Twitter

Size: px
Start display at page:

Download "Twitter 2016 3 201413127"

Transcription

1 Twitter Twitter Twitter Twitter 2 2 Twitter Twitter Twitter SVM(Support Vector Machine) Distant Supervision F.

2 Twitter

3 Distant Supervision gram SVM i

4 1 1.1 [?] Twitter [?] Twitter Twitter Twitter [?] Twitter Twitter Twitter [?] 1

5 1.2 Distant Supervision

6 2 Twitter 2.1 weblog [?] Weblog [?] weblog Twitter Twitter [?, nobata] Twitter 2.2 [?] [?] Twitter [?] Twitter [?] Twitter [?] 3

7 2.3 Distant Supervision Web Distant Supervision Distant Supervision[?] M Mintz[?] Web Distant Supervision FreeBase [?] Twitter Distant Supervision [?] Web Distant Supervision Web Distant Supervision 2.4 Twitter Distant Supervision Twitter Twitter Distant Supervison 4

8 Twitter 1) 2) 3) 4)? 5

9 ) ) 7) 8) 9) 10) 11) ipod 12) Windows Mac 13) 14) 6

10 15) 16) 17) 18) 7

11 4 4.1 Twitter Twitter Twitter 140 Twitter 1 SVM(Support Vector Machine) SVM- Support Vector Machine) SVM 1995 AT T V Vapnik 2 SVM 2 ( ) SVM 2 Distant Supervision 2 Distant Supervision Distant Supervision 8

12 Distant Superviosion Web / n-gram : 9

13 4.2 Distant Supervision Distant Supervision 19 ( ) ( ) + ( ) ( ) ( ) ( / ) + + ( ) ( / ) ( ) TwitterAPI / / Line Amazon DM itunes 10

14 gram [?] Twitter / / / / / 3-gram gram 1 3-gram Mecab MeCab SVM Python scikit-learn Bag of Words(BoW) 11

15 5 5.1 Twitter (i) Twitter 76 (ii) 1000 project k (i) (ii)

16 5.1:! Fate/Grand STAFF imas cg SIF fatego (precision) (recall) F (F-measure) precision = recall = 2 precision recall F measure = precision + recall (5.1) (5.2) (5.3) SVM SVM C

17 5.3.2 (i) (ii) : (i) F : (ii) F F SVM Distant Supervision Distant Supervision Twitter (i) (ii) (i) (i) (ii) Twitter 14

18 , 15

19 6 Twitter Twitter SVM Distant Supervision Distant Supervision 3 SVM Bag of Words F, 16

20 17

2013.10.22 Facebook twitter mixi GREE Facebook twitter mixi GREE Facebook Facebook Facebook SNS 201 1 8 Facebook Facebook Facebook Facebook 1,960 7 2012 400 Facebook SNS mixi Google Facebook Facebook

More information

Microsoft Word - 教材ガイド一覧ビデオ.doc

Microsoft Word - 教材ガイド一覧ビデオ.doc V V V V V V V V V V V V 1 V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V IT Web CG V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V NO V V V V V

More information

DM

DM ( ) FAX DM DM PR 300 - - - - - - - - - - - - - - - - - - 6 3 1 4 3 - - - - PR P173 FAX (2001) (2000) (1999) 1986 http://kimono-yamato.com/04-kiso/qa.html Q&A http://web.sfc.keio.ac.jp/~t00524sh/chousa/rich/kimonobegin.html

More information

QW-3414

QW-3414 MA1312-C P 1 2 3 A E L D E D A A E D A D D D D D E A C A C E D A A A C A C A C E E E D D D A C A C A A A A C A C A C E E C C E D D C C C E C E C C E C C C E D A C A C A C E L B B

More information

23 15961615 1659 1657 14 1701 1711 1715 11 15 22 15 35 18 22 35 23 17 17 106 1.25 21 27 12 17 420,845 23 32 58.7 32 17 11.4 71.3 17.3 32 13.3 66.4 20.3 17 10,657 k 23 20 12 17 23 17 490,708 420,845 23

More information

平成18年度「商品先物取引に関する実態調査」報告書

平成18年度「商品先物取引に関する実態調査」報告書 ... 1.... 5-1.... 6-2.... 9-3.... 10-4.... 12-5.... 13-6.... 15-7.... 16-8.... 17-9.... 20-10.... 22-11.... 24-12.... 27-13... 29-14.... 32-15... 37-16.... 39-17.... 41-18... 43-19... 45.... 49-1... 50-2...

More information

( )

( ) Web Web 1 3 1 21 11 22 23 24 3 2 3 4 5 1 1 11 22 9 2 3 15 11 22 2 11 21 4 5 ( ) 102 ( ) 1 ( 1 2001 Web 1 5 4 1 1 - 7 - [] - 7 10 11 12 12 1 10 1 12 - [] 1 1 2 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 3 1 47

More information

夏目小兵衛直克

夏目小兵衛直克 39(1906)1222 14(1817) 3(1832)1514(1843) 2628 6 (1853) (1854)3727 3(1856) 1 / 13 5(1858)6(1859) 5(1853) () () () () () () 3(1867)29 504111( 2 / 13 )98 23 18 2(1869)310283 100 50() 58 226 3313200982 5033

More information

PowerPoint Presentation

PowerPoint Presentation 2 9/ 3 3 9/ 9 4 5 , PR () 6 ,,, (11) 7 PR 8 9 10 11 TEL. 106 8/131512/291/3 TEL. 107 12/291/3 12 http://www.f-turn.jp/ 13 21 4 21 14 200910 U 200911 U 200911 20102 15 20102 PR 20103 20103 16 20103 20104

More information

untitled

untitled ,337 37 35 0,349,09 35 55 988 3 0 0 3,387 7 90 0,369,46 5 57 5 0 90 38 8,369 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3 4 5 6 8 9 30 3 3 5,400 7,00 9,000 0,800,600 4,400 6,00 8,000 9,800,600 3,400 5,00 7,000 8,800

More information

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767,

,877 61,524 33, ,292, ,653 57,601 95,188 2,416 1,767, 02 02 02 180,771 07 02 01 1,377 07 02 02 1,051,703 07 02 05 220,099 07 03 01 926,597 08 02 04 1,877,566 08 04 02 2,973,603 08 05 03 672,950 10 06 03 778,433 10 06 04 735,789 10 06 06 225,392 10 06 07 365,442

More information

untitled

untitled 1 2 3 4 () 5 6 7 8 9 10 2 22 3 11 12 13 2 1-14 1 4 1 18 4 1 4 () 15 16 17 18 19 20 21 () 26 2 22 23 24 26 2 25 26 27 1 NPO 28 29 30 - 1 31 32 33 34 35 1 36 37 - 38 26 2 39 26 2 40 41 61 42 43 44 45 3 6

More information

untitled

untitled 1 2 3 4 5 13.5% 20.6% 296 5.8% 10.1% 27.4% 28.4% 826 20.3% 31.2% 19.7% 20.2% 2.7% 31.2% 64.8% 644 儲 儲 0.0 10.0 10.1 20.0 19.8 18.0 30.0 40.0 33.5 8.8 9.8 325 6 4.0% 2.5% 9.9% 17.2% 1,019 13.2% 1.4% 1,024

More information

<> <name> </name> <body> <></> <> <title> </title> <item> </item> <item> 11 </item> </>... </body> </> 1 XML Web XML HTML 1 name item 2 item item HTML

<> <name> </name> <body> <></> <> <title> </title> <item> </item> <item> 11 </item> </>... </body> </> 1 XML Web XML HTML 1 name item 2 item item HTML DEWS2008 C6-4 XML 606-8501 E-mail: [email protected], {iwaihara,yoshikawa}@i.kyoto-u.ac.jp XML XML XML, Abstract Person Retrieval on XML Documents by Coreference that Uses Structural Features

More information

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i 25 Feature Selection for Prediction of Stock Price Time Series 1140357 2014 2 28 ..,,,,. 2013 1 1 12 31, ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i Abstract Feature Selection for Prediction of Stock Price Time

More information

Drive-by-Download JavaScript

Drive-by-Download JavaScript JAIST Reposi https://dspace.j Title Drive-by-Download 攻撃予測のための難読化 JavaScript の検知に関する研究 Author(s) 本田, 仁 Citation Issue Date 2016-03 Type Thesis or Dissertation Text version author URL http://hdl.handle.net/10119/13608

More information

kut-paper-template.dvi

kut-paper-template.dvi 26 Discrimination of abnormal breath sound by using the features of breath sound 1150313 ,,,,,,,,,,,,, i Abstract Discrimination of abnormal breath sound by using the features of breath sound SATO Ryo

More information

Cisco Meraki ios Android Web 1 1 BYOD Apple iphone CISCO MERAKI Mac Windows Windows Active Directory GPO Cisco Meraki IT Windows Mac Windows MSI Mac P

Cisco Meraki ios Android Web 1 1 BYOD Apple iphone CISCO MERAKI Mac Windows Windows Active Directory GPO Cisco Meraki IT Windows Mac Windows MSI Mac P データーシート システム マネージャ Cisco Meraki OTA ios Android Mac Windows Cisco Meraki Web Cisco Meraki Cisco Meraki ios Android Mac Windows Cisco Meraki WAN LAN LAN 1 MX MS MR LAN IT PC PC Apple ios Android Mac Windows

More information

1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70

1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70 14 2006 1 Key Words 2002 3 1 2 3 3 1 2 3 1969 1987 69 1996 2000 2004 1984 2005 7150 000 9 500 9 4 13 10 95 11 11 12 20002004 9 70 14 2006 1 15 71 72 1 22 6 32 9 200 6 3 1 2 2000 10 1 2003 10 2005 6 5 4

More information

立命館21_川端先生.indd

立命館21_川端先生.indd 21 119-132 2010 ( ) ' Key Words 119 21 2010 7 1962 2001 2001 2007 1982 1988 1997 2007 1997 1998 1863 1880 1 1998 1998 2001 1599 120 121 1599 1695 8 1695 1714 4 1714 1715 5 1715 100 1812 9 1812 1864 2001

More information