1 45

Size: px
Start display at page:

Download "1 45"

Transcription

1

2 1 45

3 I (a ) (a )

4 II

5

6 I 1 dq = η T θ s (1) l T t θ η l s dq = cmdt () c m (1) () η T θ s = cmdt l dt T θ = ηs (3) lcm T 0 (3) dt T θ = ηs lcm log T θ = ηs lcm t + c 6

7 ( T θ = ± exp ηs ) ( lcm t + c = ± exp(c) exp ηs ) lcm t A = ± exp(c) ( T θ = A exp ηs ) lcm t t=0 T = T 0 T 0 θ = A ( T = θ + (T 0 θ) exp ηs ) lcm t (4) (4) cm(t θ D ) = c 1 m 1 (θ D T 1 ) (5) θ D t T 1 c 1 m 1 (5) θ D = c 1 m 1 cm T 1 + T (6) cm + c 1 m 1 cm + c 1 m 1 (4) (6) c 1 m 1 cm [ ( θ D = T 1 + θ + (T 0 θ) exp ηs )] cm + c 1 m 1 cm + c 1 m 1 lcm t (7) cm(t 0 θ 0 ) = c 1 m 1 (θ 0 T 1 ) (8) θ 0 (8) θ 0 θ 0 = c 1 m 1 cm T 1 + T 0 cm + c 1 m 1 cm + c 1 m 1 (4) cm cm + c 1 m 1 θ T [ ] c 1 m 1 cm θ T = θ + T 1 + T 0 θ cm + c 1 m 1 cm + c 1 m 1 [ exp ] ηs l(cm + c 1 m 1 ) t (9) 7

8 (7) (9) c 1 = J/kg K c = J/kg K η = 0.6V/m K m 1 = 10 kg m = 8 10 kg T 1 = 0 C θ = 0 C T 0 = 80 C s = m l = cm 0cm 160 C 30 C 95 C. k m 4 T x Q = kf (x) dx = const (10) F (x) k Q F (x) = πxl l (cm) (10) Q = kf (x) dx 8

9 T = T = dt/dx dt = = kf (x)t Q kπxl Q kπl 1 x dx T = Q log x + C kπl T = 160 C x = 10cm,T = 30 C x = 10cm { 160 = Q kπl log 10 + C 30 = Q kπl log 0 + C 130 = Q log 10 + Q log 0 kπl kπl = Q log 10 + Q log 0 kπl Q = 130kπl log C = Q log 10 kπl 130kπl log = log 10 kπl log 10 = log 130kπl log log 10 T = log x kπl log = 130 log x log log log log 10 log x = log log 10 log x T = log 1m Q = 7685J 9

10 3 dx = k(x a) (11) x t a k (11) a a 3.1 (a ) (11) t = 0 x(0) = x 0 dx x a = k dx x a = k log x a = kt + c x a = ± exp(c) exp( kt) A = ± exp(c) A = x 0 a x(t) = (x 0 a) exp( kt) + a (1) x 0 t = 0 x 31 C 9 C 10

11 37 C a = 1 C t = 0 (1) 9 = (31 1) exp( k) + 1 exp( k) = k = log k = log 5 = log 1.5 = (13) 4 k (13) x = 37 (1) 37 = (31 1) exp( 0.314t) exp( 0.314t) = t = log 1.6 t = 1 log 1.6 = (a ) dx + kx = ka(t) (14) a(t) t (14) x(t) = B(t) exp( kt) x (t) = B (t) exp( kt) kb(t) exp( kt) B (t) exp( kt) kb(t) exp( kt) + kb(t) exp( kt) = ka(t) B (t) exp( kt) = ka(t) B (t) = ka(t) exp(kt) B(t) = k a(t) exp(kt) + C (15) 11

12 t = 0 a(t) = 1 dx + kx = kt (16) (15) (16) x = D(t) exp( kt) (15) D(t) = k t exp(kt) + C D(t) = t exp(kt) + 1 k exp(kt) + C d(t) = ( t + 1 k ) exp(kt) + C... x(t) = t C exp( kt) (17) k (17) t = 0 x 0 = 30 C x = (30 1 k ) exp( kt) t + 1 k t = 0 hm x S(x) s x v v = k gx g=9,8m/s :, k: v s dx - sv = S(x)dx sk gx = S(x)dx dx gx = sk S(x) (18) 1

13 4. 6m m 1/1m t s = 1/144π S(x) = 4π k=0,6 (18) dx 144 = π 0, 6 9, 8 x 4π 17, 15 = x 1 dx/ = x x = x 17, 15 x 1 = x 17, 15 dx 1 = x 17, 15 x 1/ = 1 17, 15 + C x t 1 x(t) = 17, 15 t + C t = 0 x(t) = 6 6 = C 1 x = 17, 15 t x = 434, 304 t + 6 ( 1 x = 434, 304 t + 6 x = 0 ) t = 434, = 1038,

14 4.3 (18) dx/ = a a = sk gx S(x) S(x) = sk gx a πr = sk gx a x = aπr sk g (19) a (19) x = Cr 4 (0) (0) x 5 B t N x B B N/γ dx = kx(n x) (1) t = 0 x = N/γ (1) k (1) dx x(n x) = k 14

15 ( 1 1 N x 1 ) dx = k N x A = ± exp(nc) x = 1 (log x log N x ) = kt + C N log x N x = Nkt + NC x = ± exp(nc) exp(nkt) N x x N x = A exp(nkt) x = (N x)a exp(nkt) x = NA exp(nkt) A exp(nkt)x [1 + A exp(nkt)]x = NA exp(nkt) NA exp(nkt) 1 + A exp(nkt) = N 1 + exp( Nkt)/A x(0) = N/γ N γ = N 1 + 1/A x =... 1 A = γ 1 N 1 + (γ 1) exp( Nkt)

16 6. p p 1kg 1 t 1kg p(t) q = 4p p + 39 s = 44p + p 1 p = dp/ 4p p + 39 = 44p + p 1 40p 4p + 40 = 0 10p + p 10 = 0 10 dp = p dp = p p 10 dp = 10 log p 10 = t + C log p 10 = t 10 C ( 10 p 10 = Cexp t ) 10 ( p = Cexp t )

17 t = 0 p = 1 1 = C + 10 C = 9 ( p = 9exp t ) A + B 3C A B C A B 10 0 C 6 0 t C t() C ( ) x A B x/3 x/3 A 10 x/3 B 0 x/3 dx = K dx ( 10 x 3 ) ( 0 x ) 3 = k(15 x)(60 x) () k (k = k/9) t = 0 x = 0 dx = k(15 x)(60 x) x(0) = 0 x(1/3) = 6 x(0) = 0 () 1 (15 x)(60 x) = k ( x 1 ) dx = k 15 x 17

18 α = ±e C log 60 x log 15 x = 45kt + C 60 x 15 x = ±ec e 45kt = α... α = 4 60 x = 4 exp(45kt) (3) 15 x t = 1/3 x = 6 (3) exp(15k) = 3/ 60 x 15 x = 4[exp(15k)]3t = 4(3/) 3t 1 (3/) 3t x = 15 (1/4) (3/) 3t t C A B C x t t (/3) 3t = 4 x x t t(t 0) x(t) t A B 18

19 x dx = A B A B x A = ax, B = bx a b dx = ax bx = (a b)x t = t 0 x = x 0 dx (a b)x = dx (a b)x = 1 log x a b = t + C log x = (a b)(t C) x = ±exp(a b)(t C) x = Cexp(a b)t x 0 C = exp(a b)t 0 x = x 0 exp(a b)t exp(a b)t 0 x = x 0 exp(a b)(t t 0 ) (4) a > b x t a < b t x (4) dx/ = f(x) f(x) f(x) = ax bx a > 0, b > 0 19

20 1 a dx = x(a bx) dx = x(a bx) ( ) 1 ax + b dx = a(a bx) 1 x dx + 1 b a a bx dx = t + C 1 a log x 1 log a bx = t + C a log x log a bx = a(t + C) log x a bx = a(t + C) x a bx = Cexp(at) C = x 0 (a bx 0 )exp(at 0 ) x a bx = x 0 (a bx 0 )exp(at 0 ) exp(at) = x 0 a bx 0 exp[(t t 0 )a] x = (a bx) exp{(t t 0 )a} a bx 0 ax 0 x = exp{(t t 0 )a} bxx 0 exp{(t t 0 )a} a bx 0 a bx ( 0 x 1 + bx ) 0 ax 0 exp{a(t t 0 )} = exp{a(t t 0 )} a bx 0 a bx 0 x(t) = x = x = x = x = x 0 ax 0 a bx 0 exp{a(t t 0 )} 1 + bx0 a bx 0 exp{a(t t 0 )} ax 0 exp{a(t t 0 )} a bx 0 + bx 0 exp{a(t t 0 )} ax 0 (a bx 0 )exp{ a(t t 0 )} + bx 0 x 0 a/b x 0 + (a/b x 0 )exp{ a(t t 0 )} x 0 a/b x 0 + (a/b x 0 )exp{ a(t t 0 )} (5) t x(t) a/b a/b > x 0 a/b < x 0 (5) 0

21 8. dx i = f i(x 1,, x n ) i = 1,,, n Vito Volterra, x y a b c d dx = ax + bxy (6) dy = cx dxy (7) (6) bxy (7) dxy u(τ) = d c x(t), v(τ) = b a y(t), τ = ct, α = a c (6) (7) du dτ = αu(v 1), dv dτ = v(1 u) (8) 1

22 du(τ) dτ dv(τ) dτ τ = τ 0 = d(d/cx(t)) = d(d/c)x(t) dτ = d c dx(t) d(τ/c) dτ = d c dx(t) = d c [ ax(t) + bx(t)y(t)] = a c d c x(t) + a c d c x(t) b a y(t) = αu(v 1) = d(b/ay(t)) dτ = d(b/ay(t)) dτ = b a dy(t) d(τ/c) dτ = b ac dy(t) = b a [cx(t) dx(t) y(t)] = b a x(t) a c x(t) b a y(t) = v(τ) u(τ)v(τ) = v(τ)(1 u(τ)) u(τ 0 ) = u 0, v(τ 0 ) = v 0 (9) u v (8) du du dv = dτ dv dτ = αu(v 1) v(1 u) 1 u du α(v 1) = u dv v 1 u α(v 1) u du = dv v ( ) 1 ( u 1 du = α α ) dv v log u u = αv α log v + C αv + u α log v log u = C αv + u log v α u = C αv 0 + u 0 log v α 0 u 0 = C αv + u log v α u = αv 0 + u 0 log v α 0 u 0 = H

23 H (9) α u v u 0 v 0 u 0 > 1, v 0 < 1 (8) u v v 1 v τ v v = 1 u = 0 u u v u v N t t S(t) t I(t) t R(t) S(t) + I(t) + R(t) = N (30) I I(t) I { ds = αs (I(t) > I ) 0 (I(t) I ) (31) 3

24 { di = αs βi (I(t) > I ) βi (I(t) I ) α,β dr/ = βi (3) t = 0 R(0) = 0 I(0) S(t) = S(0) = N I(0) α = β I(0) I ds/ = 0 R(0) = 0 (3) di = αi(t) I(t) = I(0) exp( αt) I(t) = R(t) R(t) = N S(t) I(t) = I(0)[1 exp( αt)] I(0) exp( αt) = I(0)[1 exp( αt)] = log t = log α. I(0) > I 0 t < T t I(t) > I I(t) 4

25 [0, T ] t 0 t < T S(t) = S(0) exp( αt) di(t) + αi(t) = αs(0) exp( αt) (33) I(t) exp(αt) d I(t) exp(αt) = αs(0) I(t) exp(αt) = αs(0)t + C (33) I(t) = C exp( αt) + αs(0)t exp( αt) (34) t = 0 C = I(0) (34) I(t) = [I(0) + αs(0)t] exp( αt) 0 t < T (35) R(t) = N S(t) I(t) R(t) = S(0)[1 exp( αt) αt exp( αt)] + I(0)[1 exp( αt)] T t m ax T (35) t = T I I(T ) = I I = [I(0) + αs(0)t ] exp( αt ) (36) S(t) = lim t S(t) = S( ) S(T ) = S( ) = S(0) exp( αt ) exp( αt ) = S( ) S(0) 5

26 αt = log S( ) S(0) T = 1 α log S(0) S( ) (37) S( ) (37) (37) T (36) [ I = I(0) + S(0) log S(0) ] S( ) S( ) S(0) I S( ) = I(0) S(0) + log S(0) S( ) I I(0) + log S( ) = + log S(0) (38) S( ) S(0) (38) I S( ) (35) (35) t di = αs(0) exp( αt) αi(0) exp( αt) α S(0)t exp( αt) = α exp( αt)[s(0) I(0) αs(0)t] = 0 S(0) I(0) αs(0)t = 0 αs(0)t = I(0) S(0) S(0) I(0) t = αs(0) = 1 [ 1 I(0) ] α S(0) t I (35) I max = S(0) exp [1 I(0)/S(0)] = S(t max ) t max t > T I(t) = I exp[ α(t T )] 6

27 r θ O O O O O x x v v x v = 3 x v x v = 3 + x v 1 3 O ( ) v O ( v) v r v t ( x ) (t) y (t) x = r cos θ x (t) = dr dθ cos θ r sin y = r sin θ y (t) = dr dθ sin θ + r cos = dr ( cos θ sin θ ) + r dθ ( ) sin θ cos θ 7

28 v r = v v r = dr v T = r dθ v T = (v) v = 3v = dr/v dr = v, r dθ = 3v r dθ = 3v dr/v 3 dθ = r dr dθ = 1 3 r dr θ + C 1 = 3 log r r = C ( ) 1 θ exp 3 3 C 1 3 = C ( ) θ r = C exp 3 O r O x θ = 0 r = 1 C = 1 r = exp(θ/ 3) θ = π r = 3 ( ) 3 3 = C exp 3 ( ) π C = 3exp 3 6 r = 3exp{(θ + π)/ 3} r(t) = vt + 3 θ(t) = log (vt + 3) 3 π 8

29 t r(t) = vt (39) θ(t) = log(vt) 3 π (40) (40)= α t log (vt) 3 π = α 0 α < π (α = 0 π ) log (vt) = (α + π) 3 vt = exp(α + π) 3 t = 1 v exp(α + π) 3 t = 1 v exp(α + π) 3 11 x y t x(t) y(t) x(t) y(t) x(t) y(t) () x(t) y(t) t 9

30 x OLR y CLR x RR x(t) dx(t) y(t) dy(t) = (OLR + CLR) + RR (41) = (OLR + CLR ) + RR (4) OLR CLR RR a b c d g h (x, y) P (t) Q(t) x y x 0 y 0 x y dx(t) = ax(t) by(t) + P (t) dy(t) = cx(t) dy(t) + Q(t) A ( A ) dx(t) dy(t) = ax(t) gx(t)y(t) + P (t) = dx(t) hx(t)y(t) + Q(t) B C dx(t) dy(t) = ax(t) gx(t)y(t) + P (t) = cx(t) dy(t) + Q(t) 30

31 (41)(4) ax(t) dy(t) 1 dx x = a 1 dy y = d by(t) cx(t) gx(t)y(t) hx(t)y(t) A x bx(t) b y 1 dx y = b b y cx(t) b c b = r y p y c = r x p x (43) r y r x y x p y p x y x A B x(t) R x r y(t)n x gx(t)y(t) y g (43) b g r y y y A ry x A x 31

32 A ry g h g = r y A ry A x h = r x A rx A y (44) A (A dx(t) = by(t) dy(t) b t 0 dy(t) dx(t) = cx(t) by(t) y(t)dy(t) = c t 0 = cx(t) (45) x(t)dx(t) [ ] t [ ] t 1 1 b y (t) = c 0 x (t) 0 b[y (t) y (0)] = c[x (t) x (0)] (46) b[y (t) y 0] = c[x (t) x 0] (47) (45) by0 cx 0 K (47) by cx = K (48) K = 0 (45) (45) y x x y y x K > 0 y 3

33 y x y(t) = K/b y K by0 > c 0 (49) (43) (49) ( y0 x 0 ) > r x r y p x p y (50) (50) y 0 /x 0 y 0 /x 0 y 4 (48) (45) d x(t) bcx(t) = 0 (51) (51) x 1 = cos bct x = sin bct bcβ d x 1 (t) bcx 1 (t) = 0 d x (t) bcx (t) = 0 w(cos βt, sin βt) = β 0 x(t) = C 1 cos βt + C sin βt x(0) = x 0 dx(t) t=0 = by 0 dx(t) x 0 = C 1 = x 0 β sin βt + C β cos βt C = by 0 β by 0 = C β = by 0 b = bc c y 0 33

34 b/c = γ C = γy 0 x(t) = x 0 cos βt + γy 0 sin βt (5) y(t) = y 0 cos βt + x 0 γ sin βt (53) y y 0 x 0 γy 0 x 0 dx = gxy, dy (54) dy dx = h g = hxy (54) g[y(t) y 0 ] = h[x(t) x 0 ] (55) (54) (55) gy(t) hx(t) = gy 0 hx 0 = L gy hx = L L y L x y gy 0 hx 0 y 0 x 0 > h g y y 0 x 0 > r xa rx A x r y A ry A y (56) 34

35 y y 0 /x 0 A x /A y (56) A y y 0 A x x 0 > r xa rx r y A ry A y y 0 A x x 0 dx = gxy, dy = cx (57) x(t) y(t) (57) dy dx = c gy gydy = cdx 1 g[y (t) y 0 ] = c[x(t) x 0 ] gy (t) cx(t) = gy 0 cx 0 = M gy (t) cx(t) = M (58) M = gy 0 cx(t) (57) M M y 0 /x 0 1 M (y 0 /x 0 ) (c/g)x 0 1 ( y0 x 0 ) > r x r y A x p x A ry 1 x 1 m l m 35

36 α mv = mg(l cos θ l cos α) (59) v g s = lθ v = ds/ = l(dθ/) (59) ( ) l dθ = g(cos θ cos α) (60) ( ) dθ = g (cos θ cos α) l dθ g = ± (cos θ cos α) l θ t dθ/ < 0 (60) dθ g = (cos θ cos α) l l dθ = g cos θ cos α T θ(t) = θ(t + T ) T 4 = l g l T = 4 g α 0 0 α dθ cos θ cos α dθ (61) cos θ cos α α α (61) cos θ = 1 sin θ cos α = 1 sin α l T = g α 0 dθ l = sin (α/) sin (θ/) g α 0 dθ k sin (θ/) (6) 36

37 k = sin(α/) θ ϕ sin(θ/) = k sin ϕ θ 0 α ϕ 0 π/ 1 cos θ dθ = k cos ϕdϕ... dθ = k cos ϕdϕ cos(θ/) (6) l π/ k cos ϕdϕ/ cos(θ/) T = g 0 k sin (θ/) = l g l = g l = 4 g π/ 0 π/ 0 π/ 0 k cos ϕdϕ/ cos(θ/) k k sin ϕ k cos ϕdϕ/ cos(θ/) k cos ϕ dϕ cos(θ/) cos(θ/) = 1 k sin ϕ l T = 4 g π/ 0 dϕ 1 k sin ϕ l T = 4 F (k, π/) g F (k, ψ) = ψ 0 dϕ 1 k sin ϕ E(k, ψ) = ψ 0 1 k sin ϕdϕ 37

38 (60) t d θ g + k sin θ = 0 k = l Circular x r θ M x = OS = OP OS, y = MS = CP CN OP = MP = rθ, SP = MN = r sin θ, CP = r, CN = r cos θ y = r r cos θ x = r(θ sin θ), y = r(1 cos θ) (63) θ = arc cos r y r Oxy x = rarc cos r y r = rarc cos r y r r sin ry y ( arc cos r y ) r 38

39 cusp vertex πr base 13. lim θ π ry y sin θ = r dy dy dx = dθ r sin θ = dx r(1 cos θ) sin θ 1 cos θ dθ cos θ = lim θ π 0 sin θ = = lim θ π+0 cos θ sin θ = S S = π 0 S = πr 0 ydx dx = r(1 cos θ)dθ x θ 0 πr 0 π r(1 cos θ)r(1 cos θ)dθ π = r (1 cos θ + cos θ)dθ 0 = r π 0 ( 1 cos θ + ) 1 + cos θ dθ = r [ θ sin θ + 1 θ sin θ ] π = 3πr πr 0 39

40 13.. l l = π (dx ) ( ) dy + dθ 0 dθ dθ π = r (1 cos θ) + r sin θdθ = r = r 0 π 0 π 0 cos θdθ sin θ dθ 0θ π 0 θ 90 sin θ > = 0 l = r = 8r π 0 sin θ dθ [ = r cos θ π ] π Christian Huygens, t = t 0 40

41 isochronous eqaul time tautochronous identical tautos M K M (x 0, y 0 ) θ 0 N(θ) h (63) x = r(θ + sin θ), x 0 = r(θ 0 sin θ 0 ) y = r(1 cos θ), y 0 = r(1 cos θ 0 ) h = y y 0 = r(1 cos θ) r(1 cos θ 0 ) = r(cos θ 0 cos θ) v = gh = gr(cos θ 0 cos θ) s T s = θ θ 0 v = dt ds = gr(cos θ 0 cos θ) (dx ) + dθ dt =...ds = r sin ( ) dy θ dθ = r dθ ( ) θ dθ r sin (θ/)dθ gr(cos θ0 cos θ) θ 0 sin θ dθ T = r g r = g π 0 [ sin 1 r = g (sin 1 1) r = π g sin (θ/)dθ cos θ0 cos θ ] cos (θ0/) t cos (θ 0 /) 41

42 M K T r T = π g T θ 0 M M N K K M M 1 T 0 = 4π r/g 14 brachistochrone A B A B A B v 1 P B v A B T a + x T = b + (c x) + v 1 A B T dt/ T x v dt dx... = ( a + x b + (c x) + v 1 v ) x = v 1 a + x + x c v b + (c x) = 0 x v 1 a + x = c x v b + (c x) 4

43 sin α 1 v 1 = sin α v Snell sin α 1 / sin α = a (a ) A B A B sin α v a = a (64) v = gy (65) sin α = cos β = 1 sec β = tan β = (y ) (64)(65) y[1 + (y ) ] = C (66) (66) y = dy/dx (66) y[1 + (y ) ] = C ( ) dy y + y = C dx ( ) dy = C y dx y 43

44 dy/dx = tan β 0 < β < π tan β > 0... dy dx =... dx = dy dx > 0 ( C y ) 1/ y ( ) 1/ y dy C y ϕ ( ) 1/ y = tan ϕ C y y C y = tan ϕ... y = (C y) tan ϕ y = C tan ϕ 1 + tan ϕ = C sin ϕ cos ϕ 1 cos ϕ = C sin ϕ dy = C sin ϕ cos ϕdϕ dx = tan ϕdy = tan ϕc sin ϕ cos ϕdϕ = C sin ϕdϕ = C(1 cos ϕ)dϕ x = C (1 cos ϕ)dϕ = 1 C(ϕ sin ϕ) + C 1 ϕ = 0 x = y = 0 C 1 = 0 x = C (ϕ sin ϕ) 44

45 y = C sin ϕ = C (1 cos ϕ) C/ = r ϕ = θ Carl F.Gauss, m 0 n 0 m 0 > n 0 m 0 n 0 m 1 n 1 m 0 n 0 m 1 = m 0 + n 0, n 1 = m 0 n 0 m 1 n 1 m 0 n 0 m = m 1 + n 1, n = m 1 n 1 m k n k k = 0, 1,, 15. Carl W.Borchar, a m 0 n 0 a = f(m 0, n 0 ) f a a = f(m 1, n 1 ) m 0 n 0 k m 1, n 1, m, n, a k a m 0 n 0 a = m 0 f(1, n 0 /m 0 ) = m 1 f(1, n 1 /m 1 ) x = n 0 /m 0 x 1 = n 1 /m 1 y = 1/f(1, n 0 /m 0 ) y 1 = 1/f(1, n 1 /m 1 ) y = 1 f(1, n 0 /m 0 ) = m 0 a = m 0 m 1 /y 1 = y 1 m 0 m 1 = m 0 m 0 + n 0 y 1 = y x (67) 45

46 x 1 x x 1 = n 1 m 1 = m 0 + n 0 m 0 n 0 = m 0 + n 0 m 0 m 0 m 0 n 0 = m0 n 0 = 1 + n 0 /m 0 m x x = x 1 + x dx 1 dx (1 + x)/ x x = (1 + x) = (1 + x x)/ x (1 + x) = 1 x (1 + x) x = (x 1 x 3 1 )(1 + x) (x x 3 ) (67) dy dx = (1 + x) y x = (1 + x) y x dy 1 dx 1 dx 1 dx (x 1 x 1 3 )(1 + x ) (x x 3 ) = (1 + x) y 1 + (x 1 x 3 1 )((1 + x) dy 1 (x x 3 ) dx 1 (x x 3 ) dy 1 dx 1 (x x 3 ) dy dx = y 1 (1 + x) (x x3 ) + (x 1 x 3 1 ) + (x 1 x 3 1 )(1 + x) dy 1 dx 1 x(x 1) = 1 + x y 1 + (1 + x)(x 1 x 3 1 ) dy 1 dx 1 x [ d (x x 3 ) dy ] d[x(x 1)/(1 + x)] = y 1 dx dx dx [ d (x x 3 ) dy dx dx ] xy = a (y) = + x(x + 1) 1 + x dy 1 dx 1 dx 1 dx 1 x ( d (1 + x) [x 1 x 3 1 ] dy ) 1 x 1 y 1 x dx 1 dx 1 [ d (x x 3 ) dy ] xy = a (y) dx dx 1 x (1 + x) x 1 x 1 (1 + x 1 ) x 1 1 x (1 + x ) x 1 x n (1 + x n ) x n a (y n ) n 1 x n y a (y) = 0 (x x 3 ) d y dx + (1 3x ) dy dx xy = 0 46

47 a = f(m 0, n 0 ) = y f (m 0, n 0 ) m 0 (68) y (68) y 0 m k n k 16 α v 0 M[x(t), y(t)] m P = mg x y m m d x = 0 y md = mg d x = 0 d y = g (69) t = 0 x = 0 y = 0 dx = v 0 cos α dy = v 0 sin α (70) (70) (69) x = (v 0 cos α)t y = (v 0 sin α)t gt (71) (71) y = 0 t (71) [ t v 0 sin α gt ] = 0 47

48 t = 0 t = (v 0 sin α)/g t x (71) x = (v 0 cos α)(v 0 sin α) g = v 0 sin α g α = 90 α = 45 v 0/g y dy/ y (71) t dy = gt + v 0 sin α gt + v 0 sin α = 0 t = v 0 sin α g t (71) h h = (v 0 sin α)v 0 sin α g = v 0 sin α v 0 sin α g = v 0 sin α g g v0 sin α g (71) y = x tan α gx v0 sec α 48

49 g P ω = αg 0 < α < 1 g P Q F = ma m d x = P Q (7) d x/ = ω = αg m = P/g (7) Q = P m d x = P mαg = P (1 α) (73) 0 < α < 1 Q < P Q = P (1 α) ω = αg 0 < α < 1 Q = P (1 + α) 17.. (73) Q 0 α = 1 Q g 49

50 17.3 r h r + h Q Q = 0 x n mv = ρ ρ = r + h n k=1 F kn = F F n i=1 F kn mv r + h = F = x md d x = v r + h d x/ (7) mv r + h = P Q (74) P F F r + h F = km (r + h) m k h = 0 F mg k = gr P = F = mgr (r + h) 50

51 g P (74) mv r + h = mgr (r + h) g v = r r + h 18 r m M G F = GmM r (75) m M t (x, y) F x F cos ϕ y F sin ϕ (75) mẍ = F cos ϕ = GmM r cos ϕ (76) mÿ = F sin ϕ = GmM r sin ϕ (77) sin ϕ = y/r cos ϕ = x/r (76) (77) k GM ẍ = kx r 3 ÿ = ky r 3 r = x + y kx ky ẍ = ÿ = (78) (x + y ) 3/ (x + y ) 3/ t = 0 x = a y = 0 ẋ = 0 ẏ = v 0 (79) 51

52 (78) (79) (78) x = r cos ϕ y = r sin ϕ ẋ = ṙ cos ϕ (r sin ϕ) ϕ ẏ = ṙ sin ϕ + (r cos ϕ) ϕ ẍ = r cos ϕ (ṙ sin ϕ) ϕ (r sin ϕ) ϕ (r cos ϕ) ϕ ÿ = r sin ϕ + (ṙ cos ϕ) ϕ + (r cos ϕ) ϕ (r sin ϕ) ϕ (80) ẍ = ( r r ϕ ) cos ϕ (ṙ ϕ + r ϕ) sin ϕ ÿ = ( r r ϕ ) sin ϕ + (ṙ ϕ + r ϕ) cos ϕ (78) (80) ( r r ϕ ) cos ϕ (ṙ ϕ + r ϕ) sin ϕ = k cos ϕ r (81) ( r r ϕ ) sin ϕ + (ṙ ϕ + r ϕ) cos ϕ = k sin ϕ r (8) (81) cos ϕ (8) sin ϕ r r ϕ = k r (83) (81) sin ϕ (8) cos ϕ ṙ ϕ + r ϕ = 0 (84) (79) t = 0 r = a + 0 = a (a > 0) ϕ = tan 1 y x = tan 1 0 a = 0 (85) ṙ = 0 1 ϕ = 1+(x/y) ẏx yẋ x = av0 a = v0 a (78) (79) (83) (84) (85) (84) (86) d (r ϕ) = 0 (86) r ϕ = C 1 (87) 5

53 C 1 P Q P Q OP OQ P Q S S = 1 ϕ 0 r dϕ ds = 1 r dϕ ds = 1 dϕ r = 1 r ϕ (88) ds/ (87) r ϕ (83) (84) (85) t = 0 r = a dotϕ = v 0 /a (87) C 1 = av 0 r ϕ = av 0... ϕ = av 0 r (89) (83) r = a v 0 r 3 k r ṙ = p dp = dp dr dr = pdp dr = a v0 r 3 k r p dp dr = a v0 r 3 k r ( a v0 p dp = r 3 k ) r dr p = k r a v 0 r + C 53

54 r = a p = ṙ = 0 C = v 0 k a ṙ = k r a v 0 r + v 0 k a ( dr = v0 k ) + k a r a v0 r (90) (90) (89) dr dϕ = r αr + βr 1 α = 1 a k a 3 v0 r = 1/u β = k a v0 dr dϕ = d(1/u) = du/dϕ ϕ u dr dϕ = 1 α u u + β u 1 du α dϕ = u u + β u 1... = α + βu u du dϕ = α + βu u 1 du = dϕ α + βu u α + βu u = (u β) + β + α [ = (β + α) 1 ] β + α (u β) + 1] ( = (β u β + α) + 1 β + α) 54

55 1 β + α du 1 [(u β)/( β + α)] = dϕ (u β)/ (β + α) = v du = β + αdv dv = 1 v dϕ arccos v = ϕ + C 3 v = cos(ϕ + C 3 ) (1/r) β β + α = cos(ϕ + C 3) r = 1 r = β + β + α cos(ϕ + C 3 ) = = 1 β + β + α cos(ϕ + C 3 ) 1/β 1 + [ β + α cos(ϕ + C 3 )]/β a v 0/k 1 + e cos(ϕ + C 3 ) e = β + α/β = av 0 /k 1 ϕ = 0 r = a a v a = 0/k 1 + e cos +C 3 av 0 cos C 3 k cos C 3 = 1 = av 0 k... C 3 = 0 r = a v 0/k 1 + e cos ϕ (91) e (1) e < 1 v0 < k/a () e > 1 v0 > k/a 55

56 (3) e = 1 v 0 = k/a (4) e = 0 v 0 > k/a v0 k/a e e V x y ẋ ẏ V v v = ẋ + ẏ (80) v = r ϕ + ṙ m 1 mv = 1 m(r ϕ + ṙ ) (9) km r r dr = [ km r ] r = km r (93) E E (9) (93) ϕ = 0 (91) (94) 1 m(r ϕ + ṙ ) km r = E (94) r = a v 0/k 1 + e mr a v0 r 4 km r = E r e = 1 + E a v 0 mk 56

57 (91) a v r = 0/k E(a v0 /mk ) cos ϕ E < 0 E > 0 E = 0 E = mk /(a v 0) E E x ξ + y η = 1 e = C/ξ C = ξ η e = ξ η ξ η = ξ (1 e ) (95) (91) ξ = 1 ( a v0/k 1 + e + a v0/k ) = a v0 1 e k(1 e ) = a v0ξ kη η = a v 0ξ k (96) T πξη (88) (89) πξη = av 0 T/ (96) π ξ η = 1 4 a v 0T a v 0 k π ξ 3 = 1 4 a v 0T... T = 4π ξ 3 k 57

58 AB OA O x y O F 1 F x y x sag x M(x) x 19.. x y EJ [1 + (y ) ] 3 = M(x) (97) / 58

59 E Young J x EJ flexural rigidity y (97) EJy = M(x) (98) (98) l pkgf (pl/) M(x) Q Q OA O x Q Q M(x) = pl ( x ) x + px = px plx (99) M(x) = p(l x) l x pl px (l x) = plx (100) (99) (100) (98) EJy = px plx (101) O A (101) y x lx = T x = 0 y = 0 x = l y = 0 T = x4 1 l 6 x3 + C 1 x + C y = p ( x 4 EJ 1 l ) 6 x3 + C 1 x + C 59

60 y = p ( x 4 lx 3 + l 3 x ) 4EJ x = l/ 5pl 4 /(384EJ) E = kgf/cm J = cm 4 0 A B h XY AX = λh C AC = ah a a = 0.3 a F F P P QQ RR SS L L W X βh O h/α 60

61 A A AC χ Oxy θ BAC u u = χ θ u h OX OA + W O AB OP OA + L OP AC A OA AC χ A 30m N N = 180 π 30α h (10) h h = 9m α = 0.1 N =..19 h = 1m α = 1.0 N =..14 α 0 1 α λh h 3h λ 1 3 a 0 a < 0.5 h 9m 1m A x = h α sin χ y = h α cos χ B X = h α sin χ h cos θ Y = h cos χ + h sin θ (103) α B BC dy dx = tan ψ (104) ψ BC χ = u + θ ABC 61

62 sin(χ ψ) h = sin(θ ψ) ah = sin u bh (105) 0 < b < 1 ψ θ u χ (103) (104) ( h ) dθ sin χ + h α dχ cos θ cos ψ + h α ( h dθ cos χ + h α a χ = u + θ χ 1 = du dχ + dθ dχ ) dχ sin θ sin ψ = 0 dθ (sin χ cos ψ sin ψ cos χ) = h (cos θ cos ψ + sin θ sin ψ) dχ sin(χ ψ) = α dθ cos(θ ψ) (106) dχ (106) (105) du dχ du dχ = 1 dθ dχ sin(χ ψ) = 1 α cos(θ ψ) (sin u)/b = 1 α cos(θ ψ) (107) (105) sin(θ ψ) = a b sin u 1 cos (θ ψ) = a b (1 cos u) cos (θ ψ) = 1 a b (1 cos u) cos(θ ψ) > 0 cos(θ ψ) = 1 a b + a b cos u (107) du dχ = 1 sin u α b a + a cos u χ = 0 θ = 0 u(0) = 0 BASIC 6

63 II 1 v x θ Galileo θ v x y v x v y v v x v = cos θ v y v = sin θ x x y Galileo x x v x = v cos θx v x t x x = v x t y t v y t Galileo t g t g t y y = g t + v y t x = v x t y = g t + v y t 1.1 v y g 63

64 y = g t + v y t y = 0 0 = t (v y g ) t t = 0, v y g t = v y g R x x v x v y = gr R = v x t = v x v y g = v xv y g v x v y = gr R 0 x y v x v y v y = gr v x g = 3, /sec R 5000 y v y = 400 /sec R = 5000 v x v y = v x 400 = v x v x = 01, 5 v x 01, 5 /sec 64

65 R R = v g sin θ R = v xv y g = v cos θ sin θ g = v g sin θ sin θ = 1 θ = π θ = π 4 = 45 ( π ) R = v 4 g v dy = gt + v sin θ = 0 t = v sin θ g ( ) ( ) v sin θ v sin θ + v sin θ y = g g = v sin θ g = v sin θ g + v sin θ g g 65

66 R > 0 v R = v sin θ g gr v = sin θ sin θ = 1 θ = π 4 v = gr v R = v g sin θ sin θ = gr v 0 < R < v g 0 < gr v < 1 θ 1 + θ = π θ 1 + θ = π v θ α < θ v θ 66

67 y = g t + v y t R = v x t R tan α = g t + v y t v x tan α = g g t + v y g = v y v x tan α t = g (v y v x tan α) = v (sin θ cos θ tan α) g v α R R = v x t = v x g (v y v x tan α) = g (v xv y v x tan α) R v x v y R = g v xv y g v x tan α g v xv y = R g v x tan α v y = gr v x + v x tan α v x + v y = 1 = 1 { ( ) } gr v x + + v x tan α v x ( v x cos α + g R ) + gr tan α 4v x 67

68 ( 1 v x cos α + g R ) + gr tan α 4v x g R 4cos α +1 gr tan α = gr ( 1 ) cos α + tan α v x v x cos α = g R 4v x v x = tan θ = vy v x gr cos α tan θ = 1 cos α + tan α R v g θ α R = g (v xv y v x tan α) = v g (cos θ sin θ cos θ tan α) v α R cos θ sin θ cos θ tan α = cos α cos θ sin θ cos θ sin α cos α sin θ cos α sin α cos θ sin α = cos α sin(θ α) sin α = cos α R θ α = π θ = π 4 + α 68

69 R < v g ( sin(θ α) sin α cos α R = v g ) ( ) 1 sin α cos α R = ( ) v sin(θ α) sin α g cos α gr v = sin(θ α) sin α sin(θ α) = gr cos α + sin α < 1 v θ 1 α + θ α = π θ 1 + θ = π + α θ 1 α = π θ.1 Newton Principia Newton 69

70 v x θ θ R(θ) = v g sin θ g R 0 R < v /g R Tartaglia 1537 θ = π/4rad k (x, y) k [ ẋ ẏ ] [ 0 ] g ẍ = kẋ ÿ = g kẏ ẋ(0) = v cos θ x(0) = 0 ẏ(0) = v sin θ y(0) = 0 u = ẋ u = ku u + ku = 0 0 = e kt + ke kt u 0 = d (ekt u) 70

71 ẋ(0) = C u = ẋ = v cos θe kt x(0) = v cos θ( 1 k ) + D = 0 D = 1 k v cos θ x = 1 k v cos θ( e kt + 1) s = ẏ ṡ = g ks ṡ + ks = g e kt ṡ + ke kt s = ge kt d (ekt s) = ge kt e kt s = g e kt e kt s = g k ekt + C s(0) = ẏ(0) = v sin θ = g k + C C = v sin θ + g k s = g k + v sin θe kt + g k e kt ( = e kt v sin θ + g ) g k k y = 1 ( k e kt v sin θ + g ) g k k t + D y(0) = 1 ( v sin θ + g ) + D = 0 k k D = 1 ( v sin θ + g ) k k y = 1 ( k e kt v sin θ + g ) g k k t + 1 ( v sin θ + g ) ( k k v sin θ = + g ) k k (1 e kt ) g k t 71

72 x 1 e kt = kx v cos θ t e kt = 1 kx v cos θ kt = log(1 kx v cos θ ) t = 1 ( k log 1 kx ) v cos θ y ( v sin θ y = + g ) kx k k v cos θ + g ( k log 1 kx ) v cos θ ( k x g tan θ + k ) v sec θ ( + log 1 kx ) = 0 v cos θ x 1 kx v cos θ = e A(θ)x A(θ) = k g tan θ + k v sec θ R(θ) R(θ) = cos θ a (1 e A(θ)R(θ) ) A(θ) = a sec θ + b tan θ,a = k/v,b = k /g R(θ) θ R 0 R n+1 = cos θ a (1 e A(θ)Rn ) R(θ) R(θ) 7

73 R(θ) R(θ) Tartaglia Tartaglia. c,d(c > 0, d > 1/c) x 0 f(x) = c(1 e dx ) g(x) = x f(x) = c(1 e dx ) f (x) = cde dx f (0) = cd > 1 lim f(x) = c x 7 f f(x) = c(1 e dx ) c, d c > 0, cd > 1 f p f(p) = p p f 0 f 73

74 f(0) = 0 f (0) > 1 s f(s) > s f (0) = cd > 1 F (s) = f(s) s F (s) > 0 F (s) = f (s) 1 F (0) = f (0) 1 > 0 F (0) = 0 F (s) F (0) = F (c)(s 0) (0 < c < s) c F (s) = f (c)s c F F (s) = F (c)s > 0 F (s) > 0 f(s) > s f(c) < c f (0, c) f(c) < c F (c) = f(c) c = ce cd < 0 f(s) > s 74

75 F (X) = f(x) x F (c) < 0 F (s) > 0 F (x) = 0 (s, c) (0, c) x f (x) f p f (x) = cd e dx < 0 (α, β, α β) f(x) = x F (x) = f(x) x F (α) = 0 F (β) = 0 f(0) = 0 0 x c 0 < ξ < α, F (ξ) = 0 ξ α x β α < η < β, F (η) = 0 η ξ x η ξ < γ < η, F (γ) = 0 γ F (γ) = f (γ) = 0 f (x) < 0 75

76 x(x > p) f(x) > x f q > p q x f(x) > x x < p x f(x) < x x > p 1. f(x) > x x < p. f(x) < x x > p 1. f(r) < r r < p F (x) = f(x) x F (r) > 0 F (c) < 0 (r, c) F (q) = 0 q f(q) = q q p, q f(x) > x x < p. f(r) < r r < p F (r) < 0 F (s) > 0 (s, r) F (q) = 0 q f(q) = q p, q f(x) < x x < p e x > 1 + x(x > 0) x > 0 (x + 1)(1 e x ) > x f((cd 1)/d) > (cd 1)/d d(c p) < 1 76

77 (x + 1)(1 e x ) x = (x + 1)e x + 1 = ex (x + 1) e x > 0... (x + 1)(1 e x ) > x f((cd 1)/d) > (cd 1)/d ( ) cd 1 f cd 1 = c ce (cd 1) cd 1 d d d { = c 1 e (cd 1) cd 1 } cd (x + 1)(1 e x ) > x 1 e x > x x + 1 { c 1 e (cd 1) cd 1 } cd.. ( ) cd 1. f d ( cd 1 > c cd > cd 1 d cd 1 ) = 0 cd d(c p) < 1 f(x) > x x < p 0 < f (p) < 1 cd 1 d < p cd 1 < dp d(c p) < 1 f(p) = p p = c ce dp e dp = c p c f (p) = cde dp f (p) = cd c p c = d(c p) < < f (p) < 1 77

78 0 < θ < π/,r > 0 F (θ, r) = cos θ a (1 e A(θ)r ) A(θ) = a sec θ + b tan θ F F θ F r R(θ) = F (θ, R(θ)) F θ (θ, r) = sin θ a (1 + A (θ)re A(θ)r ) A (θ) = a sin θ + b cos θ F r (θ, r) = cos θ a A(θ)e A(θ)r R(θ) = cos θ a (1 e A(θ)R(θ) ) = F (θ, R(θ)) F r (θ, R(θ)) < 1 F r (θ, r) = cos θ a A(θ)e A(θ)r c = cos θ a, d = A(θ), f(x) = c(1 e dx ) p = R(θ) cd = cos θ a A(θ) = cos θ (a sec θ + b tan θ) a = 1 (a + b sin θ) a = 1 + b a sin θ > 1 f (p) = cde dp F r (θ, R(θ)) < 1 78

79 R (0, π/) [0, π/] R(θ) g(θ, r) = F (θ, r) r r R(θ) g(θ, r) = 0 g r (θ, R(θ)) = F r (θ, r) 1 < 0... g r (θ, R(θ)) R(θ) (0, π/) [0, π/] R(θ) = cos θ a (1 e A(θ)R(θ) ) t = R(θ) sec θ ( g(t) = at 1 + e at+b t R(θ) ) = 0 ( g (R(θ) sec θ) = ar(θ) sec θ 1 + e ar(θ) sec θ+b R(θ) sec θ R(θ) ) (ar(θ) sec θ+br(θ) tan θ) = ar(θ) sec θ 1 + e = ar(θ) sec θ 1 + e A(θ)R(θ) = 0 R(θ) = 1 e A(θ)R(θ) a sec θ = cos θ a (1 e A(θ)R(θ) ) R = max θ [0, π ] R(θ) 0 R < R R(θ) = R θ [0, π ] 79

80 R(0) = r R(θ) = cos θ a (1 e A(θ)R(θ) ) A(0) = a r = 1 r (1 ear ) ar = 1 e ar e ar = 1 ar ar = 0 r = 0 R(0) = 0 ( π ) R = 0 [0.π/] R(θ) R [0, c], R(c) = R > R, R(0) = 0 < R 0 < ξ < c, R(ξ) = R ξ c < η < π, R(η) = R η R(θ) = R θ g(t) = 0 t g (α) = 0 α g(t) = at 1 + e (at+b t R(θ) ) B = at + b t R(θ) g (t) = a B e B g (t) = B e B + (B ) e B = e B {(B ) B } B t = a + b t R(θ) 80

81 B br(θ) = (t R(θ) ) t R(θ) < 0 g (t) > 0 R(θ) = R θ f x n+1 = f(x n ) p f 0 < x 0 < p x n < x n+1 < p p < x 0 p < x n+1 < x n x 0 > 0 p x n+1 = f(x n ) p = f(p) 1. 0 < x 0 < p x n < x n+1 < p. p < x 0 p < x n+1 < x n 1. x 0 < x 1 < < x n < p x n < x n+1 < p x 0 < x 1 < p x n < x n+1 < px 0 < x 1 < p x 0 = x 1 x 0 = p 0 < x 0 < p x 0 > x 1 x 1 = f(x 0 ) x 0 > f(x 0 ) x f(x) < x x > p x 0 > p 0 < x 0 < p x 0 < x 1 x 1 = f(x 0 ),p = f(p) x 1 p = f(x 0 ) f(p) 81

82 f(x 0 ) f(p) = f (ξ)(x 0 p) x 0 < ξ < p ξ f (ξ) > 0,x 0 p < 0 f(x 0 ) f(p) < 0 x 1 p < 0 x 1 < p x 0 < x 1 < p x n < x n+1 < p. 1 θ R (θ) = 0 θ sin θ = (sin θ + A (θ)r(θ) cos θ)e A(θ)R(θ) R (θ) = sin θ a = sin θ a R (θ) = 0 (1 ea(θ)r(θ) ) + cos θ a [A(θ)R(θ)] e A(θ)R(θ) (1 e A(θ)R(θ) ) + cos θ a [A (θ)r(θ) + A(θ)R (θ)]e A(θ)R(θ) 0 = sin θ a + sin θ a e A(θ)R(θ) + cos θ a A (θ)r(θ)e A(θ)R(θ) 0 = sin θ + e A(θ)R(θ) sin θ + A (θ)r(θ)e A(θ)R(θ) cos θ sin θ = (sin θ + A (θ)r(θ) cos θ)e A(θ)R(θ) e A(θ)R(θ) = 1 a sec θr(θ) θ R(θ) = (c cos θ)/a sin θ + c c = vk/g 8

83 sin θ = (sin θ + A (θ)r(θ) cos θ)(1 a sec θr(θ)) R(θ) 0 = sin θ ar(θ) tan θ + A (θ)r(θ) cos θ aa (θ)r(θ) R(θ) = tan θ A (θ) + cos θ a A (θ) = (a sin θ + b)/ cos θ R(θ) = sin θ cos θ cos θ a sin θ + b + cos θ a a sin θ cos θ + a sin θ cos θ + b cos θ = a sin θ + ab b cos θ = a sin θ + ab (b cos θ)/a = sin θ + b/a a = k/v,b = k /g,c = vk/g = b/a θ R(θ) = (c cos θ)/a sin θ + c A(θ)R(θ) = c + c sin θ sin θ + c s = sin θ sin s = (s + c)e (c+c s)/(s+c) (c cos θ)/a A(θ)R(θ) = (b tan θ + a sec θ) sin θ + c (bc sin θ)/a + c = sin θ + c = c sin θ + c sin θ + c s = sin θ A(θ)R(θ) = c s + c s + c 83

84 s = = ( s + a sin θ + b cos θ (s + c sin θ + c sin θ + c = (s + c)e (c+c s)/(s+c) s (c cos θ)/a sin θ + c ) e (c+c s)/(s+c) x = e hx ) cos θ e (c+c s)/(s+c) h = (1 c )/e,x = es/(s + c) es s + c = e 1 c e es s+c = e s(1 c )/(s+c) s = (s + c)e (s sc s c)/(s+c) = (s + c)e (c+c s)/(s+c) x = e hx h < 1/e h x = e hx x(h) (0, e) a (0, e) e ha < a x(h) < a f(x) = x e hx (h < 1/e, 0 < x < e) f(0) = 1 < 0 f(e) = e e he > 0 (eh < 1) 84

85 0 < x < e (a, b) a = e ha b = e hb 0 < a < e 0 < b < e F (x) = x e hx F (a) = F (b) = 0 a < b F (ξ) = 0, a < ξ < b ξ F (x) = 1 he hx F (ξ) = 1 he hξ = 0 e hξ = 1 h > e 0 < ξ < e 0 < hξ < he < 1 e < e hξ < e 1 0 < a < e e ha < a x(h) < a x(h) < a p < a f(x) = x e hx e ha a < 0 f(a) > 0 p < a p > a f(0) = 1 < 0 f (ξ) = 0 0 < ξ < a ξ 0 < a < e e ha < a x(h) < a 85

86 j [1, ) j(1) = j (1) = 1 w > 1 j (w) > 0 w > 1 j(w) > w Taylor j(1) = j (1) = 1 j(w) = j(1) + j(1)(w 1) 1! + j (c)(w 1)! > w (1 < c < w)...j(w) > w s s < 1/ x(h) x(h) < e/(1 + (1 eh)) w = 1 + (1 eh) e h(e/w) < e w s < 1/ { s = (s + c)e c+c s s+c s < 1 x = e hx x < e 1+ (1 eh) x < e 1 + (1 eh) x(1 + (1 eh)) < e x (1 eh) + x < e x 1 eh < e x x 1 eh e x < 1 86

87 h = 1 c e c = 1 eh x = s = es s + c s = x 1 eh e x w = 1 + (1 eh) x < e w x ha < a x < a e ha < e w x < a w x < e w s < 1 e ha < e/w s < 1/ w = 1 + (1 eh) eh = 1/ + w + w / w = 1 + (1 eh) w w + 1 = (1 eh) eh = 1 + w w eh = 1 + w + w w > 1 w < e (w w 1 )/ e h(e/w) w < e (w w 1 )/ < e w w > 1 w < e w w 1 e h e e w < w eh = 1 + w w w w 1 = 1 eh w 87

88 w < e 1 eh w e h( e w ) < e w w < e (w w 1 )/ j(w) = e w/ w 1 / w < e (w w 1 )/ j(1) = j (1) = 1 j (w) > 0 j(w) > w j (w) > 0 j(1) = j (1) = 1 j(w) = e w/ w 1 / j (w) = ( w w 1 ) e w/ w 1 / = ( 1 + w 1 )ew/ w / j (w) = ( w 3 e w w 1 ) + ( 1 + w ) e w w 1 = e w w 1 {( 1 + w ) w 3 } ( 1 + w ) w 3 > 0 ( 1 + w ) w 3 = w4 + w + 1 4w 4w 4 f(w) = w 4 + w + 1 4w f (w) = 4(w 3 + w 1) > 0 f(1) = 0 f f(w) > f(1)...f(w) > 0 j (w) > 0 j(w) > 0 88

89 [1] W [] V V 89

90 TEX 90

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ 1 1 1.1 (Isaac Newton, 1642 1727) 1. : 2. ( ) F = ma 3. ; F a 2 t x(t) v(t) = x (t) v (t) = x (t) F 3 3 3 3 3 3 6 1 2 6 12 1 3 1 2 m 2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t)

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n

さくらの個別指導 ( さくら教育研究所 ) A 2 P Q 3 R S T R S T P Q ( ) ( ) m n m n m n n n 1 1.1 1.1.1 A 2 P Q 3 R S T R S T P 80 50 60 Q 90 40 70 80 50 60 90 40 70 8 5 6 1 1 2 9 4 7 2 1 2 3 1 2 m n m n m n n n n 1.1 8 5 6 9 4 7 2 6 0 8 2 3 2 2 2 1 2 1 1.1 2 4 7 1 1 3 7 5 2 3 5 0 3 4 1 6 9 1

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

23 7 28 i i 1 1 1.1................................... 2 1.2............................... 3 1.2.1.................................... 3 1.2.2............................... 4 1.2.3 SI..............................

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

x ( ) x dx = ax

x ( ) x dx = ax x ( ) x dx = ax 1 dx = a x log x = at + c x(t) = e at C (C = e c ) a > 0 t a < 0 t 0 (at + b ) h dx = lim x(t + h) x(t) h 0 h x(t + h) x(t) h x(t) t x(t + h) x(t) ax(t) h x(t + h) x(t) + ahx(t) 0, h, 2h,

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3)

< 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) < 1 > (1) f 0 (a) =6a ; g 0 (a) =6a 2 (2) y = f(x) x = 1 f( 1) = 3 ( 1) 2 =3 ; f 0 ( 1) = 6 ( 1) = 6 ; ( 1; 3) 6 x =1 f(1) = 3 ; f 0 (1) = 6 ; (1; 3) 6 y = g(x) x = 1 g( 1) = 2 ( 1) 3 = 2 ; g 0 ( 1) =

More information

08-Note2-web

08-Note2-web r(t) t r(t) O v(t) = dr(t) dt a(t) = dv(t) dt = d2 r(t) dt 2 r(t), v(t), a(t) t dr(t) dt r(t) =(x(t),y(t),z(t)) = d 2 r(t) dt 2 = ( dx(t) dt ( d 2 x(t) dt 2, dy(t), dz(t) dt dt ), d2 y(t) dt 2, d2 z(t)

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

4................................. 4................................. 4 6................................. 6................................. 9.................................................... 3..3..........................

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載 1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載のない限り 熱容量を考慮した空き容量を記載しております その他の要因 ( 電圧や系統安定度など ) で連系制約が発生する場合があります

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( )

( ) 5. VSS (VIM ) 10. ( ) 11. (ANN ) ( ) 1.... ( ) 5. VSS.. 8. 9. (VIM ) 1. ( ) 11. (ANN ) 1. 1. ( ) 1 Lagrange 1..1 Lagrange q, Lagrange D(q)q + C(q; _q)_q + G(q) = (1.1) D(q)q C(q; _q)_q G(q) ( ) D(q) D(q) m ; M < M m (D(q)) (1.) (D(q)) M

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

2014 S hara/lectures/lectures-j.html r 1 S phone: ,

2014 S hara/lectures/lectures-j.html r 1 S phone: , 14 S1-1+13 http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r 1 S1-1+13 14.4.11. 19 phone: 9-8-4441, e-mail: hara@math.kyushu-u.ac.jp Office hours: 1 4/11 web download. I. 1. ϵ-δ 1. 3.1, 3..

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

( ) 24 1 ( 26 8 19 ) i 0.1 1 (2012 05 30 ) 1 (), 2 () 1,,, III, C III, C, 1, 2,,, ( III, C ),, 1,,, http://ryuiki.agbi.tsukuba.ac.jp/lec/12-physics/ E104),,,,,, 75 3,,,, 0.2, 1,,,,,,,,,,, 2,,, 1000 ii,

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r

d (K + U) = v [ma F(r)] = (2.4.4) t = t r(t ) = r t 1 r(t 1 ) = r 1 U(r 1 ) U(r ) = t1 t du t1 = t F(r(t)) dr(t) r1 = F dr (2.4.5) r F 2 F ( F) r A r 2.4 ( ) U(r) ( ) ( ) U F(r) = x, U y, U = U(r) (2.4.1) z 2 1 K = mv 2 /2 dk = d ( ) 1 2 mv2 = mv dv = v (ma) (2.4.2) ( ) U(r(t)) r(t) r(t) + dr(t) du du = U(r(t) + dr(t)) U(r(t)) = U x = U(r(t)) dr(t)

More information

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (, [ ], IC 0. A, B, C (, 0, 0), (0,, 0), (,, ) () CA CB ACBD D () ACB θ cos θ (3) ABC (4) ABC ( 9) ( s090304) 0. 3, O(0, 0, 0), A(,, 3), B( 3,, ),. () AOB () AOB ( 8) ( s8066) 0.3 O xyz, P x Q, OP = P Q =

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha

2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( ) e mc 2 = cm 2 e m c (, Thomson cross secion). Cha http://astr-www.kj.yamagata-u.ac.jp/~shibata P a θ T P M Chapter 4 (f4a). 2.. 2. (f4cone) ( θ) () g M θ (f4b) T M L 2 (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) Chapter 5 (f5meanfp) ( ( )? N [] σ e = 8π ( )

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

II Time-stamp: <05/09/30 17:14:06 waki> ii

II Time-stamp: <05/09/30 17:14:06 waki> ii II waki@cc.hirosaki-u.ac.jp 18 1 30 II Time-stamp: ii 1 1 1.1.................................................. 1 1.2................................................... 3 1.3..................................................

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

(u(x)v(x)) = u (x)v(x) + u(x)v (x) ( ) u(x) = u (x)v(x) u(x)v (x) v(x) v(x) 2 y = g(t), t = f(x) y = g(f(x)) dy dx dy dx = dy dt dt dx., y, f, g y = f (g(x))g (x). ( (f(g(x)). ). [ ] y = e ax+b (a, b )

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) 2017 12 9 4 1 30 4 10 3 1 30 3 30 2 1 30 2 50 1 1 30 2 10 (1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10) (1) i 23 c 23 0 1 2 3 4 5 6 7 8 9 a b d e f g h i (2) 23 23 (3) 23 ( 23 ) 23 x 1 x 2 23 x

More information

webkaitou.dvi

webkaitou.dvi ( c Akir KANEKO) ).. m. l s = lθ m d s dt = mg sin θ d θ dt = g l sinθ θ l θ mg. d s dt xy t ( d x dt, d y dt ) t ( mg sin θ cos θ, sin θ sin θ). (.) m t ( d x dt, d y dt ) = t ( mg sin θ cos θ, mg sin

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA appointment Cafe D

1W II K =25 A (1) office(a439) (2) A4 etc. 12:00-13:30 Cafe David 1 2 TA  appointment Cafe D 1W II K200 : October 6, 2004 Version : 1.2, kawahira@math.nagoa-u.ac.jp, http://www.math.nagoa-u.ac.jp/~kawahira/courses.htm TA M1, m0418c@math.nagoa-u.ac.jp TA Talor Jacobian 4 45 25 30 20 K2-1W04-00

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

slide1.dvi

slide1.dvi 1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f ,,,,.,,,. R f : R R R a R, f(a + ) f(a) lim 0 (), df dx (a) f (a), f(x) x a, f (a), f(x) x a ( ). y f(a + ) y f(x) f(a+) f(a) f(a + ) f(a) f(a) x a 0 a a + x 0 a a + x y y f(x) 0 : 0, f(a+) f(a)., f(x)

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

曲面のパラメタ表示と接線ベクトル

曲面のパラメタ表示と接線ベクトル L11(2011-07-06 Wed) :Time-stamp: 2011-07-06 Wed 13:08 JST hig 1,,. 2. http://hig3.net () (L11) 2011-07-06 Wed 1 / 18 ( ) 1 V = (xy2 ) x + (2y) y = y 2 + 2. 2 V = 4y., D V ds = 2 2 ( ) 4 x 2 4y dy dx =

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ {

x x x 2, A 4 2 Ax.4 A A A A λ λ 4 λ 2 A λe λ λ2 5λ + 6 0,...λ 2, λ 2 3 E 0 E 0 p p Ap λp λ 2 p 4 2 p p 2 p { 4p 2 2p p + 2 p, p 2 λ { K E N Z OU 2008 8. 4x 2x 2 2 2 x + x 2. x 2 2x 2, 2 2 d 2 x 2 2.2 2 3x 2... d 2 x 2 5 + 6x 0 2 2 d 2 x 2 + P t + P 2tx Qx x x, x 2 2 2 x 2 P 2 tx P tx 2 + Qx x, x 2. d x 4 2 x 2 x x 2.3 x x x 2, A 4 2

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information