 1873 6 6 6 2

6 1873 6 6 6 2 140 2012 12 12 140 140 140 140 140 1 6 1873 6 6 6 2 3 4 6 6 19 10 39 5 140 7 262 24 6 50 140 7 13 =1880 8 40 9 108 31 7 1904 20 140 30 10 39 =1906 3 =1914 11 6 12 20 1945.3.10 16 1941 71 13 B29 10 14 14

More information

自然言語処理21_249

自然言語処理21_249 1,327 Annotation of Focus for Negation in Japanese Text Suguru Matsuyoshi This paper proposes an annotation scheme for the focus of negation in Japanese text. Negation has a scope, and its focus falls

More information

untitled

untitled 0120-888-089 0120-919-498 160-83381-26-1TEL. 03-3349-3111 URL http://www.sjnk.co.jp/ 160-83381-26-1 TEL. 03-3349-3111 URL http://www.sompo-japan.co.jp/ 100-89653-7-3 TEL. 0120-919-498 URL http://www.nipponkoa.co.jp/

More information

農林金融2015年5月号

農林金融2015年5月号 4 5 4 4 4 4 2014 5 14 7 2050 1412 15 3 19 1800 1 1 2 2 2 126 2 3 1 2 1 2 3 4 1 1 2 2 1 1 2014 3 2 126 2 2 3 1 40 30 20 10 0 2014 26 287 339 393 399 361 2 2 11 1 3 25 4 4 5 5 19898993 96 3 2000 1 1 1 5

More information

表紙.PDF

表紙.PDF 2 3 4 2001 2010 33 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 H18 21 22 23 24 25 26 27 28 29 30 31 32 33 300 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 410-8601 055-934-4747 Fax 055-933-1412

More information

P072-076.indd

P072-076.indd 3 STEP0 STEP1 STEP2 STEP3 STEP4 072 3STEP4 STEP3 STEP2 STEP1 STEP0 073 3 STEP0 STEP1 STEP2 STEP3 STEP4 074 3STEP4 STEP3 STEP2 STEP1 STEP0 075 3 STEP0 STEP1 STEP2 STEP3 STEP4 076 3STEP4 STEP3 STEP2 STEP1

More information

STEP1 STEP3 STEP2 STEP4 STEP6 STEP5 STEP7 10,000,000 2,060 38 0 0 0 1978 4 1 2015 9 30 15,000,000 2,060 38 0 0 0 197941 2016930 10,000,000 2,060 38 0 0 0 197941 2016930 3 000 000 0 0 0 600 15

More information

1

1 1 2 3 4 5 6 7 8 9 0 1 2 6 3 1 2 3 4 5 6 7 8 9 0 5 4 STEP 02 STEP 01 STEP 03 STEP 04 1F 1F 2F 2F 2F 1F 1 2 3 4 5 http://smarthouse-center.org/sdk/ http://smarthouse-center.org/inquiries/ http://sh-center.org/

More information

untitled

untitled 0-1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19 20 20 21 21 22 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 0-2 1 1 2 23 3 46 4 714 5 15 0-3

More information

2009/9 Vol. J92 D No. 9 HTML [3] Microsoft PowerPoint Apple Keynote OpenOffice Impress XML 4 1 (A) (C) (F) 2. 2. 1 1484 Fig. 1 1 An example of slide i

2009/9 Vol. J92 D No. 9 HTML [3] Microsoft PowerPoint Apple Keynote OpenOffice Impress XML 4 1 (A) (C) (F) 2. 2. 1 1484 Fig. 1 1 An example of slide i a) Structure Extraction from Presentation Slide Information Tessai HAYAMA a), Hidetsugu NANBA, and Susumu KUNIFUJI Web 1. Web Graduate School of Knowledge Science, Japan Advanced Institute of Science and

More information

夏目小兵衛直克

夏目小兵衛直克 39(1906)1222 14(1817) 3(1832)1514(1843) 2628 6 (1853) (1854)3727 3(1856) 1 / 13 5(1858)6(1859) 5(1853) () () () () () () 3(1867)29 504111( 2 / 13 )98 23 18 2(1869)310283 100 50() 58 226 3313200982 5033

More information

nenkin.PDF

nenkin.PDF 1 31 1 WEB 10 3,544 429 13 10 22 11 7 WEB 1 2 41.0 15 80.0 20 46.7% 1000 55.8 1000 34.4 21 18.2 1000 23 25 41.0 49.2 29 90.6 42.7 33 56.4% 79.2% 67.4 51.7 37 39 83.7 1 91.0 93.6 9 2 3 1000 96.3 300 1000

More information

( )

( ) Web Web 1 3 1 21 11 22 23 24 3 2 3 4 5 1 1 11 22 9 2 3 15 11 22 2 11 21 4 5 ( ) 102 ( ) 1 ( 1 2001 Web 1 5 4 1 1 - 7 - [] - 7 10 11 12 12 1 10 1 12 - [] 1 1 2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 3 1 47

More information

Vol. 9 No. 5 Oct. 2002 (?,?) 2000 6 5 6 2 3 6 4 5 2 A B C D 132

Vol. 9 No. 5 Oct. 2002 (?,?) 2000 6 5 6 2 3 6 4 5 2 A B C D 132 2000 6 5 6 :, Supporting Conference Program Production Using Natural Language Processing Technologies Hiromi itoh Ozaku Masao Utiyama Masaki Murata Kiyotaka Uchimoto and Hitoshi Isahara We applied natural

More information

1

1 20123 0 1 2 3 6 2 4.5 36.8 41.3 10.8 40.4 66.4 129.4 132.9 5.9 7.1 418.2 20123 143.8 138.1 10.3 10.9 425.6 20113 5.1 160.5 161.1 158.4 122.0 27.5 25.0 422.7 20103 126.8 23.0 17.7 484.2 20093 14.4 4.3 3.7

More information

2013 Vol.1 Spring 2013 Vol.1 SPRING 03-3208-2248 C O N T E N T S 2013 03-3208-2248 2 3 4 7 Information 6 8 9 11 10 73 94 11 32 37 41 96 98 100 101 103 55 72 1 2 201345135016151330 3 1 2 URL: http://www.wul.waseda.ac.jp/clib/tel.03-3203-5581

More information

A B C B C ICT ICT ITC ICT

A B C B C ICT ICT ITC ICT ICT Development of curriculum for improving of teachers ICT based on evaluation standards. Kazuhiko ISHIHARA Abstract Ministry of Education and Science announced Checklist of teacher s ICT in March,. All

More information

LINE 1LINE ( ) ( ) 2 3 100 4 LINE 5 LINE ( ) ( ) 119 119 5 500

LINE 1LINE ( ) ( ) 2 3 100 4 LINE 5 LINE ( ) ( ) 119 119 5 500 LINE 1LINE ( ) ( ) 2 3 100 4 LINE 5 LINE ( ) ( ) 119 119 5 500 1. ( 30 1 ( 102 1 ) 113 3 ( 4 120 2 3 ) 113 5 ) 2. 30 1 1 6 () ( ) 1 () ( ) 2 ( ) ( ) (1) (2) (3) (4) (5) 3 ( ) 2 100 4 ( ) 5 () 6 ( ) LINE

More information

P

P 03-3208-22482013 Vol.2 Summer & Autumn 2013 Vol.2 Summer & Autumn 90 527 P.156 611 91 C O N T E N T S 2013 03-3208-2248 2 3 4 6 Information 7 8 9 10 2 115 154 10 43 52 61 156 158 160 161 163 79 114 1 2

More information