A大扉・騒音振動.qxd

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "A大扉・騒音振動.qxd"

Transcription

1

2 H21-30

3 H21-31

4 H21-32

5 H21-33

6 H21-34

7 H21-35

8 H21-36

9 H21-37

10 H21-38

11 H21-39

12 H21-40

13 H21-41

14 H21-42 n n S L N S L N L N S S S L L log I II I L I L log I I

15 H21-43 L log L log I I I log log I I I log log I I I I I I I I I I

16 H21-44 T I p tc L T log T # t 1 t 2 p t dt p log T # t 1 t 2 I t dt I I p tc Tp p I

17 H21-45 I

18 H21-46 L

19 H21-47

20 H21-48

21 H21-49 T T

22 H21-50 db k 2 k 4 k 8 k 16 k 20 k Hz F T N N

23 H21-51 c = 331.5T T p I = I p tc tc

24 H L p = 10 logp 2 /p log20 log db 2 L p = 10 logi /I 0 L p = 10 log p I p 2 /p 02 I = L tc p = 10 log = 10 log p I p 3 I = tc = = = 10 8 L N p

25 H21-53 T c T c

26 H21-54 sin i 1 c 1 sin i 2 c 2

27 H21-55

28 H21-56

29 H21-57

30 H21-58

31 H21-59 db s

32 H21-60 db db/oct db/oct rmsm/s db Hz

33 H21-61

34 H21-62

35 H21-63

36 H21-64

37 H21-65 dy y= y 0 sint v = = y dt 0 cost dv dy 2 a= = =v dt d 2 t 0 sint =y 0 2 sint y 0 v =y 0 a = v = y 0 2 = 2rf a 1/ L = 20 log a Hz 8 db 20 Hz 16 Hz 6 db31.5 Hz 12 db 1y 0 y /2rf / v rf a

38 H a/ 0./ log0.08/10 5 = 20 log

39 H21-67 f km d f f 0 5 d km km f

40 H / v v

41 H21-69

42 H21-70

43 H21-71 db Hz 550 Hz

44

1 2 1 0 6 a. b. c. d. e. 1. 1 2. 4 2.1 4 2.2 5 2.3 6 3. 8 4. 9 4.1 9 4.2 11 4.2.1 11 4.2.2 13 4.3 15 4.3.1 15 4.3.2 16 5. 19 5.1 19 5.1.1 19 5.1.2 21 5.1.3 24 5.1.4 27 5.1.5 29 5.1.6 37 5.2 39 5.2.1 39

More information

100 100 6 1 8 10 18 5 12 9 26 2 9 80 2500 7 1400 1 20 7 5 1 3 16 16 16 16 No No.010101 020301 No.020302 021301 TP+3.00 3.06 TP+3.06 3.14 Ho To Ho 1.35m 3.0m To 5.6s 6.8s Ho 2.49m 3.0m

More information

RF_1

RF_1 RF_1 10/04/16 10:32 http://rftechno.web.infoseek.co.jp/rf_1.html 1/12 RF_1 10/04/16 10:32 http://rftechno.web.infoseek.co.jp/rf_1.html 2/12 RF_1 10/04/16 10:32 http://rftechno.web.infoseek.co.jp/rf_1.html

More information

untitled

untitled C08036 C08037 C08038 C08039 C08040 1. 1 2. 1 2.1 1 2.2 1 3. 1 3.1 2 4. 2 5. 3 5.1 3 5.2 3 6. 4 7. 5 8. 6 9. 7 10. 7 11. 8 C08036 8 C08037 9 C08038 10 C08039 11 C08040 12 8 2-1 2-2 T.P. 1 1 3-1 34 9 28

More information

ZAE579

ZAE579 579 1. 1 2. 3 2.1 3 2.2 3 2.3 4 3. 6 4. 6 4.1 6 4.2 8 4.2.1 8 4.2.2 9 4.3 10 4.3.1 10 4.3.2 10 5. 11 5.1 11 5.1.1 11 5.1.2 12 5.1.3 14 5.1.4 16 5.1.5 17 5.1.6 22 5.2 23 5.2.1 23 5.2.2 24 5.2.3 25 5.2.4

More information

1 2 3 4 5 6 0.4% 58.4% 41.2% 10 65 69 12.0% 9 60 64 13.4% 11 70 12.6% 8 55 59 8.6% 0.1% 1 20 24 3.1% 7 50 54 9.3% 2 25 29 6.0% 3 30 34 7.6% 6 45 49 9.7% 4 35 39 8.5% 5 40 44 9.1% 11 70 11.2% 10 65 69 11.0%

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

-1 - -2 - -3 - -4 - -5 - -6- -7 - 260-8 - -9 - - 10-104km2 194km 340 104km2 194km 340 -11 - - 12-10km 20km 30km 260 260 1km 2km 2000 10km 20km 30km 260 260 1km 2km 2000 260 260 1km 2km 2000 - 13 - ( 3

More information

, , km 9.8km 10.5km 11.9km 14.4km 14.4km 34.1km 3.4km 31.7km 6.2km 7.3k

, , km 9.8km 10.5km 11.9km 14.4km 14.4km 34.1km 3.4km 31.7km 6.2km 7.3k 410 470 500 540 620 620 620 1,250 300 1,170 360 390 450 490 570 670 770 850 880 7.7km 9.8km 10.5km 11.9km 14.4km 14.4km 34.1km 3.4km 31.7km 6.2km 7.3km 8.9km 10.4km 12.9km 15.8km 19.0km 21.7km 22.4km 530

More information

阪神5年PDF.PDF

阪神5年PDF.PDF 1995.1.17 N 0km 10 20 31 4,569 14,679 67,421 55,145 6,965 80 1,471 3,383 13,687 5,538 327 22 933 1,112 12,757 5,675 465 2 243 3,782 6,344 6,641 65 17 555 1,755 9,533 8,109 940 15 12 817 271 3,140 1 918

More information

! 1 m 43 7 1 150 ( ) 100 ( ) 11.3m 30 800 ( ) 1680 20 15 1,253 ( ) 1,500 51 52 300 1 4 134 1000 3 600 ( ) 30 , 402 km (1702) ( 1 402 67 12 23 10 ( ) ( 25,000 ) (1701 ) 485 ( 20 ) 400 (1860 ) (1) (2)

More information

untitled

untitled 60 547 547 4km [ ] 14 20 18 2,400 5,500 24 15 10,000 [ ] [ ] 1779 1779 1471-76 1914 1471-76 1779 1914 1779 1779 1914 1471-7676 1779 1471-76 1946 1914 59 8 25 30 1986 3km 2m 5 2km 18 6 [ ]

More information

Microsoft Word - 01_表紙

Microsoft Word - 01_表紙 1 2 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 7.0 190 km 30 62 63 64

More information

渋谷区耐震改修促進計画

渋谷区耐震改修促進計画 1 2 3 2 1,000 ( ) 1,500 ( ) 3 1,000 1 1,000 2,000 3 1,000 2,000 3 1,000 2,000 3 1,000 2,000 3 1,000 2,000 3 1,000 2,000 3 1,000 3 1,000 2,000 3 1,000 2,000 3 1,000 3 1,000 2 1,000 2,000 2 1,000 2,000 2

More information

一太郎 13/12/11/10/9/8 文書

一太郎 13/12/11/10/9/8 文書 (1) 17 3 (2) (3) (1) 1 (2) 2 (1) (2) (3) (4) (5) (6) (7) (8) 3 (1) 50 12.5km 1km (2) 16 1900 (3) 65 65 19 14 17.5 (4) 34 31 22 335 133 (5) 104 321 3 4 4 43 4 4 4 () 5 6 (1) (2) 7 8 (1) (2)24 24 (3) 9 (4)

More information

28 7 1 27 9 27 12 10 28 5 18-1 - - 2 - 13 8 11 11,969 22 9 3,000m 3 /s 709 2079 18,279 5,990 42 52 57 7 10 10 9 5 27 9 1/100-3 - 20 2 50 50 22 60.4km 46 27 3 5m 150km 2 20-4 - - 5 - - 6 - 情 報 - 7 - -

More information

1,000m 875m1 6km

1,000m 875m1 6km 1,000m 875m1 6km 1,000m 875m 30 13 14 11 2 14 23 27 50 30 3 () 23 24 25 16,534 16,792 18,017 13,946 17,884 18,712 30,480 34,676 36,729 1 (25 ) () 395 1,420 1,343 1,756 1,364 1,599 1,184 1,278 1,619 1,324

More information

私にとっての沖縄と独自性.PDF

私にとっての沖縄と独自性.PDF 6902117 2 1200km 48 11 46 36 40 (1) ( ) 3 1 1-1 1-2 2 (= ) 3 1. 14 14 ( ) ( 2001) ( ) ( ) 1390 1474 ( 2001) ( 4 ) ( ) 46 3000 ( ) = 5 1609 1602 ( 2001) 1-1 1-2 1-1 1-2 15 (2) 6 1314 ( ) (3) ( ) 1 ( 1993:48)

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

TCSE4~5

TCSE4~5 II. T = 1 m!! U = mg!(1 cos!) E = T + U! E U = T E U! m U,E mg! U = mg!(1! cos)! < E < mg! mg! < E! L = T!U = 1 m!! mg!(1! cos) d L! L = L = L m!, =!mg!sin m! + mg!sin = d =! g! sin & g! d =! sin ! = v

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

untitled

untitled i ii (1) (1) (2) (1) (3) (1) (1) (2) (1) (3) (1) (1) (2) (1) (3) (2) (3) (1) (2) (3) (1) (1) (1) (1) (2) (1) (3) (1) (2) (1) (3) (1) (1) (1) (2) (1) (3) (1) (1) (2) (1) (3)

More information

平成18年度「商品先物取引に関する実態調査」報告書

平成18年度「商品先物取引に関する実態調査」報告書 ... 1.... 5-1.... 6-2.... 9-3.... 10-4.... 12-5.... 13-6.... 15-7.... 16-8.... 17-9.... 20-10.... 22-11.... 24-12.... 27-13... 29-14.... 32-15... 37-16.... 39-17.... 41-18... 43-19... 45.... 49-1... 50-2...

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ( ) 24 25 26 27 28 29 30 ( ) ( ) ( ) 31 32 ( ) ( ) 33 34 35 36 37 38 39 40 41 42 43 44 ) i ii i ii 45 46 47 2 48 49 50 51 52 53 54 55 56 57 58

More information

23 15961615 1659 1657 14 1701 1711 1715 11 15 22 15 35 18 22 35 23 17 17 106 1.25 21 27 12 17 420,845 23 32 58.7 32 17 11.4 71.3 17.3 32 13.3 66.4 20.3 17 10,657 k 23 20 12 17 23 17 490,708 420,845 23

More information

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書

訪問看護ステーションにおける安全性及び安定的なサービス提供の確保に関する調査研究事業報告書 1... 1 2... 3 I... 3 II... 3 1.... 3 2....15 3....17 4....19 5....25 6....34 7....38 8....48 9....58 III...70 3...73 I...73 1....73 2....82 II...98 4...99 1....99 2....104 3....106 4....108 5.... 110 6....

More information

op-amp-v1.dvi

op-amp-v1.dvi 2 2. Operational Amplifier/OP OP-AMP IC OP LM74 IC OP Black Box OP. 2. 3. 4. 5. 6. 0 0 OP LM74 (Z in ) 2MΩ (Z out ) 75Ω (A) 06dB2 0 5 OP OP OP LM74 DIP OP = A ( ) OP 2 8 NCNo Connection 2 7 3 6 4 5 : LM74

More information

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l c 28. 2, y 2, θ = cos θ y = sin θ 2 3, y, 3, θ, ϕ = sin θ cos ϕ 3 y = sin θ sin ϕ 4 = cos θ 5.2 2 e, e y 2 e, e θ e = cos θ e sin θ e θ 6 e y = sin θ e + cos θ e θ 7.3 sgn sgn = = { = + > 2 < 8.4 a b 2

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

健診の手引き_0707変.indd

健診の手引き_0707変.indd 3 3 3 3 4 4 4 4 4 4 5 6 6 7 7 7 7 7 8 8 8 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 11 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 13 13 13 13 13 13 13 14 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 18 18 18

More information

. ż ż 57 a v i ż ż v o b a ż v i ż v i ż v o ż v o a b 57. v i ż ż v o v o = Ġ v i (86) = ż ż + ż v i (87) v o v i Ġ = ż ż + ż (88) v i v o?? Ġ 6

. ż ż 57 a v i ż ż v o b a ż v i ż v i ż v o ż v o a b 57. v i ż ż v o v o = Ġ v i (86) = ż ż + ż v i (87) v o v i Ġ = ż ż + ż (88) v i v o?? Ġ 6 D:.BUN 7 8 4 B5 6.................................... 6.. C........................... 6..3 ω s............................. 63..4 Bode Diagram.......................... 64..5................................

More information

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page ( r 8.4.8. 3-3 phone: 9-76-4774, e-mail: hara@math.kyushu-u.ac.jp http://www.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html Office hours: 4/8 I.. ɛ-n. ɛ-δ 3. 4. II... 3. 4. 5.. r III... IV.. grad, div,

More information

取扱説明書[N-02B]

取扱説明書[N-02B] 187 1 p p 188 2 t 3 y 1 1 p 2 3 4 5 p p 1 i 2 189 190 1 i 1 i o p d d dt 1 2 3 4 5 6 9 0 191 192 d c d b db d 1 i 1 193 194 2 d d d r d b sla sla 1 o p i o o o op 195 u u 1 u t 1 i u u 1 i 196 1 2 bd t

More information

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y 5. [. ] z = f(, y) () z = 3 4 y + y + 3y () z = y (3) z = sin( y) (4) z = cos y (5) z = 4y (6) z = tan y (7) z = log( + y ) (8) z = tan y + + y ( ) () z = 3 8y + y z y = 4 + + 6y () z = y z y = (3) z =

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

. p.1/14

. p.1/14 . p.1/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y). p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h. p.2/14 F(x,y) = (F 1 (x,y),f 2 (x,y)) (x,y) (x,y) h h { F 2 (x+ h,y) F 2 2(x h,y) F 2 1(x,y+ h)+f 2 1(x,y

More information

取扱説明書 [N-03A]

取扱説明書 [N-03A] 235 1 d dt 2 1 i 236 1 p 2 1 ty 237 o p 238 1 i 2 1 i 2 1 u 239 1 p o p b d 1 2 3 0 w 240 241 242 o d p f g p b t w 0 q f g h j d 1 2 d b 5 4 6 o p f g p 1 2 3 4 5 6 7 243 244 1 2 1 q p 245 p 246 p p 1

More information

untitled

untitled 24 10 迄 20 6 7 13 () 4 5-10 5-1 3-1 0.5 2-2 2-1 1-20 0.8 2-6 4-51 4-19 1.7 3-17 2-34 4-13 1.4 2-22 3-29 2-7 0.9 6-30 1-1 1-15 0.3 (%) (%) 13 12,418 12,599 98.6 11,886 12,599 94.3 50-16 - % db db 4 622

More information

35

35 D: 0.BUN 7 8 4 B5 6 36 6....................................... 36 6.................................... 37 6.3................................... 38 6.3....................................... 38 6.4..........................................

More information

untitled

untitled 39 40 41 45 47 54 57 39 () 40 () () S22 12,262 7,108 5,154 S23 12,753 7,331 5,422 S24 14,201 8,391 5,810 S25 16,311 9,820 6,491 S26 15,415 9,035 6,380 S27 15,776 9,171 6,605 S28 17,731 10,450 7,281 S29

More information

DE-resume

DE-resume - 2011, http://c-faculty.chuo-u.ac.jp/ nishioka/ 2 11 21131 : 4 1 x y(x, y (x,y (x,,y (n, (1.1 F (x, y, y,y,,y (n =0. (1.1 n. (1.1 y(x. y(x (1.1. 1 1 1 1.1... 2 1.2... 9 1.3 1... 26 2 2 34 2.1,... 35 2.2

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

slide1.dvi

slide1.dvi 1. 2/ 121 a x = a t 3/ 121 a x = a t 4/ 121 a > 0 t a t = a t t {}}{ a a a t 5/ 121 a t+s = = t+s {}}{ a a a t s {}}{{}}{ a a a a = a t a s (a t ) s = s {}}{ a t a t = a ts 6/ 121 a > 0 t a 0 t t = 0 +

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y

09 II 09/12/ (3D ) f(, y) = 2 + y 2 3D- 1 f(0, 0) = 2 f(1, 0) = 3 f(0, 1) = 4 f(1, 1) = 5 f( 1, 2) = 6 f(0, 1) = z y (3D ) f(, y) = 2 + y 09 II 09/12/21 1 1 7 1.1 I 2D II 3D f() = 3 6 2 + 9 2 f(, y) = 2 2 + 2y + y 2 6 4y f(1) = 1 3 6 1 2 9 1 2 = 2 y = f() f(3, 2) = 2 3 2 + 2 3 2 + 2 2 6 3 4 2 = 8 z = f(, y) y 2 1 z 8 3 2 y 1 ( y ) 1 (0,

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

概況

概況 2 4 6 2 2 2 3 2 4 22 5 23 27 34 37 44 45 46 2 78.67 85.77 2.6. 7. 2 2, 65 85,464 93,8 65 85.5 93.2 8 56.2 77.9 2 8.87 88.8 3 () 65 3 6 2 2 2 2 2 22 3 2 2 2 2 2 2 2 2 28.58 28.74 29.9 8.8 8.84 2.63 65 28.3

More information

untitled

untitled 16 4 122.2 2 8 754km 2 2) 67.636km 6) 4) 1,0001,300m 10) 7) 8) 9) 11) 38) 5) 13 12 1,700 20) 15 1,200 2,000 1 80 40 46) 47) AA BOD75% 42,43 1mg/l A BOD75% 2mg/l 2 30 25 3 12) 75% 25% 60 3 25 7 26 30

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

( )

( ) ) ( ( ) 3 15m t / 1.9 3 m t / 0.64 3 m ( ) ( ) 3 15m 3 1.9m / t 0.64m 3 / t ) ( β1 β 2 β 3 y ( ) = αx1 X 2 X 3 ( ) ) ( ( ) 3 15m t / 1.9 3 m 3 90m t / 0.64 3 m ( ) : r : ) 30 ( 10 0.0164

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

数値計算:フーリエ変換

数値計算:フーリエ変換 ( ) 1 / 72 1 8 2 3 4 ( ) 2 / 72 ( ) 3 / 72 ( ) 4 / 72 ( ) 5 / 72 sample.m Fs = 1000; T = 1/Fs; L = 1000; t = (0:L-1)*T; % Sampling frequency % Sample time % Length of signal % Time vector y=1+0.7*sin(2*pi*50*t)+sin(2*pi*120*t)+2*randn(size(t));

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

km2であり 土地利用の状況 % % 2 % % % % % % % % % % m m m m km2であり

More information