2, 3, -, - (X H í et (X, Q )), l- ( ), - l( ),, - l-, (, l Hom(Z l, Z ) = 0, Hom(Z, Z ) Z )., Tate Q (i) Q l (i), l Q l (i) G (I ), Q (i) (i 0 ) χ i :

Size: px
Start display at page:

Download "2, 3, -, - (X H í et (X, Q )), l- ( ), - l( ),, - l-, (, l Hom(Z l, Z ) = 0, Hom(Z, Z ) Z )., Tate Q (i) Q l (i), l Q l (i) G (I ), Q (i) (i 0 ) χ i :"

Transcription

1 - ( ) Contents Fontaine C - (Tate-Sen ):- 16 References 27 1., 2009 l- - I, II,, 2 Fontaine - -, 3 -,, 4 (- )Tate-Sen, -, Q, G := Gal(/) O, π O, k := O /π O v : Q { } v () = Q, ur I := Gal(/ ur ) - χ : G Z (, 1 n ζ n g G g(ζ n) = ζ χ(g) ). C n := - ( -, ).,, G - Deition 1.1. V (G )-, V Q - G Q -, (, G rull, V Q -). G - Re G., - - l- (l ) X (H í et (X, Q )), ([Mi]), l- (l ), X X k H í et (X, Q l) l-, X H í et (X, Q l), { } { } { { } } { { } } = { { l- l- ( Grothendieck ). 1 } }

2 2, 3, -, - (X H í et (X, Q )), l- ( ), - l( ),, - l-, (, l Hom(Z l, Z ) = 0, Hom(Z, Z ) Z )., Tate Q (i) Q l (i), l Q l (i) G (I ), Q (i) (i 0 ) χ i : G Z χi (I ) Z Q (i) (, H 2 ét (P1, Q ) H 1 ét (G m,, Q ) Q ( 1) ), - Fontaine, - (B cris, B st, B dr ), ,, X -, X k ( ). 4, 2, 3, Tate-Sen - 2. Fontaine -. 2, Fontaine ([Fo82], [Fo94a], [Fo94b], [Be04]) B cris, B st, B dr -, -, - -, - -, - (Q ur B ur := Q ur - ) V Re G, D ur (V ) := (B ur Q V ) G B ur Frobenius ϕ Frobenius ϕ. (B G ur B G ur := {x B ur g(x) = x ( g G )} = 0, Bur ϕ=1 := {x B ur ϕ(x) = x} = Q B ur 0 (B ur Q V ) B ur Q V : a (b x) ab x B ur 0 D ur (V ) B ur Q V = 0 ), dim 0 D ur (V ) dim Q V D ur (V ) V Proosition 2.1. V Re G (1) V 2

3 (2) dim 0 D ur (V ) = dim Q V,, B ur 0 D ur (V ) B ur Q V G ϕ, - (B ur 0 D ur (V )) ϕ=1 V (, V D ur (V ) ). Proof., G - B ( = cris, st, dr ) ( B ur, G - ϕ ),,, V - D (V ) := (B Q V ) G dim D (V ) = dim Q V (, := B G ),, D (V ) - B, ( D ur (V ) )V D (V ) (), - B ur C,, - C, Tate i Z, C (i) := C Q Q (i) = C e i, G g(ae i ) := χ(g) i g(a)e i (a C ) Theorem 2.2. (Tate[Ta67]) (1) i = 0, H 0 (G, C (0)) = H 1 (G, C (0)) =. (2) i 0, H j (G, C (i)) = 0 ( j 0). Proof. 4. H 0 (G, ), - - (i 0 Q (i) )C, Q ( 1) - C, Tate Q( 1) G m,r, 2π 1, 2π 1 - C 3

4 2.1. B 2.1, B cris, B st, B dr B +, ( )Ẽ+ Ẽ + := lim O C / := {O C / O C / O C / } n Ẽ +, x = (x n ) n 0, (x n O C /, x n+1 = x n ). F = O Q ur / lim O Q n ur/, F Ẽ+. Ẽ+ x = (x n ) n 0 v(x) := lim n v ( x n n ) (, x n O C x n ), v : Ẽ+ R 0 { } x n,, v, Ẽ+. Ẽ+, ε, Ẽ+ ε := ( ε n ) n 0, ε n O C, ε 0 = 1, ε 1 1, ε n+1 = ε n ( n) (, ε n O C /, ε n ). := ( n ) n 0, n O C, 0 =, n+1 = n ( n) Ẽ + x x ϕ Frobenius. Ẽ +, O C G - ϕ G - (, Ẽ +, v ). Ã + := W (Ẽ+ ) Ẽ+ Witt., - Ã+ /Ã+ Ẽ+ () Ã + -, Ẽ+ v, [ ] : Ẽ+ Ã+ Teichmüller,, [0] = 0, [1] = 1, x, y Ẽ+ [xy] = [x][y], [x] x Ẽ+ (mod ), x Ã+ x = n=0 [a n] n (a n Ẽ+ ) Witt Ẽ+ ϕ, G - Ã+ (, - )., ϕ( n=0 [a n] n ) = n=0 [a n] n, g( n=0 [a n] n ) = n=0 [g(a n)] n (g G ). Qur = W ( F )[ 1 ], B + := Ã+ [ 1 ] Q ur B +. B +, C, [x] = [(x n ) n 0 ] Ã+ (x Ẽ+ ), θ([x]) := lim n x n n (, x n O C, x n O C /O C ). θ : Ã+ O C, θ : Ã+ O C : [a n ] n θ([a n ]) n n=0, θ θ G - θ([x]) O C, θ [ ] er(θ), n=0 er(θ) = ([ ] )Ã+ (, θ (mod ) Ẽ+, O C ). θ G - er(θ) G - 4

5 , ϕ (, ϕ([ ] ) er(θ) ). θ. θ : B + C 2.2. B dr :de Rham. B + B + dr, B + dr := lim n B+ /er(θ) n, B + dr G, ϕ. θ : B + C G - θ : B + dr C B + B + dr, B+ dr C, er(θ), G - B + dr ( B +, ). t := log([ε]) = n 1 ([ε] 1)n ( 1) B + dr n n=1 (([ε] 1) er(θ), t B + dr ). log ( ), ϕ(t) = log(ϕ([ε])) = log([ε] ) = log([ε]) = t, g(t) = log(g([ε])) = log([ε] χ(g) ) = χ(g)log([ε]) = χ(g)t (g G ) (, t Q ( 1) -, 2π 1 - )., log([ε]) = ([ε] 1)x (x B + dr ), θ(x) 0, B + dr, er(θ) = tb + dr B dr := B + dr [t 1 ]. B dr G - B + dr - Fil i B dr := t i B + dr (i Z) B dr, Re G (filtered modules over ) D dr Deition 2.3. D ( filtered module over ), D, - Fil i D (i Z), i > 0 Fil i D = 0, Fil i D = D,. D 1 D 2, D 1 D 2 - f : D 1 D 2 i Z f(fil i D 1 ) Fil i D 2 MF. 5

6 Remark 2.4. MF, D 1 = e 1, Fil 0 D 1 = D 1, Fil 1 D 1 = 0, D 2 = e 2, Fil 1 D 2 = D 2, Fil 2 D 2 = 0, f : D 1 D 2 : ae 1 ae 2 Im(f) = D 1 Coim(f) = D 2., MF, i,, Deition 2.5. Re G MF 0 D 1 D 2 D Fil i D 1 Fil i D 2 Fil i D 3 0 V Re G, D dr : Re G MF D dr (V ) := (B dr Q V ) G, Fil i D dr (V ) := (Fil i B dr Q V ) G D dr (V ), Proosition 2.6. (1) B G dr =. (2) V Re G, dim D dr (V ) i Z dim (C (i) Q V ) G dim Q V Proof., Tate (Theorem 2.2). Deition 2.7. (1) 0 t k+1 B + dr tk B + dr C (k) 0 dim D dr (V ) = dim Q V, V (de Rham reresentation). Re G Re G,dR. (2) V Re G,dR, Z {i Z Fil i D dr (V )/Fil i+1 D dr (V ) 0} V Hodge-Tate (Hodge-Tate weight). (2), D dr Re G,dR Proosition 2.8. (0) Re G,dR (, f : V 1 V 2 V 1, V 2 Re G,dR er(f), Im(f), Coker(f) Re G,dR). (1) D dr : Re G,dR MF (, Re G,dR MF ). (2) V Re G,dR, B dr (B dr Q V ) B dr Q V : a (b x) ab x B dr D dr (V ) B dr Q V 6

7 , B + dr G - (, Fil i (B dr D dr (V )) := Fil i 1 B dr Fil i 2 D dr (V ) i 1 +i 2 =i, ). Fil i (B dr Q V ) := Fil i B dr Q V Remark 2.9. (Tate ) i, D dr (Q (i)) = (B dr Q Q (i)) G = ( 1 e t i i ) (, e i Q (i) )., Q (i), Fil i D dr (Q (i)) = D dr (Q (i)), Fil i+1 D dr (Q (i)) = 0, Q (i) Hodge-Tate i. Remark L V Re G, V Re G,dR, V G L V GL, Hilbert 90 (H 1 (Gal(L/), GL n (L)) = {1}), V GL V 2.3. B HT :Hodge-Tate. B HT,, G g( n Z a n T n ) := n Z B HT := C [T, T 1 ] g(a n )χ(g) n T n (g G, n Z a n T n B HT ) B HT, Re G - M gr, D HT Deition Re G M gr,, D HT : Re G M gr, D HT (V ) := (B HT Q V ) G, D HT (V ) i := (C T i Q V ) G D HT (V ) Remark (2), Deition (1) V Re G dim D dr (V ) dim D HT (V ) dim Q V dim D HT (V ) = dim Q V, V Hodge-Tate (Hodge-Tate reresentation). Hodge-Tate Re G Re G,HT. (2) V Re G,HT, Z V Hodge-Tate {i Z D HT (V ) i 0} Tate, Proosition V Re G, (1), (2). (1) V Re G,HT. 7

8 (2) B HT (B HT Q V ) B HT Q V : a (b x) ab x B HT D HT (V ) B HT Q V, G - C - (,, (B HT D HT (V )) i := C T i 1 D HT (V ) i2, ). i 1 +i 2 =i (B HT Q V ) i := C T i Q V Deition V Re G,HT, (2) 0, C [G ]- C (i) D HT (V ) i C Q V i Z., V Hodge-Tate ( Hodge-Tate decomosition). Remark i Z, H 1 (G, Q (i)) 0 Q (i) V Q 0. i 0, V Hodge-Tate. (, C 0 C (i) C Q V C 0, Tate i 0 C [G ]- ). i = 0, 1- log(χ) : G Q : g log(χ(g)) [log(χ)] Hom(G, Q ) = H 1 (G, Q ) Hodge-Tate ( 4 )., Hodge-Tate, t i B + dr /ti+1 B + dr B HT i Z 2.6 (2). Proosition (1) Re G,dR Re G,HT. (2) V Re G,dR, D dr (V ) Hodge-Tate D HT (V ) Hodge-Tate., - Fil i D dr (V )/Fil i+1 D dr (V ) D HT (V ) i Z Remark Re G,HT Re G.dR, i 1, Re G 0 Q (i) V Q 0, V Hodge-Tate Remark Hodge-Tate, Hodge-Tate - Hodge-Tate, 4. 8

9 2.4. B cris : A cris Ã+ er(θ) = ([ ] ) PD-enveloe -. Ã + G - A cris, ϕ([ ] ) ([ ] ) ( mod Ã+ ) Frobenius ϕ A cris ([ ] ) er(θ), Ã + B + dr G - A cris B + dr,, A cris = { n=0 a n ([ ] ) n n! B + dr a n Ã+, a n 0(n )} (, a n 0 (n ), Ã+ ). B + cris := A cris[ 1 ]. t B + dr, n 1 ([ε] 1)n t = ( 1) = ( 1) n 1 ([ε] 1)n (n 1)! n n! n=1 n=0, t A cris. B cris := B + cris [t 1 ] G, ϕ t, B cris G, ϕ B + cris B+ dr B cris B dr, Q ur B + ur Q B + cris. B cris B dr,. Proosition (1) 0 B cris B dr. (2) B G cris = 0. (3) (Bloch- ) G -,, Q B ϕ=1 cris. 0 Q B ϕ=1 cris B + dr B dr 0 B + dr Deition V Re G, B ϕ=1 cris := {x B cris ϕ(x) = x} : x (x, x), Bϕ=1 cris D cris (V ) := (B cris Q V ) G. (1)(2) 2.6 (2), dim 0 D cris (V ) dim D dr (V ) dim Q V B + dr B dr : (x, y) x y Deition D ϕ- (filtered ϕ-module over ), D 0 -, ϕ- ϕ D : D D (, a 0, x D, ϕ D (ax) = ϕ(a)ϕ D (x) ), D := 0 D -, ϕ- MF ϕ. Deition V Re G dim 0 D cris (V ) = dim Q (V ), V Re G Re G,cris. 9

10 Remark V, D cris (V ) Frobenius ϕ Dcris (V ) B cris Frobenius, dim 0 D cris (V ) dim D dr (V ), V V (1) 0 D cris (V ) D dr (V )., D cris (V ) MF ϕ. Proosition V Re G (1) V Re G,cris. (2) B cris 0 D cris (V ) B cris Q V G -, ϕ,,, (G ) (B cris 0 D cris (V )) ϕ=1 Fil 0 (B dr D dr (V )) V,, V D cris (V ), D cris : Re G,cris MF ϕ Proof. (1) (2) (, (1) (2) ), B cris, χ i µ : G Z (i Z, µ ), Bloch-, V Re G,cris, (B cris 0 D cris (V )) ϕ=1 Fil 0 (B dr D dr (V )) = (B cris Q V ) ϕ=1 Fil 0 (B dr Q V ) = (B ϕ=1 cris B + dr ) Q V = V Remark D cris essential image, 2.7. Remark Q (i),, t B cris, D cris (Q (i)) = (B cris Q Q (i)) G = 0 ( 1 t i e i ), ϕ( 1 t i e i ) = 1 i ( 1 t i e i ), Fil i D dr (Q (i)) = D dr (Q (i)), Fil i+1 D dr (Q (i)) = 0. Remark 2.28., H 1 (G, Q (1)) G - 1 µ n x x 1 (, µ n := {ζ ζ n = 1} ) n lim /( ) n n H 1 (G, Z (1)) lim /( ) n, H 1 (G, Z (1)) H 1 (G, Q (1)) n H 1 (G, Q (1)) : a [V a ]., a O 0 Q (1) V a Q 0 V a i 2, H 1 (G, Q (i)) 2.5. B st :, π, π := ( π n ) Ẽ+ π n O C, π 0 = π, π n+1 = π n π, ( 1) n 1 log([ π]) := ( [ π] 1) n tb + dr n π, t ( ) n=1 ϕ(log([ π]) = log([ π]), g(log([ π]) = log(g[ π]) = log([ π][ε] cπ (g) ) = log([ π]) + c π (g)t 10

11 , c π 1- B st : G Z (1), g(π n ) = π n ε c π (g) n ( n) B st := B cris [log([ π])] B dr log([ π]), B cris, B st = B cris [log([ π])] B cris [T ] (B cris ) log([ π]) ϕ, G B st G, ϕ B st π π B st B cris derivation N n n N : B st B st : a i log([ π]) i ia i log([ π]) i 1 (a i B cris ), N, i=0 i=0 ϕn = Nϕ Deition D (ϕ, N)- ( filtered (ϕ, N)-module over ), D ϕ-, ϕ D N D = N D ϕ D 0 - N D : D D ϕ D N D = N D ϕ D, N D (ϕ, N)- MF ϕ,n. ϕ- N = 0 (ϕ, N)- MF ϕ ϕ,n MF Proosition B st (1) B G st = 0. (2) 0 B st B dr. (3) Bst N=0 = B cris,, B ϕ=1,n=0 st B + dr = Q. Remark 2.31., V Re G,, Deition V Re G D st (V ) := (B st Q V ) G dim 0 D st (V ) dim D dr (V ) dim Q V dim 0 D st (V ) = dim Q (V ) ( semi-stable reresentation). Re G Re G,st. Remark (1) B cris B st (2) Re G,cris Re G,st Re G,dR (2) V Re G, B st ϕ, N B dr D st (V ), D st (V ) MF ϕ,n. Proosition V Re G (1) V Re G,st. 11

12 (2) B st 0 D st (V ) B st Q V G, ϕ, N,,, (G - )., Proof., D cris (B st 0 D st ) ϕ=1,n=0 Fil 0 (B dr D dr (V )) V D st : Re G,st MF ϕ,n Remark H 1 (G, Q (1)), a \ O V a, (v (a) > 0, V a Tate /a Z - Tate ). 2.6., Deition L D (1), (2), (ϕ, N, Gal(L/))- ( filtered (ϕ, N, Gal(L/))-module over ) (1) D L (ϕ, N). (2) Gal(L/) Aut MF ϕ,n (D). L D (ϕ, N, Gal(L/))- N = 0, D (ϕ, Gal(L/))- (ϕ, Gal(L/)))- MF ϕ,n,gal(l/) (ϕ, N, Gal(L/))(, (, MF ϕ,gal(l/) ). Deition V Re G, L, V G L V GL ( ), V (, ). (, ) Re G Re G,cris(, Re G,st)., V GL ( ) Re G Re G,L cris(, Re G,L st). Remark (1) Remark 2.10,, Re G,cris Re G,st Re G,dR (, Re G,st = Re G,dR ( - )). (2) V Re G,L st, D L st(v ) := (B st Q V ) G L, dim L0 Dst(V L ) = dim Q V Dst L, B st B dr G, ϕ, N,, Dst(V L ) MF ϕ,n,gal(l/) (V Re G,L cris, Dcris(V L ) := (B cris Q V ) G L MF ϕ,gal(l/) )., Proosition L V Re G, (1), (2). (1) V Re G,L st(, V Re G,L cris). 12

13 (2) (,. B st L0 D L st(v ) B st Q V B cris L0 D L cris(v ) B cris Q V ) (2) Proosition L D L cris : Re G,L cris MF ϕ,gal(l/) : V D L cris(v ) (, Dst L : Re G,L st MF ϕ,n,gal(l/) : V Dst(V L )) Remark essential image 2.7., - Theorem (Berger[Be02], Colmez[Co08]), Re G,st = Re G,dR Remark Berger([Be02]), (ϕ, Γ), - Robba - Crew- Crew-, André([An04]), Christol-Mebkhout([Me02]), edlaya([e04]), Colmez([Co08]) Esaces Vectoriels de dimension ie (Crew- ) 2.7. (ϕ, N). 2.7, D cris, D st essential imege L, D MF ϕ,n,gal(l/)., D t N (D), t H (D), dim L0 D = 1 D = L 0 e, t N (D) := v (α) Z(, α L 0, ϕ(e) = αe ), t H(D) Z Fil th(d) (L L0 D) 0 Fil th(d)+1 (L L0 D) = 0, dim L0 D = d, D d- d D, t N (D) := t N ( d D), t H (D) := t H ( d D) t H (D) = i Z dim L(Fil i (L L0 D)/Fil i+1 (L L0 D)) Deition D MF ϕ,n,gal(l/) (, D MF ϕ,gal(l/) ) (1), (2), (weakly-admissible) (ϕ, N, Gal(L/)) (, (ϕ, Gal(L/)) ). (1) t N (D) = t H (D) (2) D (ϕ, N, Gal(L/))- D t N (D ) t H (D ) MF ϕ,n,gal(l/),wa, MF ϕ,gal(l/),wa. Proosition

14 (1) MF ϕ,n,gal(l/),wa, MF ϕ,n,gal(l/),wa (2) V Re G,L st, Dst(V L ) Proof. (2) V Re G,L st., t N (V ) = t H (V ), {χ k δ k Z, δ : G Z : }. D Dst(V L ), t N (D ) t H (D ), dim L0 D = d, Dst L : Re G,L st MF ϕ,n,gal(l/), d D Dst( L d V ), dim L0 D = 1, dim L0 D = 1 t N (D ) t H (D ), D = L 0 e D ϕ(e) = αe (α L 0 ), Fil h (L L0 D ) = L L0 D, Fil h+1 (L L0 D ) =., (B st L0 D ) ϕ=1,n=0 Fil 0 (B dr L L L0 D ) (B st L0 Dst(V L )) ϕ=1,n=0 Fil 0 (B dr L L L0 Dst(V L )) = V, D B ϕ=α 1 cris t h B + dr V, α = i u (u O L 0 ), B ϕ=α 1 cris = B ϕ= i cris, t h, B ϕ=h i cris B + dr, h > i, i h t N (D ) t H (D ) Lemma (1) k < 0, B ϕ=k cris B + dr = 0. (2) k = 0, B ϕ=1 cris B + dr = Q. (3) k > 0, B ϕ=k cris B + dr Q - Proof. k 0, B ϕ=k cris B + dr t k B ϕ=1 cris t k B + dr, Bϕ=1 cris B+ dr = Q k 1, 0 Q t B +,ϕ= cris C 0, Theorem Dst L : Re G,L st MF ϕ,n,gal(l/),wa, Dcris L : Re G,L cris MF ϕ,gal(l/),wa Remark 2.48., Colmez-Fontaine([CF00]), Fontaine([Fo 03]) almost C -, Colmez([Co02]) Esaces Vectoriels de dimension ie B ϕ=k cris B + dr G -,, almost C - Esaces Vectoriels de dimension ie G -, (ϕ, Γ) Robba -, edlaya ([e04]) (Berger([Be08]) isin([i06])) , X -, X k ( ) 2 -,,, ([Tsu02]), 14

15 X O (, X Sec(O [T 1, T 2,, T n ]/(T 1 T 2 T m π )) (1 m n) )., X X X := X Sec() Sec(). i 0, - H í et (X, Q ) H i dr(x /) := H i (X, Ω X /). H í et (X, Q ) Re G, H i dr (X /) k 0 Fil k H i dr(x /) := Im(H i (X, Ω k X / ) Hi (X, Ω X /)) H i dr (X /) MF., X X k := X Sec(O ) Sec(k), H i log cris(x) := H i log cris(x k /O 0 ) O0 0 ( [BerO73], [Hya94]). 0 - ϕ- Frobenius ϕ 0 - N, Nϕ = ϕn., X (X k ) N = 0.,. Theorem 3.1. (Berthelot-Ogus, - ), π O, 0 H i log cris(x) H i dr(x /) Proof., X Berthelot-Ogus([BerO78]), - ([Hya94]), H i log cris (X) (ϕ, N)- (X, ϕ- ), Theorem 3.2., G -, ϕ, N,. (1) X, (2) X,,,, (X B cris Q H í et(x, Q ) B cris 0 H i log cris(x). B st Q H í et(x, Q ) B st 0 H i log cris(x). g g, ϕ 1, N 1, Fil k H í et(x, Q ) g 1, ϕ ϕ, N N, Fil k = H í et(x, Q ) Re G,st k 1 +k 2 =k H í et(x, Q ) Re G,cris), (ϕ, N)- D st (H í et(x, Q )) H i log cris(x) 15 Fil k 1 Fil k 2

16 (X ϕ- D cris (H í et(x, Q )) H i log cris(x)) Proof.,, ([Tsu02]]). Faltings(almost étale [Fa02]), Niziol( [Ni98]), ( [Tsu99]), de Jong, Theorem 3.3. X (1) H í et (X, Q ), D dr (H í et(x, Q )) H i dr(x /) (2) H í et (X, Q ) Hodge-Tate, C Q H í et(x, Q ) n 0 C ( n) H i n (X, Ω n X /), 2 3, X H í et (X, Q ) - { } { { } } { { } } { { } } { } =, Re G, Re G,dR Re G, l-, -. B dr, - (ϕ, Γ)- ([Fo91]). 4. C - (Tate-Sen ):- 4,, Hodge-Tate, Tate-Sen C - ([Sen73], [Sen80], [Fo04])), - ([Sen88], [Sen93], [BC08]), -, - -, -, Tate-Sen, Hodge-Tate -, ((ϕ, Γ)-) -. 16

17 4.1. Tate-Sen :, - ) [Fo04] (,, Tate 2.6 ) := n 0 (ζ n)(ζ n 1 n ), H := Gal(/ ) = er(χ : G Z ). Γ := Gal( /) = G /H. χ : Γ Z, Γ Z Tate-Sen, C - G Deition 4.1. W G C -, W C -, G (, a C, x W g(ax) = g(a)g(x) ), C - Re G,C., W Re G,C, W C -, G C -, 1- [U W ] H 1 (G, GL n (C )) (, n = dim C W ). 1-, [U W ] W Tate-Sen, C - W W H := {x W g(x) = x ( g H )}, (decomletion ) 1-, inflation-restriction 1 H 1 (Γ, GL n (C H )) H 1 (G, GL n (C )) H 1 (H, GL n (C )) H 1 (H, GL n (C )), H 1 (Γ, GL n (C H )) (decomletion). (1) H 1 (H, GL n (C )), (2) H 1 (Γ, GL n (C H )) (decomletion) (1), (2), / ( ),, ( ), (1), (2)., ( variant) Tate-Sen, Tate-Sen - (, (overconvergent) (ϕ, Γ) ([CC98]), B- ([Be08a]) ), (1) (2) - ( )., (1) (1) (almost étaleness). Theorem 4.2. ([Ta67] ro.9, [Fo04] theorem.1.8) M, m tr M/ (O M ), (1) Theorem 4.3. (i), (ii) (i) C H = (, C - ). (ii) n 1, H 1 (H, GL n (C )) = {1}. (i) Lemma 4.4. M, J := Gal(M/ ), ε > 0., x M y v (x y) inf g J {v (g(x) x)} ε 17

18 Proof.,, λ m v (λ) < ε, 4.2 µ O M tr M/ (µ) = λ, x M, y := tr M/ (xµ) λ, x y = 1 λ (xλ tr M/ (xµ)) = 1 λ ( g J (x g(x))g(µ)), (i) Proof. (of (i)), C H, C H., x C H, C {x n } n 0 v (x x n ) n ( n) x n., n x n, M n, J n := Gal(M n / ). ε > 0, 4.4 y n v (x n y n ) inf g Jn {v (g(x n ) x n )} ε, x C H J n H, g J n, n v (g(x n ) x n ) = v (g(x n x) + (x x n )) n v (x y n ) inf{v (x x n ), v (x n y n )} n ε, lim n y n = x, y n, x. (ii) Proof. (of (ii)) [U] H 1 (H, GL n (C )). (U : H GL n (C ) : τ U τ, [U] 1- ), [U] = 1, U H,, U(H ) M n (O C ), inflation-restriction 1 H 1 (Gal( / ), GL n (C H )) H 1 (H, GL n (C )) H 1 (H, GL n (C )) (i) C H =, Gal( / ) = Gal( / ), Hilbert 90, [U H ] = 1 H 1 (H, GL n (C )), U(H ) M n (O C ), M M n (O C ) τ H M1 1 U τ τ(m 1 ) M n (O C ) M 1, U(H ) M n (O C ), x m v (x) < 1, 4.2 y O tr / (y) = x, α := y x tr / (α) = 1, v (α) > 1 Q H Gal( / ) Q, M 1 := τ Q τ(α)u τ, α, M M n (O C )., τ H, M1 1 U τ τ (M 1 ) 1 = M1 1 (U τ τ (M 1 ) M 1 ) = M1 1 (U τ τ ( τ Q τ(α)u τ) τ Q τ(α)u τ) = M1 1 ( τ Q τ τ(α)u τ τ τ Q τ(α)u τ). {τ τ} τ Q = {ττ i(τ) } τ Q (, τ i(τ) H ),, α, ττ i(τ) (α)u ττi(τ) τ(α)u τ = τ(α)u τ (τ(u τi(τ) ) 1) 3 M n (O C ) 18

19 ., M 1 1 U τ τ (M 1 ) 1 3 M 2 (O C )., k M k 1 + k M n (O C ), τ H (M 1 M 2 M k ) 1 U τ τ (M 1 M k ) 1 + k+2 M n (O C ) M k, M := k=1 M k( M 1 M 2 ), M 1 + M n (O C ), τ H, M 1 U τ τ (M) = 1., [U] = 1 H 1 (H, GL n (C )) (i)(ii) Re G,C, W Re G,C (i), W H := {x W τ(x) = x τ H } -, G Γ Corollary 4.5. W Re G,C, C -, C b W H dim b W H W : a x ax = dim C W Proof. W 1 [U W ] H 1 (G, GL n (C )), (ii), [U W H ] = 1, (i) C -, C - W Γ - W H,, Tate-Sen 2 W H (decomletion),, / Z / Z, Γ = Gal( /) Z, n (n) (n) Gal( (n) /) Z/ n Z γ 0 Γ Z 1 Z, t : x (n) t (x) := 1 n tr (n) /(x) t well-deed -, x t (x) = x, t (γ(x)) = t (x) ( γ Γ, x ). t, /, -, n 0, n := (ζ n) (, n (n) ). Theorem 4.6. ([Fo04].ro.1.13]), n 0, / n Z, v (t n (x) x) v (γ n (x) x) 1 (, γ n Γ n )., t :, t. Tate-Sen (2)(decomletion), Theorem 4.7. / Z, t, (γ 0 Γ ). 19

20 (1) t : (2) (1) t t :. L := er(t : )., = L, (3) γ 0 1 : L L γ 0 1 : L L ρ : L L ρ, y L v (ρ(y)) v (y) 1 Proof. (1). 4.6, x, v (t (x)) = v (t (x) x + x) inf{v (t (x) x), v (x)} inf{v (γ 0 (x) x) v (x) 1 1, v (x)}, t., t t :. (2)., = L x L, x = t (x) = 0 L = {0}. x, t (x), x t (x) L, x L., = L γ 0 1 : L L. n L n := L n γ 0=1 n = γ 0 1 : L n L n, L n -, n 0 L n L, x L, L, {x n } n 1 x = lim n x n, t, 0 = t (x) = lim n t (x n )., x = lim n (x n t (x n )), x n t (x n ) n 0 L n. n 0 L n L (3). ρ : L L γ 0 1 : L L y L, ρ(y) L, 4.6, v (ρ(y)) = v (t (ρ(y)) ρ(y)) v ((γ 0 1)ρ(y)) t, Theorem (i), (ii), (i) C G =. (ii). H 1 (Γ, GL n ( )) H 1 (Γ, GL n ( )) 20 1 = v (y) 1

21 Proof. (i)., 4.7, (i) 4.3 (1) 4.7(2) γ 0 1 : L L (ii)., U : Γ GL n ( ) 1-, k, m > 0 / m 4.7, U γ0 1 + k M n (O b ) (, γ 0 Γ m ), U, U γ0 M n (O m ). U γ0 := 1 + U 0 (U 0 M n (O m )), v (U 0 ) k, U 0 = (U 0 t m (U 0 )) + t m (U 0 ), U 0 t m (U 0 ) M n (er(t m )), 4.7(3), V 1 M n (er(t m )), U 0 = (γ 0 1)(V 1 ) + t m (U 0 ) (3), v (t m (U 0 )) = inf{v (t m (U 0 ) U 0 ), v (U 0 )}, v (U 0 ) k 1 1 v (V 1 ) = v (ρ(u 0 t m (U 0 ))) v (U 0 t m (U 0 )) v (U 0 ) 2 1 k , (1 V 1 ) 1 (1 + U 0 )(1 γ 0 (V 1 )) k+1, k V 1, U 0 k + 1, k+1, (1 V 1 ) 1 (1 + U 0 )(1 γ 0 (V 1 )) = (1 + V 1 + V )(1 + U 0 )(1 γ 0 (V 1 )) 1 + V 1 + U 0 γ 0 (V 1 ) mod k+1 = 1 + V 1 + ((γ 0 1)(V 1 ) + t m (U 0 )) γ 0 (V 1 ) = 1 + t m (U 0 )., (1 V 1 ) 1 (1 + U 0 )(1 γ 0 (V 1 )) = 1 + U 1 + W 1, U 1 M n (O b ), W 1 M n (O m ), v (U 1 ) k + 1, v (W 1 ) k 1 U 1, W 1., U 1 = (γ 0 1)(V 2 ) + t m (U 1 ), v (V 2 ) k + 1 2, v 1 (t m (U 1 )) k + 1 1, k k+2, (1 V 2 ) 1 (1 + U 1 + W 1 )(1 γ 0 (V 2 )) = (1 + V 2 + V )(1 + U 1 + W 1 )(1 γ 0 (V 2 )) 1 + W 1 + t m (U 1 ), W 2 := t m (U 1 ), (1 V 2 ) 1 (1 + U 1 + W 1 )(1 γ 0 (V 2 ) = 1 + U 2 + (W 1 + W 2 ), U 2 M n (O b ), W 2 M n (O m ), v (U 2 ) k + 2, v (W 2 ) k

22 ,, V i M n (O b ), v (V i ) k + (i 1) 2 1, {(1 V 1 )(1 V 2 ) (1 V i )} 1 (1+U 0 ){(1 γ 0 (V 1 )) (1 γ 0 (V i ))} = 1+U i +(W 1 +W 2 + +W i ), U i M n (O b ), W i M n (O m ), v (U i ) k + i, v (W i ) k + (i 1) 1, (1 V ) := i=1 (1 V i) M n (O b ),, (1 V ) 1 (1 + U 0 )(1 γ 0 (V )) = 1 + W M n (O m ), v (W ) k 1.,, U γ := (1 V )U γ (1 γ(v )) (γ Γ ), V U γ 0 M n (O m ) v (U γ 0 1) k 1, γ Γ, U γ GL n ( m ) ( ). claim, Γ U γγ(u γ 0 ) = U γγ 0 = U γ 0 γ = U γ 0 γ 0 (U γ), γ 0 (U γ) = U 1 γ 0 U γγ(u γ 0 ) t m m -,, γ 0 (U γ t m (U γ)) = U 1 γ 0 (U γ t m (U γ))γ(u γ 0 ) (γ 0 1)(U γ t m (U γ)) = U 1 γ 0 (U γ t m (U γ))γ(u γ 0 ) (U γ t m (U γ)) = (U 1 γ 0 1)(U γ t m (U γ))γ(u γ 0 ) +(U γ t m (U γ))(γ(u γ 0 ) 1), 4.7(3) v (U γ t m (U γ)). k k 2 1 > 0, = v (ρ((γ 0 1)(U γ t m (U γ)))) v ((γ 0 1)(U γ t m (U γ)) 1 v (U γ t m (U γ)) + inf{v (U 1 γ 0 1), v (γ(u γ 0 ) 1)} 1 v (U γ t m (U γ)) + k 2 1 v (U γ t m (U γ)) =, U γ = t m (U γ) M n ( m ) (ii) 1 U : Γ GL n ( ), V GL n ( ) γ Γ V 1 U γ γ(v ) = 1, V GL n ( ), m, U γ0 1 + k M n (O m ) (γ 0 Γ m ), V 1 U γ0 γ 0 (V ) = 1, γ 0 (V ) = Uγ 1 0 V,, 4.7(3), k (γ 0 1)(V t m (V )) = (U 1 γ 0 1)(V t m (V )) v (V t m (V )) = v (ρ((γ 0 1)(V t m (V )))) v ((γ 0 1)(V t m (V ))) 1 v (V t m (V )) + v (Uγ 1 0 1) v (V t m (V )) + k 1 1 > 0 V = t m (V ) M n ( m ) 22 1

23 W H decomletion, Proosition 4.9. M Γ -., M. Proof. M, M M M, M, / 4.7, γ 0 Γ M, M.,, M α, γ m 0 1(m ), γ m 0 α m, α m 1., α m 1 + k O m α 1 + k O, M 0 M = 4.7(2) γ 0 1 : L L, α = 1, α 1., M γ 0 u, (γ 0 1)(u) = (α 1)u, v ( 1 u) = v α 1 (ρ(u)) v (u) 1. v ( 1 u) = v α 1 (u) k, α = 1, M =. W Re G,C. x W H x Γ {γ(x)} γ Γ W H - W H Γ -. W H := {x W H dim x Γ < } Theorem W Re G,C, (1) W H -, (2) : W H W H dim W H = dim C W W H W H : a x ax (x) := lim γ 1 1 logχ(γ) ( 1) n 1 (γ 1) n (x) n n=1 ( γ 1 γ Γ γ 1 1 ), well-deed -, (, ). det(t H W ) [T ] Proof. (i)., 4.8(i) W H Γ - W W W H : a x ax. 4.8(ii) W, W H = W, W W H W H W, x W H dim x Γ < e 1, e 2,, e m x Γ, f 1,, f d W, 1 i m, e i := d j=1 a ijf j (a ij ), x Γ W Γ, n 23

24 {a ij } 1 i m,1 j d n - Γ n., 4.9 a ij, e i W, x W (ii)., x W H, 1 ( 1) n 1 (γ 1) n = lim (x) W H γ 1 log(χ(γ)) n n=1 well-deed -, A M d ( ) f 1,, f d, Γ, γ Γ, γ(f 1 ),, γ(f d ) γ(a) A γ(a), det(t H W ) [X]. Deition (1) W Re G,C, D Sen (W ) := W H W Sen : D Sen (W ) D Sen (W ) P W (X) [X], W Sen P W (X) ( ) W Hodge-Tate. (2) V Re G D Sen (V ) := D Sen (C Q V ), P V (X) := P C Q V (X) V Sen, P V (X) V Hodge-Tate Remark D Sen (Q (i)) = e i, (e i ) = ie i., Q (i) Hodge- Tate i., Hodge-Tate Hodge-Tate Hodge-Tate, Proosition V Re G, 2 (1) V Hodge-Tate. (2) V Hodge-Tate, D Sen (V ) ( )., V Hodge-Tate Hodge-Tate Proof. (1) (2) V Hodge-Tate (Deition 2.15) (2) (1),, V Hodge-Tate V G Hodge-Tate,, e 1, e 2, e d, (e i ) = n i e i (n i Z) x W H W H, 1 γ Γ γ(x) = ex(log(χ(γ)) (x)), n γ(e i ) = ex(log(χ(γ))n i )e i = χ(γ) n i e i (γ Γ n ), C Q V G C n D Sen (V ) G d n i=1 C (n i ), V G Hodge-Tate, V Hodge-Tate n 24

25 , - Tate-Sen, C (i) Tate ( 2.2) Theorem (1) i = 0, H 0 (G, C ) =, H 1 (G, C ) =. (2) i 0, H j (G, C (i)) = 0 ( j). Proof., H 0 (G, C ) = 4.8(i) i 0, H 0 (G, C (i)) = 0, 4.7, v (χ(γ 0 ) 1) >, C 1 (i) H = e i = Le i ei., γ 0 1 : e i e i, γ 0 1 : Le i Le i x L 4.7(2) x = ρ(y) (y L). γ 0 (xe i ) = xe i, 0 = (γ 0 1)(ρ(y)e i ) = γ 0 (ρ(y))χ(γ 0 ) i e i ρ(y)e i = χ(γ 0 ) i (γ 0 1)(ρ(y))e i + (χ(γ 0 ) i 1)ρ(y)e i = χ(γ 0 ) i ye i + (χ(γ 0 ) i 1)ρ(y)e i., 4.7(3), v (y) = v (χ(γ 0 ) i 1) + v (ρ(y)) v (χ(γ 0 ) i 1) + v (y) > v (y). y = 0 x = 0, (C (i)) G = 0 H 1 (G, C (i)), 4. 3(ii) C W W H (H )C -, H 1 (H, C (i)) = 0 inflationrestriction, H 1 (Γ, e i ) H 1 (G, C (i))., n n 4.7 inflation-restriction 0 H 1 (Gal( n /), (C (i)) G n ) H 1 (Γ, e i ) H 1 (Γ n, e i ) Gal( n/) 0, n, 4.7, Γ γ 0, H 1 (Γ, e i ) e i /(γ 0 1) e i ( C - ). 4.7(2), i = 0 H 1 (Γ, e 0 ) = (G ). i 1, H 0, γ 0 1 : Le i Le i, n L n := L n ( ), n 0 L n L, γ 0 1 : Le i Le i i 0, H 1 (Γ, e i ) = Tate-Sen : ( ) -,, -, 4.1 Hodge-Tate, Tate-Sen - [BC08] Q Banach., -, [BC08], Banach. S Q - (, S : S R 0 Q -, a Q, f S af S = a f S ( Q - ) ). X := {m x S m x }, x X E x := S/m x. Deition Q - S, (algebra of coefficients). 25 1

26 (1) S S v S : S R { } f S := v S(f). (i)v S (f) = f = 0. (ii) f, g S, v S (fg) v S (f) + v S (g), v S (f + g) inf{v S (f), v S (g)}. (iii) a Q v S (a) = v (a) (2) x X E x Q, O S := {x S v S (x) 0}. Remark A Q, A, S - Deition V, V S (G )-,. (1) V S- G S- (, V S ). (2) V G O S - T V S OS T = V T S (G )-, S-Re G. Remark S = E Q (2), E-Re G E - V S-Re G, x X, E x - V x := V S E x. S -, Sen Theorem ([BC08]) V S-Re G, (1), n ((C Q S) S V ) H Γ n Q S- D n Sen (V ) (C Q S) n Q S D n Sen (V ) (C Q S) S V : a x ax (2) x D n Sen (V ), 1 ( 1) k 1 (γ 1) k n (x) := lim (x) D n γ 1 Sen log(χ(γ)) k (V ) k=1 well-deed n Q S, det(t n D n Sen (V )) n Q S[X] n, Q S (3) x X, D n Sen (V ) S E x D Sen (V x G n ) Remark 4.20., 4.1 C 4.2, 4.6 C Q S, 4.1 S, [BC08], 4.2, 4.6, 4.7 (TS ), 4.1 V D Sen (V ), [BC08] [Be08], TS C -, Tate-Sen - - Remark 4.21.,, S Hilbert90 26

27 Deition V S-Re G, (2) Q S V Sen, P V (X). Remark (3), x X, P V (X) S E x = P Vx (X) Q E x [X] [Ya]., - References [An02] Y. André, Filtrations de tye Hasse-Arf et monodromie -adique, Invent. Math. 148 (2002), [Be02] L. Berger, Rerésentations -adiques et équations différentielles, Invent. Math. 148 (2002), [Be04] L. Berger, An introduction to the theory of -adic reresentations, Geometric Asects of Dwork theory, Walter de Gruyter, Berlin (2004), [Be08a] L. Berger, Construction de (ϕ, Γ)-modules: rerésentations -adiques et B-aires, Algebra and Number Theory, 2 (2008), no. 1, [Be08b] L. Berger, Équations différentielles -adiques et (ϕ, N)-modules filtrés, Astérisque. 319 (2008), [BC08] L. Berger and P. Colmez, Familles de rerésentations de de Rham et monodromie -adique, Astérisue. 319 (2008), [BerO78] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Mathematical Notes, Princeton University Press, (1978). [CC98] F. Cherbonnier and P. Colmez, Rerésentations -adiques surconvergentes, Invent. Math. 133 (1998), [Co02] P. Colmez, Esaces de Banach de dimension ie, J. Inst. Math. Jussieu 1 (2002), [Co07a] P. Colmez, Rerésentations triangulines de dimension 2, rerint (2007). [Co08] P. Colmez, Esaces vectoriels de dimension ie et rerésentations de de Rham. Astérisque. 319 (2008), [CF00] P. Colmez and J-M. Fontaine, Construction des rerésentations -adiques semi-stables, Invent. Math. 140 (2000), [Fa02] G. Faltings, Almost étale extensions, Astérisque 279 (2002), [Fo82] J-M. Fontaine, Sur certains tyes de rerésentations -adiques du groue de Galois d un cors local; construction d un anneau de Barsotti-Tate, Ann of Math. 115 (1982), [Fo91] J-M. Fontaine, Rerésentations -adiques des cors locaux, in The Grothendieck Festschrift, vol. 2, Birkhauser, Boston, 1991, [Fo94a] J-M. Fontaine, Le cors des ériodes -adiques, Astérisque. 223 (1994), [Fo94b] J-M. Fontaine, Rerésentations -adiques semi-stables, Astérisque. 223 (1994), [Fo03] J-M. Fontaine, Presque C -rerésentations, in Volume dedicated to azuya ato s 50-th Birthday, Documenta Mathematica (2003), [Fo04] J-M. Fontaine, Arithmétique des rerésentations galoisiennes -adiques, Astérisque. 295 (2004), [Hya94] O. Hyodo and. ato, Semi-stable reduction and crystalline cohomology with logarithmic oles, Astérisque 223 (1994), [e04]. edlaya, A -adic local monodromy theorem, Ann of Math. (2) 160 (2004), [i06] M. isin, Crystalline reresentations and F -crystals, in Algebraic geometry and number theory, Progr. Math. vol 253, Birkhauser (2006), [Me04] Z. Mebkhout, Analogue -adique du théoreme de Turrittin et le théoreme de la monodromie -adique, Invent. Math. 148 (2002), [Mi], l-,. [Ni98] W. Niziol, Crystalline conjecture via -theory, Ann. Sci. École. Norm. Su. (4) 31 (1998), no 5, [Sen73] S. Sen, Lie algebras of Galois grous arising from Hodge-Tate modules, Ann of Math. 97 (1973), [Sen80] S. Sen, Continuous cohomology and -adic Galois reresentations, Invent. Math. 62 (1980), [Sen88] S. Sen, The analytic variations of -adic Hodge structure, Ann of Math. (2) 127 (1988), [Sen93] S. Sen, An inite-dimensional Hodge-Tate theory, Bull. Soc. Math. France. 121 (1993),

28 [Ta67] J. Tate, -divisible grous, in Proc. Conf. Local Fields (Driebergen, 1966), Sringer, 1967, [Tsu99] T. Tsuji, -adic étale comomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137 (1999), [Tsu02] T. Tsuji, Semi-stable conjecture of Fontaine-Jannsen: a survey. Astérisque 279, (2002), [Ya], Eigencurve,. 28

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q 2017 : msjmeeting-2017sep-00f006 p Langlands ( ) 1. Q, Q p Q Galois G Q p (p Galois ). p Galois ( p Galois ), L Selmer Tate-Shafarevich, Galois. Dirichlet ( Dedekind s = 0 ) Birch-Swinnerton-Dyer ( L s

More information

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En p 1. 1.1., 01 8 3, 57,,.. 1.., Gal(Q p /Q p ), 1. Wach,,. 1.3. Part I,,. Part II, Part III. 1.4.., Paé. Part 1. p.. p p.1. p Q p p (Q p p )... E Q p, E p Z p E, O E. O E E. E Q p, O E. v p : E Q Q E, v

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

非可換Lubin-Tate理論の一般化に向けて

非可換Lubin-Tate理論の一般化に向けて Lubin-Tate 2012 9 18 ( ) Lubin-Tate 2012 9 18 1 / 27 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate 2012

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt

( ) Lemma 2.2. X ultra filter (1) X = X 1 X 2 X 1 X 2 (2) X = X 1 X 2 X 3... X N X 1, X 2,..., X N (3) disjoint union X j Definition 2.3. X ultra filt NON COMMTATIVE ALGEBRAIC SPACE OF FINITE ARITHMETIC TYPE ( ) 1. Introduction (1) (2) universality C ( ) R (1) (2) ultra filter 0 (1) (1) ( ) (2) (2) (3) 2. ultra filter Definition 2.1. X F filter (1) F

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

Centralizers of Cantor minimal systems

Centralizers of Cantor minimal systems Centralizers of Cantor minimal systems 1 X X X φ (X, φ) (X, φ) φ φ 2 X X X Homeo(X) Homeo(X) φ Homeo(X) x X Orb φ (x) = { φ n (x) ; n Z } x φ x Orb φ (x) X Orb φ (x) x n N 1 φ n (x) = x 1. (X, φ) (i) (X,

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

A Brief Introduction to Modular Forms Computation

A Brief Introduction to Modular Forms Computation A Brief Introduction to Modular Forms Computation Magma Supported by GCOE Program Math-For-Industry Education & Research Hub What s this? Definitions and Properties Demonstration H := H P 1 (Q) some conditions

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (

B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 ( . 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1

More information

q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom

q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom Weight filtration on log crystalline cohomology ( ) 1 κ κ X cohomology X H n (X) Grothendieck, Deligne weight yoga ([G], [D1], [D4]) 1.1. H n (X) filtrationp k H n (X) (k Z) (1) gr P k Hn (X) := P k H

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

数理解析研究所講究録 第1908巻

数理解析研究所講究録 第1908巻 1908 2014 78-85 78 1 D3 1 [20] Born [18, 21] () () RIMS ( 1834) [19] ( [16] ) [1, 23, 24] 2 $\Vert A\Vert^{2}$ $c*$ - $*:\mathcal{x}\ni A\mapsto A^{*}\in \mathcal{x}$ $\Vert A^{*}A\Vert=$ $\Vert\cdot\Vert$

More information

CRA3689A

CRA3689A AVIC-DRZ90 AVIC-DRZ80 2 3 4 5 66 7 88 9 10 10 10 11 12 13 14 15 1 1 0 OPEN ANGLE REMOTE WIDE SET UP AVIC-DRZ90 SOURCE OFF AV CONTROL MIC 2 16 17 1 2 0 0 1 AVIC-DRZ90 2 3 4 OPEN ANGLE REMOTE SOURCE OFF

More information

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N

$\mathfrak{m}$ $K/F$ the 70 4(Brinkhuis) ([1 Corollary 210] [2 Corollary 21]) $F$ $K/F$ $F$ Abel $Gal(Ic/F)$ $(2 \cdot\cdot \tau 2)$ $K/F$ NIB ( 13) N $\mathbb{q}$ 1097 1999 69-81 69 $\mathrm{m}$ 2 $\mathrm{o}\mathrm{d}\mathfrak{p}$ ray class field 2 (Fuminori Kawamoto) 1 INTRODUCTION $F$ $F$ $K/F$ Galois $G:=Ga\iota(K/F)$ Galois $\alpha\in \mathit{0}_{k}$

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos

x (0, 6, N x 2 (4 + 2(4 + 3 < 6 2 3, a 2 + a 2+ > 0. x (0, 6 si x > 0. (2 cos [0, 6] (0, 6 (cos si < 0. ( 5.4.6 (2 (3 cos 0, cos 3 < 0. cos 0 cos cos 6 II 3 6. π 3.459... ( /( π 33 π 00 π 34 6.. ( (a cos π 2 0 π (0, 2 3 π (b z C, m, Z ( ( cos z + π 2 (, si z + π 2 (cos z, si z, 4m, ( si z, cos z, 4m +, (cos z, si z, 4m + 2, (si z, cos z, 4m + 3. (6.

More information

On a branched Zp-cover of Q-homology 3-spheres

On a branched Zp-cover of Q-homology 3-spheres Zp 拡大と分岐 Zp 被覆 GL1 表現の変形理論としての岩澤理論 SL2 表現の変形理論 On a branched Zp -cover of Q-homology 3-spheres 植木 潤 九州大学大学院数理学府 D2 December 23, 2014 植木 潤 九州大学大学院数理学府 D2 On a branched Zp -cover of Q-homology 3-spheres

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b

1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)? (2) () f(x)? b lim a f n (x)dx = b 1 Introduction 2 2.1 2.2 2.3 3 3.1 3.2 σ- 4 4.1 4.2 5 5.1 5.2 5.3 6 7 8. Fubini,,. 1 1 Introduction 1 (1) (2) (3) () {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a, b] lim f n (x) f(x) (1) f(x)?

More information

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1 1998 1998 7 20 26, 44. 400,,., (KEK), ( ) ( )..,.,,,. 1998 1 '98 7 23, 24 :,,,,, ( ) 1 3 2 Cech 6 3 13 4 Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing

More information

D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

D-brane K 1, 2   ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane K 1, 2 E-mail: sugimoto@yukawa.kyoto-u.ac.jp (2004 12 16 ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane D-brane RR D-brane K D-brane K D-brane K K [2, 3]

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

Tabulation of the clasp number of prime knots with up to 10 crossings

Tabulation of the clasp number of prime knots  with up to 10 crossings . Tabulation of the clasp number of prime knots with up to 10 crossings... Kengo Kawamura (Osaka City University) joint work with Teruhisa Kadokami (East China Normal University).. VI December 20, 2013

More information

I , : ~/math/functional-analysis/functional-analysis-1.tex

I , : ~/math/functional-analysis/functional-analysis-1.tex I 1 2004 8 16, 2017 4 30 1 : ~/math/functional-analysis/functional-analysis-1.tex 1 3 1.1................................... 3 1.2................................... 3 1.3.....................................

More information

untitled

untitled B2 3 2005 (10:30 12:00) 201 2005/10/04 10/04 10/11 9, 15 10/18 10/25 11/01 17 20 11/08 11/15 22 11/22 11/29 ( ) 12/06 12/13 L p L p Hölder 12/20 1/10 1/17 ( ) URL: http://www.math.tohoku.ac.jp/ hattori/hattori.htm

More information

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec l Wel (Yoch Meda) Graduate School of Mathematcal Scences, The Unversty of Tokyo 0 Galos ([M1], [M2]) Galos Langlands ([Ca]) K F F q l q K, F K, F Fr q Gal(F /F ) F Frobenus q Fr q Fr q Gal(F /F ) φ: Gal(K/K)

More information

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3.....................................

1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3..................................... 1 1 3 1.1 (Frequecy Tabulatios)................................ 3 1........................................ 8 1.3........................................... 1 17.1................................................

More information

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p .,.,.,..,, 1.. Contents 1. 1 1.1. 2 1.2. 3 1.3. 4 1.4. Eisenstein 5 1.5. 7 2. 9 2.1. e p 9 2.2. p 11 2.3. 15 2.4. 16 2.5. 18 3. 19 3.1. ( ) 19 3.2. 22 4. 23 1. p., Q Q p Q Q p Q C.,. 1. 1 Q p G Qp Q G

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

Lebesgue Fubini L p Banach, Hilbert Höld

Lebesgue Fubini L p Banach, Hilbert Höld II (Analysis II) Lebesgue (Applications of Lebesgue Integral Theory) 1 (Seiji HIABA) 1 ( ),,, ( ) 1 1 1.1 1 Lebesgue........................ 1 1.2 2 Fubini...................... 2 2 L p 5 2.1 Banach, Hilbert..............................

More information

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) (

= π2 6, ( ) = π 4, ( ). 1 ( ( 5) ) ( 9 1 ( ( ) ) ( + + 3 + 4 +... π 6, ( ) 3 + 5 7 +... π 4, ( ). ( 3 + ( 5) + 7 + ) ( 9 ( ( + 3) 5 + ) ( 7 + 9 + + 3 ) +... log( + ), ) +... π. ) ( 3 + 5 e x dx π.......................................................................

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw ,.,. NP,.,. 1 1.1.,.,,.,.,,,. 2. 1.1.1 (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., 152-8552 2-12-1, tatsukawa.m.aa@m.titech.ac.jp, 190-8562 10-3, mirai@ism.ac.jp

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

main.dvi

main.dvi Nim naito@math.nagoya-u.ac.jp,.,.,,,.,,,,,,, Nim,.,,,,. Nim Nim,.,.,.,,.,.,. [1, 3],,, Nim,,., Nim. Date:. August 10-11, 1999 2 1 Nim.. Pile., Pile.,. normal case.,. reverse case.,.. Pile. N 1, N 2, N

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T

III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x)

Z[i] Z[i] π 4,1 (x) π 4,3 (x) 1 x (x ) 2 log x π m,a (x) 1 x ϕ(m) log x 1.1 ( ). π(x) x (a, m) = 1 π m,a (x) x modm a 1 π m,a (x) 1 ϕ(m) π(x) 3 3 22 Z[i] Z[i] π 4, (x) π 4,3 (x) x (x ) 2 log x π m,a (x) x ϕ(m) log x. ( ). π(x) x (a, m) = π m,a (x) x modm a π m,a (x) ϕ(m) π(x) ϕ(m) x log x ϕ(m) m f(x) g(x) (x α) lim f(x)/g(x) = x α mod m (a,

More information

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

17 Θ Hodge Θ Hodge Kummer Hodge Hodge Teichmüller ( ) 2015 11 0 3 1 4 2 6 3 Teichmüller 8 4 Diophantus 11 5 13 6 15 7 19 8 21 9 25 10 28 11 31 12 34 13 36 14 41 15 43 16 47 1 17 Θ 50 18 55 19 57 20 Hodge 59 21 63 22 67 23 Θ Hodge 69 24 Kummer

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

2010 ( )

2010 ( ) 2010 (2010 1 8 2010 1 13 ( 1 29 ( 17:00 2 3 ( e-mail (1 3 (2 (3 (1 (4 2010 1 2 3 4 5 6 7 8 9 10 11 Hesselholt, Lars 12 13 i 1 ( 2 3 Cohen-Macaulay Auslander-Reiten [1] [2] 5 [1], :,, 2002 [2] I Assem,

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct 27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],

More information

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2

1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2 1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac

More information

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b) 2011 I 2 II III 17, 18, 19 7 7 1 2 2 2 1 2 1 1 1.1.............................. 2 1.2 : 1.................... 4 1.2.1 2............................... 5 1.3 : 2.................... 5 1.3.1 2.....................................

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

4

4 4 5 6 7 + 8 = ++ 9 + + + + ++ 10 + + 11 12 WS LC VA L WS = LC VA = LC L L VA = LC L VA L 13 i LC VA WS WS = LC = VA LC VA VA = VA α WS α = VA VA i WS = LC VA i t t+1 14 WS = α WS + WS α WS = WS WS WS =

More information

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552

a n a n ( ) (1) a m a n = a m+n (2) (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 552 3 3.0 a n a n ( ) () a m a n = a m+n () (a m ) n = a mn (3) (ab) n = a n b n (4) a m a n = a m n ( m > n ) m n 4 ( ) 55 3. (n ) a n n a n a n 3 4 = 8 8 3 ( 3) 4 = 8 3 8 ( ) ( ) 3 = 8 8 ( ) 3 n n 4 n n

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R

x V x x V x, x V x = x + = x +(x+x )=(x +x)+x = +x = x x = x x = x =x =(+)x =x +x = x +x x = x ( )x = x =x =(+( ))x =x +( )x = x +( )x ( )x = x x x R V (I) () (4) (II) () (4) V K vector space V vector K scalor K C K R (I) x, y V x + y V () (x + y)+z = x +(y + z) (2) x + y = y + x (3) V x V x + = x (4) x V x + x = x V x x (II) x V, α K αx V () (α + β)x

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information