ブック2

Size: px
Start display at page:

Download "ブック2"

Transcription

1 80 埼玉医科大学雑誌 第 30 巻 第 1 号 平成 15 年 1 月 シンポジウム 細胞内寄生菌感染症と免疫応答 光山 正雄 京都大学大学院医学研究科 感染 免疫学教授 座長 松下 祥 埼玉医科大学免疫学教授 次のご講演は光山正雄先生です 先生は現在京都大学大学院医 学研究科におられます 昭和 48 年 九州大学医学部をご卒業後 51 年九州大学医学部細菌学講座へ出向 53 年同助手 56 年に米国 NIH 国際奨励研究員として ハーバード大学に留学され 58 年には 九州大学の細菌学助教授 それから 62 年に新潟大学医学部細菌学 教授 そして平成 10 年から京都大学で教授をされています 先生は 日本細菌学会や それから日米医学協力会議の結核部会の部会長と してご活躍です 本日は 細胞内寄生菌感染と免疫応答 のタイトル でお話をお願いします 松下先生 どうもご紹介 をありがとうございました このたびは このシンポジ ウムにお招きいただきまし たことを感謝申し上げます 私も大昔は臨床を少し やっていたのですが もう 25 年ぐらい医者をやって お ら ず い つ の 間 に か 感染生物学のようなこと をやっています 今日の私 のお話は 必ずしも臨床の先生方や看護婦さんのお役 には立たないかもしれませんが しばらく耳をお貸し ください 細胞内寄生菌 もしくは 細胞内寄生性細菌 と いう用語が出てきますが あまりなじみがないのでは ないかと思います これは 細胞がないと生きられな い細菌という意味ではありません この菌についてこ れから生体防御との関連でお話ししようと思います ここには免疫学の大家の松下先生がいらっしゃいま すが 一応 免疫学では進化した免疫機構が大事なの ですが あえて申しますと すべての生命体に普遍的 に必要な生体防御機構の一番の基本は食細胞であると 思います これはマクロファージが 今日の私のお話 の中心でありますリステリアという菌を貪食している 像です 異物を異物として認識し それを細胞の中で 殺すことができるのは食細胞だけです 抗体であれ補 体であれ T 細胞であれ B 細胞であれ NK 細胞で あれ γδt 細胞であれ 菌を直接殺すという機能は なく 食細胞だけが細菌を行うことができます 食細胞 特に好中球といわれるもの およびマクロ ファージには いろいろな細胞内殺菌機構が備わって います ここで赤く示したものが 何らかの細菌なり 異物とお考えください これを異物と認識した食細胞 は細胞の中に取り込みますが それは裸の異物を取り 込むのではなく 細胞膜で取り囲み 内部に取り込み ます これを私たちは食胞 phagosome と呼んでい ます この食胞というのは 単なる袋ではなく 食細 胞の中では その中に取り込んだバクテリアを殺菌し てしまう 殺してしまう そういうるつぼのようなも のであり 非常にたくさんの多様な殺菌因子が ここ で働くようになっています 図 1 食細胞による貧食以後の細胞内殺菌の過程

2 NADPH Lysosome P-L fusion zoonosis 100 A B C P-L fusion

3 granuloma 4 pathogenicity island chromosomal DNA A B InlA/B E- superoxide dismutase hly O Listeriolysin O 37 ActA ActA ActA

4 3 protrusion hly hly hly virulence gene cluster 10 1 TH1 TH1 GM-CSF TH1 TH1

5 4 THI IFN- 3 P-L fusion P-L fusion NO high-output nitric oxide synthase inos ONOO P-L fusion T T TH1 passive transfer TH1 TH1 BCG TH1 BCG BCG LancetBad News from India BCG BCG BCG BCG

6 BCG TH1 hly 2 TH1 TH2 hly LLO DNA in vivo O O TH1 hly LLO 1 10 TH1 hly hly O LLO LLO TH1 O A Streptococcus pyogenes O

7 4 2 3 O hly LLO Clostridium perfringens O 1998 Cell 4 LLO LLO LLO 4 C C 4 C 4 4 C 4 4 N Listeria welshmeri Listeria innocua hly 80 2

8 LLO Listeria seeligeri LSO seeligeriolysin 530 LLO C Ala Phe Ala Phe Ala cytolytic activity phe LSO cytolytic activity C N Listeria ivanovii ilo ivanolysin 528 ILO LLO N cytolytic activity TH1 cytolysis ILO N N N PEST sequence PEST sequence N PEST score PEST PEST sequence

9 PEST PEST score 1 Lys PEST score LLO in vitro NK dendritic cell IL-12 IL-18 IL-12 IL-18 LLO IL-12 IL-18 NK NK DC TH1 innate immunity TLR LLO TLR TLR TLR 2 TLR 4 TLR MyD88 TLR TLR2 TLR4 LPS MyD88 LLO TLR 2 4 HEK cell TLR NF- B TLR 2 4 CD14 MD2 N TLR 2 4 NF- B IL-12 IL-18 TH1 evolve TH1 P

10 TNF excitation LP3 toxicity 2 1 P LPS TNF IL-18 P P P P LPS 1 P TLR FPS provocation TNF 10 LLO 4 LLO LLO LLO 25 cytoplasmic membrane cytoplasmic membrane 2 1 3

11 O LLO O 3 JBC O The Medical Society of Saitama Medical School

ブック2

ブック2 30 1 15 1 29 5 14 11 22 16:00 20:00 30 1 15 1 13 12 14 5 2003 The Medical Society of Saitama Medical School 30 1 15 1 100 7 7 WHO 2000 2005 3 1 19 2 3 1 1 1 3 O157 BSE 4 VRE VRSA HIV ICT Infection Control

More information

H26分子遺伝-17(自然免疫の仕組みI).ppt

H26分子遺伝-17(自然免疫の仕組みI).ppt 第 17 回 自然免疫の仕組み I 2014 年 11 月 5 日 免疫系 ( 異物排除のためのシステム ) 1. 補体系 2. 貪食 3. 樹状細胞と獲得免疫 附属生命医学研究所 生体情報部門 (1015 号室 ) 松田達志 ( 内線 2431) http://www3.kmu.ac.jp/bioinfo/ 自然免疫 顆粒球 マスト細胞 マクロファージ 樹状細胞 NK 細胞 ゲノムにコードされた情報に基づく異物認識

More information

第14〜15回 T細胞を介する免疫系.pptx

第14〜15回 T細胞を介する免疫系.pptx MBL CD8 CD4 8.1 8.2 5.20 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.18 B7 CD28 CD28 B7 CD28 8.13 2.22 NK Toll(TLR) LBP! LPS dsrna ssrna TLR1/2/6! TLR4 TLR5 TLR3 TLR7/9 CD14! JNK/p38! MyD88! IRAK! TRAF! NFκB! TNF-α

More information

ブック2

ブック2 30 1 15 1 60 2 7 11 13 3 16 pontiac fever TH1-type TH1-type 1976 221 34 24 CDC 1 1 5000 11 4 2 8 294 90 1 10 92 10 2001 9 9 875 170 19.4 167 40 70 4 1 serogroup1 50 70 L.bozemanii L.micdadei 1 2 167 3

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 細菌の代謝と増殖 感染症学 微生物学概論 A. 微生物学の基本 d. 細菌の代謝 e. 細菌の増殖 6 細菌の主要な代謝経路を産物を列挙する 7 呼吸と発酵の違いを説明する 8 細菌の増殖曲線を説明する B. 感染症学 a. 微生物と宿主の関係 b. 宿主の防御因子 1 微生物と宿主の関係を列挙する 2 共生 偏共生 寄生の違いを説明する 3 感染と発症の違いを説明する 4 微生物の感染に対する宿主の防御因子を説明する

More information

研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する 免疫力の低下は感染を引き起こしやすくなり 健康を損ないやすくなる そこで 2 10W/kgのSARで電波ばく露を行い 免疫細胞

研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する 免疫力の低下は感染を引き起こしやすくなり 健康を損ないやすくなる そこで 2 10W/kgのSARで電波ばく露を行い 免疫細胞 資料 - 生電 6-3 免疫細胞及び神経膠細胞を対象としたマイクロ波照射影響に関する実験評価 京都大学首都大学東京 宮越順二 成田英二郎 櫻井智徳多氣昌生 鈴木敏久 日 : 平成 23 年 7 月 22 日 ( 金 ) 場所 : 総務省第 1 特別会議室 研究目的 1. 電波ばく露による免疫細胞への影響に関する研究 我々の体には 恒常性を保つために 生体内に侵入した異物を生体外に排除する 免疫と呼ばれる防御システムが存在する

More information

卵管の自然免疫による感染防御機能 Toll 様受容体 (TLR) は微生物成分を認識して サイトカインを発現させて自然免疫応答を誘導し また適応免疫応答にも寄与すると考えられています ニワトリでは TLR-1(type1 と 2) -2(type1 と 2) -3~ の 10

卵管の自然免疫による感染防御機能 Toll 様受容体 (TLR) は微生物成分を認識して サイトカインを発現させて自然免疫応答を誘導し また適応免疫応答にも寄与すると考えられています ニワトリでは TLR-1(type1 と 2) -2(type1 と 2) -3~ の 10 健康な家畜から安全な生産物を 安全な家畜生産物を生産するためには家畜を衛生的に飼育し健康を保つことが必要です そのためには 病原体が侵入してきても感染 発症しないような強靭な免疫機能を有していることが大事です このような家畜を生産するためには動物の免疫機能の詳細なメカニズムを理解することが重要となります 我々の研究室では ニワトリが生産する卵およびウシ ヤギが生産する乳を安全に生産するために 家禽

More information

Host defense against infection : Immunity Recognition of MHC and peptide continuous attack! α/β ( 免疫担当細胞のいろいろ B細胞 T 細胞 リンパ系 造血幹細胞 NK 細胞 白血球 樹状細胞 好中球好酸球好塩基球 顆粒球多形核白血球 骨髄系 マクロファージ単球 血小板 赤血球 Innate Immunity

More information

Microsoft PowerPoint - 市民講座 小内 ホームページ用.pptx

Microsoft PowerPoint - 市民講座 小内 ホームページ用.pptx 東京医科歯科大学難治疾患研究所市民講座第 5 回知っておきたいゲノムと免疫システムの話 私たちの体を守る免疫システム その良い面と悪い面 小内伸幸 東京医科歯科大学難治疾患研究所生体防御学分野 免疫って何? 免疫は何をしているのでしょうか? 健康なときには免疫が何をしているのかなんて気にしませんよね? では もし免疫がなかったらどうなるんでしょうか? 免疫不全症 というむずかしい名前の病気があります

More information

報道発表資料 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - ポイント 異物センサー TLR のシグナル伝達機構を解析 インターフェロン産生に必須な分子 IKK アルファ を発見 免疫 アレルギーの有効

報道発表資料 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - ポイント 異物センサー TLR のシグナル伝達機構を解析 インターフェロン産生に必須な分子 IKK アルファ を発見 免疫 アレルギーの有効 60 秒でわかるプレスリリース 2006 年 4 月 13 日 独立行政法人理化学研究所 抗ウイルス免疫発動機構の解明 - 免疫 アレルギー制御のための新たな標的分子を発見 - がんやウイルスなど身体を蝕む病原体から身を守る物質として インターフェロン が注目されています このインターフェロンのことは ご存知の方も多いと思いますが 私たちが生まれながらに持っている免疫をつかさどる物質です 免疫細胞の情報の交換やウイルス感染に強い防御を示す役割を担っています

More information

<4D F736F F D F4390B38CE3816A90528DB88C8B89CA2E646F63>

<4D F736F F D F4390B38CE3816A90528DB88C8B89CA2E646F63> 学位論文の内容の要旨 論文提出者氏名 論文審査担当者 論文題目 主査 荒川真一 御給美沙 副査木下淳博横山三紀 Thrombospondin-1 Production is Enhanced by Porphyromonas gingivalis Lipopolysaccharide in THP-1 Cells ( 論文の内容の要旨 ) < 要旨 > 歯周炎はグラム陰性嫌気性細菌によって引き起こされる慢性炎症性疾患であり

More information

年219 番 生体防御のしくみとその破綻 (Immunity in Host Defense and Disease) 責任者: 黒田悦史主任教授 免疫学 黒田悦史主任教授 安田好文講師 2中平雅清講師 松下一史講師 目的 (1) 病原体や異物の侵入から宿主を守る 免疫系を中心とした生体防御機構を理

年219 番 生体防御のしくみとその破綻 (Immunity in Host Defense and Disease) 責任者: 黒田悦史主任教授 免疫学 黒田悦史主任教授 安田好文講師 2中平雅清講師 松下一史講師 目的 (1) 病原体や異物の侵入から宿主を守る 免疫系を中心とした生体防御機構を理 年219 番 生体防御のしくみとその破綻 (Immunity in Host Defense and Disease) 責任者: 黒田悦史主任教授 免疫学 黒田悦史主任教授 安田好文講師 2 松下一史講師 目的 (1) 病原体や異物の侵入から宿主を守る 免疫系を中心とした生体防御機構を理解する (2) 免疫系の成立と発現機構を分子レベルで理解するとともに その機能異常に起因する自己免疫疾患 アレルギー

More information

<4D F736F F D2096C689758A C A58D528CB492F18EA68DD796452E646F63>

<4D F736F F D2096C689758A C A58D528CB492F18EA68DD796452E646F63> 免疫学 1 第 6 回 / 全 18 回日時 : 10/23( 火 ) 2 講目授業課題 : 自然免疫と適応免疫の関連 2 学習内容 : 抗原提示細胞, 免疫シナプス担当教員 : 鈴木健史主な項目 : 抗原提示細胞 ( 樹状細胞, マクロファージ,B 細胞 ) と抗原提示抗原提示経路 ( 外因性抗原, 内因性抗原 ), クロスプレゼンテーション, 免疫シナプス目的 : 各種抗原提示細胞の特徴と, 抗原提示経路を学ぶ.

More information

6 1873 6 6 6 2

6 1873 6 6 6 2 140 2012 12 12 140 140 140 140 140 1 6 1873 6 6 6 2 3 4 6 6 19 10 39 5 140 7 262 24 6 50 140 7 13 =1880 8 40 9 108 31 7 1904 20 140 30 10 39 =1906 3 =1914 11 6 12 20 1945.3.10 16 1941 71 13 B29 10 14 14

More information

図 B 細胞受容体を介した NF-κB 活性化モデル

図 B 細胞受容体を介した NF-κB 活性化モデル 60 秒でわかるプレスリリース 2007 年 12 月 17 日 独立行政法人理化学研究所 免疫の要 NF-κB の活性化シグナルを増幅する機構を発見 - リン酸化酵素 IKK が正のフィーッドバックを担当 - 身体に病原菌などの異物 ( 抗原 ) が侵入すると 誰にでも備わっている免疫システムが働いて 異物を認識し 排除するために さまざまな反応を起こします その一つに 免疫細胞である B 細胞が

More information

図形の表現 5 チャートの作成 1, 作成チャート 右図は 平成 23 年 10 月 8 日付け朝日新聞 3 面より 下図は実際作成した図です 2, 樹状細胞について本年のノーベル医学生理学賞は 樹状細胞 を発見した功績に対して 米ロックフェラー大のラルフ スタインマン教授が選ばれた この樹状細胞は

図形の表現 5 チャートの作成 1, 作成チャート 右図は 平成 23 年 10 月 8 日付け朝日新聞 3 面より 下図は実際作成した図です 2, 樹状細胞について本年のノーベル医学生理学賞は 樹状細胞 を発見した功績に対して 米ロックフェラー大のラルフ スタインマン教授が選ばれた この樹状細胞は 機関誌 No.38 放送大学山口学習センターサークル Oct. 16, 11. 文責 井手明雄 1, 第四十三回パソコン同好会 (1) 開催日 : 9 月 25 日 ( 日 )15:00~17:00 (2) 場所 : 放送大学山口学習センター小講義室 ( 山口大学 大学会館内 ) (3) 内容 : 1 ワードによる図形表現 -5- 模式図の作成 ピロリ菌が胃の中に住み着き 胃潰瘍や胃癌を引き起こす仕組みの模式図をワードで描いた

More information

Title ( シンポジウム抗生物質使用法の進歩 ) 小児期重症細菌性感染症の抗生物質療法について Author(s) 滝田, 誠司 Journal 東京女子医科大学雑誌, 45(2):85-101, 1975 URL http://hdl.handle.net/10470/2564 Twinkle:Tokyo Women's Medical University - http://ir.twmu.ac.jp/dspace/

More information

(Microsoft Word - \226\306\211u\212w\211\337\213\216\226\ doc)

(Microsoft Word - \226\306\211u\212w\211\337\213\216\226\ doc) 平成 17 年度免疫学追追試 以下の問いの中から 2 問を選び 解答せよ 問 1 B 細胞は 一度抗原に接触し分裂増殖すると その抗原に対する結合力が高く なることが知られている その機構を説明しなさい 問 2 生体内で T 細胞は自己抗原と反応しない その機構を説明しなさい 問 3 遅延型過敏反応によって引き起こされる疾患を 1 つ挙げ その発症機序を説明 しなさい 問 4 インフルエンザウイルスに感染したヒトが

More information

汎発性膿疱性乾癬のうちインターロイキン 36 受容体拮抗因子欠損症の病態の解明と治療法の開発について ポイント 厚生労働省の難治性疾患克服事業における臨床調査研究対象疾患 指定難病の 1 つである汎発性膿疱性乾癬のうち 尋常性乾癬を併発しないものはインターロイキン 36 1 受容体拮抗因子欠損症 (

汎発性膿疱性乾癬のうちインターロイキン 36 受容体拮抗因子欠損症の病態の解明と治療法の開発について ポイント 厚生労働省の難治性疾患克服事業における臨床調査研究対象疾患 指定難病の 1 つである汎発性膿疱性乾癬のうち 尋常性乾癬を併発しないものはインターロイキン 36 1 受容体拮抗因子欠損症 ( 平成 29 年 3 月 1 日 汎発性膿疱性乾癬のうちインターロイキン 36 受容体拮抗因子欠損症の病態の解明と治療法の開発について 名古屋大学大学院医学系研究科 ( 研究科長 髙橋雅英 ) 皮膚科学の秋山真志 ( あきやままさし ) 教授 柴田章貴 ( しばたあきたか ) 客員研究者 ( 岐阜県立多治見病院皮膚科医長 ) 藤田保健衛生大学病院皮膚科の杉浦一充 ( すぎうらかずみつ 前名古屋大学大学院医学系研究科准教授

More information

PM2.5 PM. PM2.5 PM. PM2.5 PM. PM2.5 PM.

PM2.5 PM. PM2.5 PM. PM2.5 PM. PM2.5 PM. PM2.5 5-1457 2628,685 PM2.5 PM. PM2.5 PM. PM2.5 PM. PM2.5 PM. PM2.5 PM. PM2.5 PM2.5 PM.,, PM2.5 PM2.5 PM. PM2.5 PM. PM!"#$%&'()*+,-./0! TLR2! TLR4!!"1# 234# -35# 67! 89:! ;()!!"1# ?@"#$%AB! CD!

More information

報道発表資料 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - ポイント 亜鉛が免疫応答を制御 亜鉛がシグナル伝達分子として作用する 免疫の新領域を開拓独立行政法人理化学研究所 ( 野依良治理事

報道発表資料 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - ポイント 亜鉛が免疫応答を制御 亜鉛がシグナル伝達分子として作用する 免疫の新領域を開拓独立行政法人理化学研究所 ( 野依良治理事 60 秒でわかるプレスリリース 2006 年 8 月 7 日 独立行政法人理化学研究所 国立大学法人大阪大学 栄養素 亜鉛 は免疫のシグナル - 免疫系の活性化に細胞内亜鉛濃度が関与 - 私たちの生命維持を行うのに重要な役割を担う微量金属元素の一つとして知られていた 亜鉛 この亜鉛が欠乏すると 味覚障害や成長障害 免疫不全 神経系の異常などをきたします 理研免疫アレルギー科学総合研究センターサイトカイン制御研究グループと大阪大学の研究グループは

More information

免疫本試29本試験模範解答_YM

免疫本試29本試験模範解答_YM 学籍番号 名前 * 穴埋め問題を除き 解答には図を用いてよい 問題 1 (10 点 ) 下記は 病原体感染から免疫活性化 病原体排除までの流れを説明したものである 誤りがあるものを 10 選択せよ (1) 生体内に侵入した感染病原体は 初めにマクロファージや樹状細胞などの獲得免疫細胞に感知される (2) マクロファージや樹状細胞は 病原体を貪食したり 抗菌物質を放出したりすることにより病原体の排除を行う

More information

抗菌薬の殺菌作用抗菌薬の殺菌作用には濃度依存性と時間依存性の 2 種類があり 抗菌薬の効果および用法 用量の設定に大きな影響を与えます 濃度依存性タイプでは 濃度を高めると濃度依存的に殺菌作用を示します 濃度依存性タイプの抗菌薬としては キノロン系薬やアミノ配糖体系薬が挙げられます 一方 時間依存性

抗菌薬の殺菌作用抗菌薬の殺菌作用には濃度依存性と時間依存性の 2 種類があり 抗菌薬の効果および用法 用量の設定に大きな影響を与えます 濃度依存性タイプでは 濃度を高めると濃度依存的に殺菌作用を示します 濃度依存性タイプの抗菌薬としては キノロン系薬やアミノ配糖体系薬が挙げられます 一方 時間依存性 2012 年 1 月 4 日放送 抗菌薬の PK-PD 愛知医科大学大学院感染制御学教授三鴨廣繁抗菌薬の PK-PD とは薬物動態を解析することにより抗菌薬の有効性と安全性を評価する考え方は アミノ配糖体系薬などの副作用を回避するための薬物血中濃度モニタリング (TDM) の分野で発達してきました 近年では 耐性菌の増加 コンプロマイズド ホストの増加 新規抗菌薬の開発の停滞などもあり 現存の抗菌薬をいかに科学的に使用するかが重要な課題となっており

More information

RNA Poly IC D-IPS-1 概要 自然免疫による病原体成分の認識は炎症反応の誘導や 獲得免疫の成立に重要な役割を果たす生体防御機構です 今回 私達はウイルス RNA を模倣する合成二本鎖 RNA アナログの Poly I:C を用いて 自然免疫応答メカニズムの解析を行いました その結果

RNA Poly IC D-IPS-1 概要 自然免疫による病原体成分の認識は炎症反応の誘導や 獲得免疫の成立に重要な役割を果たす生体防御機構です 今回 私達はウイルス RNA を模倣する合成二本鎖 RNA アナログの Poly I:C を用いて 自然免疫応答メカニズムの解析を行いました その結果 RNA Poly IC D-IPS-1 概要 自然免疫による病原体成分の認識は炎症反応の誘導や 獲得免疫の成立に重要な役割を果たす生体防御機構です 今回 私達はウイルス RNA を模倣する合成二本鎖 RNA アナログの Poly I:C を用いて 自然免疫応答メカニズムの解析を行いました その結果 Poly I:C により一部の樹状細胞にネクローシス様の細胞死が誘導されること さらにこの細胞死がシグナル伝達経路の活性化により制御されていることが分かりました

More information

報道発表資料 2007 年 4 月 30 日 独立行政法人理化学研究所 炎症反応を制御する新たなメカニズムを解明 - アレルギー 炎症性疾患の病態解明に新たな手掛かり - ポイント 免疫反応を正常に終息させる必須の分子は核内タンパク質 PDLIM2 炎症反応にかかわる転写因子を分解に導く新制御メカニ

報道発表資料 2007 年 4 月 30 日 独立行政法人理化学研究所 炎症反応を制御する新たなメカニズムを解明 - アレルギー 炎症性疾患の病態解明に新たな手掛かり - ポイント 免疫反応を正常に終息させる必須の分子は核内タンパク質 PDLIM2 炎症反応にかかわる転写因子を分解に導く新制御メカニ 60 秒でわかるプレスリリース 2007 年 4 月 30 日 独立行政法人理化学研究所 炎症反応を制御する新たなメカニズムを解明 - アレルギー 炎症性疾患の病態解明に新たな手掛かり - 転んだり 細菌に感染したりすると 私たちは 発熱 疼痛 腫れなどの症状に見まわれます これらの炎症反応は 外敵に対する生体の防御機構の 1 つで 実は私たちの身を守ってくれているのです 異物が侵入すると 抗体を作り

More information

野岩鉄道の旅

野岩鉄道の旅 29th 5:13 5:34 5:56 6:00 6:12 6:20 6:21 6:25 6:29 6:31 6:34 6:38 6:40 6:45 6:52 6:56 7:01 7:07 7:11 7:32 7:34 7:50 7:58 8:03 8:17 8:36 8:44 5:50 5:54 6:15 6:38 6:39 6:51 6:59 6:59 7:03 7:08 7:08 7:11 7:15

More information

2017 年 8 月 9 日放送 結核診療における QFT-3G と T-SPOT 日本赤十字社長崎原爆諫早病院副院長福島喜代康はじめに 2015 年の本邦の新登録結核患者は 18,820 人で 前年より 1,335 人減少しました 新登録結核患者数も人口 10 万対 14.4 と減少傾向にあります

2017 年 8 月 9 日放送 結核診療における QFT-3G と T-SPOT 日本赤十字社長崎原爆諫早病院副院長福島喜代康はじめに 2015 年の本邦の新登録結核患者は 18,820 人で 前年より 1,335 人減少しました 新登録結核患者数も人口 10 万対 14.4 と減少傾向にあります 2017 年 8 月 9 日放送 結核診療における QFT-3G と T-SPOT 日本赤十字社長崎原爆諫早病院副院長福島喜代康はじめに 2015 年の本邦の新登録結核患者は 18,820 人で 前年より 1,335 人減少しました 新登録結核患者数も人口 10 万対 14.4 と減少傾向にありますが 本邦の結核では高齢者結核が多いのが特徴です 結核診療における主な検査法を示します ( 図 1) 従来の細菌学的な抗酸菌の塗抹

More information

1. 免疫学概論 免疫とは何か 異物 ( 病原体 ) による侵略を防ぐ生体固有の防御機構 免疫系 = 防衛省 炎症 = 部隊の派遣から撤収まで 免疫系の特徴 ⅰ) 自己と非自己とを識別する ⅱ) 侵入因子間の差異を認識する ( 特異的反応 ) ⅲ) 侵入因子を記憶し 再侵入に対してより強い反応を起こ

1. 免疫学概論 免疫とは何か 異物 ( 病原体 ) による侵略を防ぐ生体固有の防御機構 免疫系 = 防衛省 炎症 = 部隊の派遣から撤収まで 免疫系の特徴 ⅰ) 自己と非自己とを識別する ⅱ) 侵入因子間の差異を認識する ( 特異的反応 ) ⅲ) 侵入因子を記憶し 再侵入に対してより強い反応を起こ 病理学総論 免疫病理 (1/3) 免疫病理学 1. 免疫学概論 2. アレルギー反応 3. 自己免疫疾患 4. 移植組織に対する免疫反応 5. 免疫不全疾患 6. がん免疫療法 担当 分子病理学 / 病理部桑本聡史 1. 免疫学概論 免疫とは何か 異物 ( 病原体 ) による侵略を防ぐ生体固有の防御機構 免疫系 = 防衛省 炎症 = 部隊の派遣から撤収まで 免疫系の特徴 ⅰ) 自己と非自己とを識別する

More information

研究成果報告書

研究成果報告書 様式 C-19 科学研究費補助金研究成果報告書 平成 23 年 3 月 28 日現在 機関番号 :3714 研究種目 : 若手研究 研究期間 :28~21 課題番号 :279342 研究課題名 ( 和文 )Toll-like receptor 1 のリガンド探索および機能解析研究課題名 ( 英文 )Functional analysis of Toll-like receptor 1 研究代表者清水隆

More information

Untitled

Untitled 上原記念生命科学財団研究報告集, 25 (2011) 114. 抗体産生における核内 IκB 分子,IκBNS の役割とその作用機序の解明 藤間真紀 Key words:nf-κb,b 細胞, 抗体産生 * 新潟大学大学院自然科学研究科生命食糧科学専攻基礎生命科学教育研究群 緒言転写因子 NF-κB (Nuclear factor κb) は活性化 B 細胞において, 免疫グロブリン κ 軽鎖遺伝子のエンハンサー領域に結合するタンパク質として見出されたが,

More information

100人委員会 私も応援しています 21 特定非営利活動法人 オール アバウト サイエンス ジャパン代表理事 京都大学名誉教授 1973年京都大学医学部卒業 京都大学結核胸部疾患研究所で7年医師として31歳まで勤務 その後 基礎医学に 転身 1980年ドイツ ケルン大学遺伝学研究所に留学 1987年より熊本大学医学部教授 1993年より京都大学大 学院医学研究科 分子遺伝学教授を歴任 2002年京都大学を退職し

More information

研究の詳細な説明 1. 背景病原微生物は 様々なタンパク質を作ることにより宿主の生体防御システムに対抗しています その分子メカニズムの一つとして病原微生物のタンパク質分解酵素が宿主の抗体を切断 分解することが知られております 抗体が切断 分解されると宿主は病原微生物を排除することが出来なくなります

研究の詳細な説明 1. 背景病原微生物は 様々なタンパク質を作ることにより宿主の生体防御システムに対抗しています その分子メカニズムの一つとして病原微生物のタンパク質分解酵素が宿主の抗体を切断 分解することが知られております 抗体が切断 分解されると宿主は病原微生物を排除することが出来なくなります 病原微生物を退治する新たな生体防御システムを発見 感染症の予防 治療法開発へ貢献する成果 キーワード : 病原性微生物 抗体 免疫逃避 免疫活性化 感染防御 研究成果のポイント 病原微生物の中には 免疫細胞が作る抗体の機能を無効化し 免疫から逃れるものの存在が知られていた 今回 病原微生物に壊された抗体を認識し 病原微生物を退治する新たな生体防御システムを発見 本研究成果によりマイコプラズマやインフルエンザなど

More information

目次 1. 抗体治療とは? 2. 免疫とは? 3. 免疫の働きとは? 4. 抗体が主役の免疫とは? 5. 抗体とは? 6. 抗体の構造とは? 7. 抗体の種類とは? 8. 抗体の働きとは? 9. 抗体医薬品とは? 10. 抗体医薬品の特徴とは? 10. モノクローナル抗体とは? 11. モノクローナ

目次 1. 抗体治療とは? 2. 免疫とは? 3. 免疫の働きとは? 4. 抗体が主役の免疫とは? 5. 抗体とは? 6. 抗体の構造とは? 7. 抗体の種類とは? 8. 抗体の働きとは? 9. 抗体医薬品とは? 10. 抗体医薬品の特徴とは? 10. モノクローナル抗体とは? 11. モノクローナ 私たちの身体には免疫というすばらしい防御システムがあります 抗体医薬はこのシステムを利用しています 倍尾学先生 ( ばいおまなぶ ) バイオ大学教授 未来ちゃん ( みらい ) 好奇心旺盛な小学 3 年生の女の子 理科とお料理が得意 ゲノム君 1 号 倍尾先生が開発したロボット 案内役を務めます 監修 : 東北大学大学院工学研究科バイオ工学専攻名誉教授 客員教授熊谷泉先生 目次 1. 抗体治療とは?

More information

15.06月号.indd

15.06月号.indd 2015. no521 6 2015.6 News 2015.6 News News 2015.6 2015.6 News News 2015.6 News 2015.6 2015.6 2015.6 2015.6 2015.6 2015.6 2015.6 2015.6 2015.6 2015.6 2015.6 2015.6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

More information

14.08月号.indd

14.08月号.indd 2014. no511 8 News 2014.8 News 2014.8 News 2014.8 News 2014.8 2014.8 2014.8 News 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 2014.8 1 2 3 4 5 6 7 8

More information

15.03月号.indd

15.03月号.indd 2015. no518 3 2015.3 2015.3 News 2015.3 2015.3 News News 2015.3 2015.3 2015.3 2015.3 2015.3 2015.3 2015.3 2015.3 2015.3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

More information

2 1

2 1 http://www.kikkoman.co.jp/ 2 1 21,646 11,219 5,275 17,350 6,056 20,983 2,777 10,793 4,327 10,125 10,739 128,391 359,906 119,975 392,611 59,993 202,727 18,557 1,401 4,052 4,045 5,702 5,852 2,378 103,445

More information

H24_大和証券_研究業績_p indd

H24_大和証券_研究業績_p indd インフルエンザウィルス感染症におけるエピジェネティック制御 慶應義塾大学医学部呼吸器内科 助教石井誠 ( 共同研究者 ) 慶應義塾大学医学部呼吸器内科助教溝口孝輔 はじめにインフルエンザウィルス感染症は 2009 年に新型インフルエンザウィルス (H1N1) が流行するなど現在でも社会的な脅威であり 重症化した場合の致命率は高く その病態のさらなる解明と適切な治療法の確立が急務である 遺伝子発現のエピジェネティクス

More information

ヒト慢性根尖性歯周炎のbasic fibroblast growth factor とそのreceptor

ヒト慢性根尖性歯周炎のbasic fibroblast growth factor とそのreceptor α μ μ μ μ 慢性化膿性根尖性歯周炎の病態像 Ⅰ型 A D Ⅱ型 E H Ⅰ型では 線維芽細胞と新生毛細血管が豊富で線維成分 に乏しく マクロファージ リンパ球や形質細胞を主とす る炎症性細胞の多数浸潤を認める Ⅱ型では Ⅰ型よりも線維成分が多く 肉芽組織中の炎 症性細胞浸潤や新生毛細管血管の減少や Ⅰ型よりも太い 膠原線維束の形成を認める A C E G B D F H A B E F HE

More information

界では年間約 2700 万人が敗血症を発症し その多くを発展途上国の乳幼児が占めています 抗菌薬などの発症早期の治療法の進歩が見られるものの 先進国でも高齢者が発症後数ヶ月の 間に新たな感染症にかかって亡くなる例が多いことが知られています 発症早期には 全身に広がった感染によって炎症反応が過剰になり

界では年間約 2700 万人が敗血症を発症し その多くを発展途上国の乳幼児が占めています 抗菌薬などの発症早期の治療法の進歩が見られるものの 先進国でも高齢者が発症後数ヶ月の 間に新たな感染症にかかって亡くなる例が多いことが知られています 発症早期には 全身に広がった感染によって炎症反応が過剰になり 骨が免疫力を高める ~ 感染から体を守るためには骨を作る細胞が重要 ~ 1. 発表者 : 寺島明日香 ( 研究当時 : 東京大学大学院医学系研究科病因 病理学専攻免疫学分野研究員現所属 : 東京大学大学院医学系研究科骨免疫学寄付講座特任助教 ) 岡本一男 ( 研究当時 : 東京大学大学院医学系研究科病因 病理学専攻免疫学分野助教現所属 : 東京大学大学院医学系研究科骨免疫学寄付講座特任准教授 ) 高柳広

More information

1. 2001 10 2 480 2003 8 1.6 5 2. 90 3. 4. 5. 5 60 6. 1 2 2 2 4 5 5 6 6 6 7 10 10 10 12 12 12 14 14 15 15 60 15 17 17 18 2001 10 2 480 2003 8 1.6 5 1 1.8 3.6 1 6.8 1.5 3 3 5 6065 70 5 1.22004 1 1 2002 4

More information

<FEFF7B2C DE5B A E BC10D7C3C40EA >

<FEFF7B2C DE5B A E BC10D7C3C40EA > 講師略歴 教育講演 平成27年度 第3回卒後教育講座 医療事故調査制度におけるAiの役割 国際医療福祉大学 保健医療学部 放射線 情報科学科 准教授 樋口 清孝 先生 略歴 平成8年 鈴鹿医療科学技術大学 保健衛生学部 卒業 平成8年 国立津病院 現 三重中央医療センター 他 勤務 非常勤 平成10年 鈴鹿医療科学技術大学大学院 医療画像情報学研究科 修了 保健衛生学修士 平成10年 国際医療福祉大学

More information

ウシの免疫機能と乳腺免疫 球は.8 ~ 24.3% T 細胞は 33.5 ~ 42.7% B 細胞は 28.5 ~ 36.2% 単球は 6.9 ~ 8.9% で推移し 有意な変動は認められなかった T 細胞サブセットの割合は γδ T 細胞が最も高く 43.4 ~ 48.3% で CD4 + T 細

ウシの免疫機能と乳腺免疫 球は.8 ~ 24.3% T 細胞は 33.5 ~ 42.7% B 細胞は 28.5 ~ 36.2% 単球は 6.9 ~ 8.9% で推移し 有意な変動は認められなかった T 細胞サブセットの割合は γδ T 細胞が最も高く 43.4 ~ 48.3% で CD4 + T 細 Immune function nd mmmry glnd immunity in cows 総 説 ウシの免疫機能と乳腺免疫 山口高弘東北大学大学院農学研究科 ( 981-8555 仙台市青葉区堤通雨宮町 1-1) 末梢血中の白血球や T 細胞サブセットの存在比率やバランスは 免疫応答を把握する上で重要な指標となるが ウシの末梢血における白血球 ( 顆粒球 T 細胞 B 細胞 単球 ) および T

More information

学報_台紙20まで

学報_台紙20まで M 平成23年度 科学研究費補助金の決定 研究推進課 平成23年度科学研究費補助金 文部科学省 独 日本学術振興会 が決定しま した 新学術領域研究及び若手研究 スタートアップ 等を除く平成23年5月6日 現在の状況は表のとおりです 来年度に向け より積極的な申請をよろしくお願いします 奈 良 県 立 医 科 大 学 学 報 12 採択件数 金額 H23年度 145件 H22年度比

More information

て 弥生時代に起こったとされています 結核は通常の肺炎とは異なり 細胞内寄生に基づく免疫反応による慢性肉芽腫性炎症であり 重篤な病変では中が腐って空洞を形成します 結核は はしかや水疱瘡と同様の空気感染をします 肺内に吸いこまれた結核菌は 肺胞マクロファージに貪食され 細胞内で増殖します 貪食された

て 弥生時代に起こったとされています 結核は通常の肺炎とは異なり 細胞内寄生に基づく免疫反応による慢性肉芽腫性炎症であり 重篤な病変では中が腐って空洞を形成します 結核は はしかや水疱瘡と同様の空気感染をします 肺内に吸いこまれた結核菌は 肺胞マクロファージに貪食され 細胞内で増殖します 貪食された 2014 年 7 月 2 日放送 潜在性結核感染症 (LTBI) について 日本赤十字社長崎原爆諫早病院 福島 副院長 喜代康 結核菌の歴史まずはじめに 結核という病気についてお話しします 結核は過去の病気だと思われている人も多いと思いますが 日本では 2012 年に年間約 2 万 1,000 人の方が新たに発病し 約 2,000 人が亡くなっておられます また 世界の人口の約 1/3 が結核の感染を受けており

More information

ほんぶん-第6章.indd

ほんぶん-第6章.indd m,m ...,,,..... BCG - /.... T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S

More information

接歯や粘膜上皮に付着できない菌も組織定着が可能です ( 図 2) 口腔ケアが低下し異菌種間の凝集を仲介する細菌種の Fusobacterium や Actinomyces などが増えると プラーク量は一気に増加します ( 図 2) 徐々にプラーク内の嫌気度が増し 歯周病原菌 Porphyromona

接歯や粘膜上皮に付着できない菌も組織定着が可能です ( 図 2) 口腔ケアが低下し異菌種間の凝集を仲介する細菌種の Fusobacterium や Actinomyces などが増えると プラーク量は一気に増加します ( 図 2) 徐々にプラーク内の嫌気度が増し 歯周病原菌 Porphyromona 2012 年 7 月 25 放送 口腔内細菌の全身疾患への関わり 日本大学歯学部細菌学教授落合邦康歯周病と全身疾患う蝕と歯周病は口腔の二大疾患ですが 近年 歯周病がさまざまな全身性疾患の誘因となる可能性を示す基礎研究や臨床研究が数多く報告されています 歯周病は国民の約 80% 以上が感染し 推定患者数 6000 万人ともいわれ 歯を喪失する最も大きな原因です 歯周病と全身疾患との関連性を科学的根拠に基づいて双方向的に解析する学問領域は

More information

Title 足底表皮嚢腫とヒト乳頭腫ウイルスー臨床 組織 免疫組織 電子顕微鏡学的検討一 Author(s) 山田, 美奈 Journal 東京女子医科大学雑誌, 60(2):117-127, 1990 URL http://hdl.handle.net/10470/7274 Twinkle:Tokyo Women's Medical University - http://ir.twmu.ac.jp/dspace/

More information

肝クッパ 細胞を簡便 大量に 回収できる新規培養方法 農研機構動物衛生研究所病態研究領域上席研究員山中典子 2016 National Agriculture and Food Research Organization. 農研機構 は国立研究開発法人農業 食品産業技術総合研究機構のコミュニケーショ

肝クッパ 細胞を簡便 大量に 回収できる新規培養方法 農研機構動物衛生研究所病態研究領域上席研究員山中典子 2016 National Agriculture and Food Research Organization. 農研機構 は国立研究開発法人農業 食品産業技術総合研究機構のコミュニケーショ 肝クッパ 細胞を簡便 大量に 回収できる新規培養方法 農研機構動物衛生研究所病態研究領域上席研究員山中典子 2016 National Agriculture and Food Research Organization. 農研機構 は国立研究開発法人農業 食品産業技術総合研究機構のコミュニケーションネームです 本技術開発の背景 (1) 肝臓マクロファージ ( クッパー細胞 ) 肝非実質細胞内皮細胞

More information

17. (1) 18. (1) 19. (1) 20. (1) 21. (1) (3) 22. (1) (3) 23. (1) (3) (1) (3) 25. (1) (3) 26. (1) 27. (1) (3) 28. (1) 29. (1) 2

17. (1) 18. (1) 19. (1) 20. (1) 21. (1) (3) 22. (1) (3) 23. (1) (3) (1) (3) 25. (1) (3) 26. (1) 27. (1) (3) 28. (1) 29. (1) 2 1. (1) 2. 2 (1) 4. (1) 5. (1) 6. (1) 7. (1) 8. (1) 9. (1) 10. (1) 11. (1) 12. (1) 13. (1) 14. (1) 15. (1) (3) 16. (1) 1 17. (1) 18. (1) 19. (1) 20. (1) 21. (1) (3) 22. (1) (3) 23. (1) (3) 24. 1 (1) (3)

More information

Title 潜在記憶と知覚的特定性効果 Author(s) 遠藤, 正雄 Citation 京都大学大学院教育学研究科紀要 (2001), 47: 392-402 Issue Date 2001-03-31 URL http://hdl.handle.net/2433/57396 Right Type Departmental Bulletin Paper Textversion publisher

More information

2017 年度茨城キリスト教大学入学試験問題 生物基礎 (A 日程 ) ( 解答は解答用紙に記入すること ) Ⅰ ヒトの肝臓とその働きに関する記述である 以下の設問に答えなさい 肝臓は ( ア ) という構造単位が集まってできている器官である 肝臓に入る血管には, 酸素を 運ぶ肝動脈と栄養素を運ぶ

2017 年度茨城キリスト教大学入学試験問題 生物基礎 (A 日程 ) ( 解答は解答用紙に記入すること ) Ⅰ ヒトの肝臓とその働きに関する記述である 以下の設問に答えなさい 肝臓は ( ア ) という構造単位が集まってできている器官である 肝臓に入る血管には, 酸素を 運ぶ肝動脈と栄養素を運ぶ 207 年度茨城リスト教大学入学試験問題 生物基礎 (A 日程 ) ( 解答は解答用紙に記入すること ) Ⅰ ヒトの肝臓とその働きに関する記述である 以下の設問に答えなさい 肝臓は ( ) という構造単位が集まってできている器官である 肝臓に入る血管には, 酸素を 運ぶ肝動脈と栄養素を運ぶ ( ) の 2 つの血管系がある 肝臓はこれらの血管系から入ってくる 酸素や栄養素等を用いて, 次のような様々な化学反応を行う

More information

事務連絡

事務連絡 アレルギー疾患 自己免疫疾患などの発症機構と治療技術 平成 21 年度採択研究代表者 H22 年度 実績報告 谷口維紹 東京大学大学院医学系研究科 教授 核酸を主体とした免疫応答制御機構の解明とその制御法の開発 1. 研究実施の概要核酸を主体とした免疫応答活性化とその制御機構の解明によって 自然免疫系と適応免疫系の連携メカニズムの理解を深め 免疫病態の抑制法の原理の確立とその応用を目指す 当該年度は前年度に引き続き

More information

1 発病のとき

1 発病のとき 3 2 1996 1996 539 3 1953 1954 1960 1961 1975 1976 1990 1990 1996 1953 1960 2001 5 11 1975 1990 1996 1 1953 1951 26 112 3 126 127 3 130 22 223 518 2 519 2 623 2 821 540 3 9 27 255 1 1026 2 114 1110 1111

More information

第122号.indd

第122号.indd -1- -2- -3- 0852-36-5150 0852-36-5163-4- -5- -6- -7- 1st 1-1 1-2 1-3 1-4 1-5 -8- 2nd M2 E2 D2 J2 C2-9- 3rd M3 E3 D3 J3 C3-10- 4th M4 E4 D4 J4 C4-11- -12- M5 E5 J5 D5 C5 5th -13- -14- NEWS NEWS -15- NEWS

More information

2 1 章 免疫とは 免疫系概説 厳密にと非の区別を行う獲得免疫について述べることにする 獲得免疫系にとって非を と区別する目印となる物質のことを antigen という 免疫系はそのようなの出現に対 してそれを排除するような行動を開始するのである その仕事をする免疫系の中心となっている細胞 がリン

2 1 章 免疫とは 免疫系概説 厳密にと非の区別を行う獲得免疫について述べることにする 獲得免疫系にとって非を と区別する目印となる物質のことを antigen という 免疫系はそのようなの出現に対 してそれを排除するような行動を開始するのである その仕事をする免疫系の中心となっている細胞 がリン 免疫とは 免疫系概説 免疫系の生体における役割 われわれを取り巻く環境には無数に近い微生物が存在し そのあるものは生体の中に侵入し 生体 内で増殖する それは生体に重大な危害を及ぼすことになる 異物も粘膜を通して あるいは刺傷に よって生体内に入ってくることがあるが それは毒性を有していて生体を損なう場合がある そうで なくとも 生体内での異物の存在は生体の営みにとってさまざまの支障を与えることになろう

More information

報告書 新規

報告書 新規 30 2 15 4 14 2 12 2 23 1) 14 2 13 15 3 2) 14 2 18 20 3 2 1 2 3 4 5 6 2 12 2 13 14 15 2 16-2 17-2 18 19 20 2 23 2 27 172 笹島 茂 7. 調査結果 2月13日 水 マーカソン教授 秘書のルンドレン氏と今回の訪問 の日程と内容について話し合う 大学の教育内容につ いておおまかな説明があり

More information

Microsoft Word _前立腺がん統計解析資料.docx

Microsoft Word _前立腺がん統計解析資料.docx 治療症例数第 6 位 : (2015/1-2017/9) 統計解析資料 A) はじめに免疫治療効果の成否に大きく関与するT 細胞を中心とした免疫機構は 細胞内に進入した外来生物の排除ならびに対移植片拒絶や自己免疫疾患 悪性腫瘍の発生進展に深く関与している これら細胞性免疫機構は担癌者においてその機能の低下が明らかとなり 近年では腫瘍免疫基礎研究において各種免疫学的パラメータ解析によるエビデンスに基づいた治療手法が大きく注目されるようになった

More information

Microsoft PowerPoint - 資料6-1_高橋委員(公開用修正).pptx

Microsoft PowerPoint - 資料6-1_高橋委員(公開用修正).pptx 第 1 回遺伝子治療等臨床研究に関する指針の見直しに関する専門委員会 平成 29 年 4 月 12 日 ( 水 ) 資料 6-1 ゲノム編集技術の概要と問題点 筑波大学生命科学動物資源センター筑波大学医学医療系解剖学発生学研究室 WPI-IIIS 筑波大学国際睡眠医科学研究機構筑波大学生命領域学際研究 (TARA) センター 高橋智 ゲノム編集技術の概要と問題点 ゲノム編集とは? なぜゲノム編集は遺伝子改変に有効?

More information

Untitled

Untitled 上原記念生命科学財団研究報告集, 23(2009) 84. ITAM 受容体の免疫生理学的機能の解明 原博満 Key words:itam, 自己免疫疾患, 感染防御, CARD9,CARD11 佐賀大学医学部分子生命科学講座生体機能制御学分野 緒言 Immunoreceptor tyrosine-based activation motifs (ITAMs) は, 獲得免疫を司るリンパ球抗原レセプター

More information

2015 年 11 月 5 日 乳酸菌発酵果汁飲料の継続摂取がアトピー性皮膚炎症状を改善 株式会社ヤクルト本社 ( 社長根岸孝成 ) では アトピー性皮膚炎患者を対象に 乳酸菌 ラクトバチルスプランタルム YIT 0132 ( 以下 乳酸菌 LP0132) を含む発酵果汁飲料 ( 以下 乳酸菌発酵果

2015 年 11 月 5 日 乳酸菌発酵果汁飲料の継続摂取がアトピー性皮膚炎症状を改善 株式会社ヤクルト本社 ( 社長根岸孝成 ) では アトピー性皮膚炎患者を対象に 乳酸菌 ラクトバチルスプランタルム YIT 0132 ( 以下 乳酸菌 LP0132) を含む発酵果汁飲料 ( 以下 乳酸菌発酵果 2015 年 11 月 5 日 乳酸菌発酵果汁飲料の継続摂取がアトピー性皮膚炎症状を改善 株式会社ヤクルト本社 ( 社長根岸孝成 ) では アトピー性皮膚炎患者を対象に 乳酸菌 ラクトバチルスプランタルム YIT 0132 ( 以下 乳酸菌 LP0132) を含む発酵果汁飲料 ( 以下 乳酸菌発酵果汁飲料 ) の飲用試験を実施した結果 アトピー性皮膚炎症状を改善する効果が確認されました なお 本研究成果は

More information

80_表1-4

80_表1-4 Relay Talk おもしろい本 と ためになる本 国立研究開発法人 医薬基盤 健康 栄養研究所 理事長 よね だ よしひろ 米田悦啓 氏 私の恩師であり 千里ライフサイエンス振興財団の初 代理事長を務められた岡田善雄先生は ご存知のよう に 細胞融合現象の発見者であり そのご業績により 文化勲章など 数多くの賞を受賞されています 細胞融 合現象の発見は 約20年の歳月を経て ケーラー博士 つながりました

More information

CD8 + T Fig. 2 T granulysin MHC 38 kda HSP65 CD8 + T 19 kda Ag85 CFP10 Mtb11 CD8 + T 10) ESAT-6 T HLA-A AMASTEGNV T SCID-PBL/

CD8 + T Fig. 2 T granulysin MHC 38 kda HSP65 CD8 + T 19 kda Ag85 CFP10 Mtb11 CD8 + T 10) ESAT-6 T HLA-A AMASTEGNV T SCID-PBL/ Kekkaku Vol. 85, No. 6: 501_508, 2010 501 ミニ特集 免疫と結核 要旨 3 1 20 940 180 WHO 2008 1) 11) 1998 1999 T Th1 T Mφ DBA/1 BALB/c C57BL/6 DBA/1 BALB/c T 1 T 2 CpG TLR9 CpG 3 Lipocalin 2 SLPI 4 T granulysin HSP

More information

Microsoft Word _肺がん統計解析資料.docx

Microsoft Word _肺がん統計解析資料.docx 治療症例数第 2 位 : (2015/1-2017/9) 統計解析資料 A) はじめに免疫治療効果の成否に大きく関与するT 細胞を中心とした免疫機構は 細胞内に進入した外来生物の排除ならびに対移植片拒絶や自己免疫疾患 悪性腫瘍の発生進展に深く関与している これら細胞性免疫機構は担癌者においてその機能の低下が明らかとなり 近年では腫瘍免疫基礎研究において各種免疫学的パラメータ解析によるエビデンスに基づいた治療手法が大きく注目されるようになった

More information