DII_カタログ.pdf

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "DII_カタログ.pdf"

Transcription

1

2 DIRECT IMAGING INDENTER

3 OINT

4 m A = 2 3 E* = E 2 E d * R tan A 2 3 E* H M = A H M E 2 tan Y = C A f - 2 E tan E (t) = 2 tan (t) A ve (0) D(t) = tan 2 0 A ve (t) D(t)= tan 2k p da ve (t) dt E H M Y H(=C Y) A /A e

5

6

70 3 70 70 70 70 3 70 70 300 3 5

70 3 70 70 70 70 3 70 70 300 3 5 70 3 2611 25920 70 3 70 70 70 70 3 70 70 300 3 5 70 1 1 2 2 MAX 3 1 1 2 2 MAX 3 25 27 30 50 70 1 2 3 1 70 3 P oint 300 P oint 20 30 40 50 3 2 1 1 14 15 10 11 8 5 5 5 5 95.2 68.7 95.7 94.0 97.7 P oint

More information

MELSEC-Qシリーズ クイックスタートガイド

MELSEC-Qシリーズ クイックスタートガイド P oint 1 2 3 4 5 6 7 8 9 P oint 10 11 12 P oint 1. 2. 3. 4. P oint 13 1. 14 2. 15 16 1. 4. 2. 3. 5. 17 7. 6. P oint 18 19 20 P oint P oint 21 22 1. 23 2. 1. 2. 3. 24 1. 2. 3. 4. P oint 25 26 P oint 27

More information

取扱説明書 [N-03A]

取扱説明書 [N-03A] 235 1 d dt 2 1 i 236 1 p 2 1 ty 237 o p 238 1 i 2 1 i 2 1 u 239 1 p o p b d 1 2 3 0 w 240 241 242 o d p f g p b t w 0 q f g h j d 1 2 d b 5 4 6 o p f g p 1 2 3 4 5 6 7 243 244 1 2 1 q p 245 p 246 p p 1

More information

取扱説明書[N906i]

取扱説明書[N906i] 237 1 dt 2 238 1 i 1 p 2 1 ty 239 240 o p 1 i 2 1 u 1 i 2 241 1 p v 1 d d o p 242 1 o o 1 o 2 p 243 1 o 2 p 1 o 2 3 4 244 q p 245 p p 246 p 1 i 1 u c 2 o c o 3 o 247 1 i 1 u 2 co 1 1 248 1 o o 1 t 1 t

More information

untitled

untitled No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46

More information

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 { 7 4.., ], ], ydy, ], 3], y + y dy 3, ], ], + y + ydy 4, ], ], y ydy ydy y y ] 3 3 ] 3 y + y dy y + 3 y3 5 + 9 3 ] 3 + y + ydy 5 6 3 + 9 ] 3 73 6 y + y + y ] 3 + 3 + 3 3 + 3 + 3 ] 4 y y dy y ] 3 y3 83 3

More information

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1...

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1... DT-870/5100 &DT-5042RFB ...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1....39 5-2...40 5-3...43...49

More information

version 1.8 12 4 Copyright c 2000 1 1 2 2 2.1........................................... 2 2.2......................................... 2 2.3........................................ 2 2.4......................................

More information

はけん_201604.indd

はけん_201604.indd Pocket haken kenpo pocket 201604 p1 p32 9 p 15 p 28 p 29 p 17 p 18 p 21 p 22 p 1451 CONTENTS 4 4 5 6 8 9 10 11 12 14 15 15 16 17 18 20 21 22 23 24 25 26 28 28 p 30 32 29 p haken kenpo pocket 201604 p2

More information

JIPs_015_nyuko_low

JIPs_015_nyuko_low 2014. Jun. 25 JIPs DIRECT No.015 01 02 2014. Jun. 25 JIPs DIRECT No.015 1. 2. 3. 4. 2014. Jun. 25 JIPs DIRECT No.015 03 04 2014. Jun. 25 JIPs DIRECT No.015 2014. Jun. 25 JIPs DIRECT No.015 05 06 2014.

More information

はけん_201504.indd

はけん_201504.indd haken kenpo pocket 201504 p1 p32 9 17 p 21 p 22 p p 28 p 29 p 17 p 21 p 22 p 1451 28 p 29 p CONTENTS 4 4 5 6 8 9 10 11 12 14 15 15 16 17 18 20 21 22 23 24 25 26 28 30 32 haken kenpo pocket 201504 p2 p3

More information

Wa Da m 12-2-

Wa Da m 12-2- 22 2010 1 10 22 2010 1 10 10 45 55 41 1908 17 2005 22 2010 55 20 2008 / -1- Wa Da 22 2010 55 1862 929m 12-2- -3- -4- -5- -6-22 2010 1 10 1000 1000 10 1000 10 9 11cm 10 45 12 45 9 11cm internet -7- 55 55

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

i152.j

i152.j Case 1 THE IMAGING CASES Case 2 THE IMAGING CASES Case 3 THE IMAGING CASES Case 4 THE IMAGING CASES Case 1 Reading & Diagnosis THE IMAGING CASES Case 2 Reading & Diagnosis THE IMAGING CASES Case

More information

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx 4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan

More information

取扱説明書[N-02B]

取扱説明書[N-02B] 187 1 p p 188 2 t 3 y 1 1 p 2 3 4 5 p p 1 i 2 189 190 1 i 1 i o p d d dt 1 2 3 4 5 6 9 0 191 192 d c d b db d 1 i 1 193 194 2 d d d r d b sla sla 1 o p i o o o op 195 u u 1 u t 1 i u u 1 i 196 1 2 bd t

More information

表1-表4_No78_念校.indd

表1-表4_No78_念校.indd mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Fs = tan + tan. sin(1.5) tan sin. cos Fs ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,, 6,,3,4,, 3 4 8 6 6................................. 6.................................. , 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p,

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

24税制改正要望書(最終)

24税制改正要望書(最終) 65 450 1 1,500 23 12 23 12 %+!%+ )%+ "%+ (%+ &%+,%+ *%+ '%+ $%+!%%+ ;

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π 4 4.1 4.1.1 A = f() = f() = a f (a) = f() (a, f(a)) = f() (a, f(a)) f(a) = f 0 (a)( a) 4.1 (4, ) = f() = f () = 1 = f (4) = 1 4 4 (4, ) = 1 ( 4) 4 = 1 4 + 1 17 18 4 4.1 A (1) = 4 A( 1, 4) 1 A 4 () = tan

More information

32 1 7 1 20 ( ) [18 30] [21 00] 2 3 ( ( ) ) ( ) 4 1 2 95 ( 7 3 2 ) 1 2 3 2 a b

32 1 7 1 20 ( ) [18 30] [21 00] 2 3 ( ( ) ) ( ) 4 1 2 95 ( 7 3 2 ) 1 2 3 2 a b 31 1 7 1 ( ) [18 35] [20 40] 2 3 ( ( ) ) ( ) 4 1 2 1 22 1 2 a b T T A c d 32 1 7 1 20 ( ) [18 30] [21 00] 2 3 ( ( ) ) ( ) 4 1 2 95 ( 7 3 2 ) 1 2 3 2 a b 7 1 ( 34 ) 1 7 2 13 ( ) [18 20] [20 00] 2 4 7 3

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l c 28. 2, y 2, θ = cos θ y = sin θ 2 3, y, 3, θ, ϕ = sin θ cos ϕ 3 y = sin θ sin ϕ 4 = cos θ 5.2 2 e, e y 2 e, e θ e = cos θ e sin θ e θ 6 e y = sin θ e + cos θ e θ 7.3 sgn sgn = = { = + > 2 < 8.4 a b 2

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

untitled

untitled 17 11 18 1 2 3 2 1 3 4 2 6 3 7 8 4 9 EBITDA EBITDA+ 10 5 3 660 15 1.2 10.912.1 8.7 EBITDA+ 12 6 14 7 6 16 8 17 VE VE 18 9 19 HiSP () In-Cap ReSP( RB-KN -N -N 20 10 0.6 2.0 21 22 11 23 24 12 25 26 13 27

More information

02.O...r.A..

02.O...r.A.. 8 300ha k (m 3 / / ) (0 2 ) 0405 135 270 2 12 0540 162 351 12 24 0810 216 486 500kg 135 459 127 1987 (m 3 / / ) 0566 2266 5947 9 18kg 0057 0425 1019 18 45 0142 0566 1358 45 675 0198 0708 2038 675 945 0283

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

untitled

untitled 15 3932 KANAGAWA ARCHITECT OFFICE ASSOCIATION -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- --------------------

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

概況

概況 2 4 6 2 2 2 3 2 4 22 5 23 27 34 37 44 45 46 2 78.67 85.77 2.6. 7. 2 2, 65 85,464 93,8 65 85.5 93.2 8 56.2 77.9 2 8.87 88.8 3 () 65 3 6 2 2 2 2 2 22 3 2 2 2 2 2 2 2 2 28.58 28.74 29.9 8.8 8.84 2.63 65 28.3

More information

untitled

untitled PPP 1 2 3 4 5 6 7 20 8 9 10 11 PFI( PFI 12 design(build)(operate) VE 13 14 I II I 15 16 17 I I 18 3 19 20 21 PFI 22 23 PWC 24 PWC 25 () () () () () 26 PWC 27 28 29 30 31 PFI PFI/PPP 32 PFI/PPP PFI/PPP

More information

a a s d f g h j a s d f g h a s

a a s d f g h j a s d f g h a s a a s d f g h j a s d f g h a s a a s a s d f d f g h a s d f g h a s d f a s d f g a s a s d a s d f g h a s d a s d f a s d f a s d a a s d f g h j k l 0 1 2 3 4 5 6 a s d f g a s d f a s d a

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

4 5 6 7 8 9 10 11 12 13 14 15 16 I II I I I I I I I 17 18 19 20 21 22 23 http://www.surugabank.co.jp/dream/ http://www.surugabank.co.jp/directone/ http://www.surugabank.co.jp/ebusinessdirect/ http://www.surugabank.co.jp/so-net/

More information

光部品関連技術における基盤技術との題を与えられたが、光部品は広範囲の分野であり、その全てを網羅する時間も無いし、それだけの力量...

光部品関連技術における基盤技術との題を与えられたが、光部品は広範囲の分野であり、その全てを網羅する時間も無いし、それだけの力量... .. 6.610.. (Photo Multiplier Tube ) MCP PMT 100 PMT.. (Avalanche Photo Diode). APD A PD A PD APD APD. APD PMT.. APD V.. 5.. - 屈 折 率 1.5 ブルスター 角 56.31 s 偏 光 反 射 率 0.1479 45 方 向 の 反 射 率 (1 面 ) p 偏 光 0.0085

More information

アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ

More information

Exploring Biological Mechanisms B io logical

Exploring Biological Mechanisms B io logical 2012OCTOBER Exploring Biological Mechanisms http://www.eng.hokudai.ac.jp/engineering/ Hokkaido University http://www.eng.hokudai.ac.jp/faculty/ Exploring Biological Mechanisms B io logical Microorganisms

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

05 agon Inaba 149

05 agon Inaba 149 05 Inaba Office System Unit Line Unit 148 Inaba 05 agon Inaba 149 05 agon 150 Inaba 05 agon Inaba 151 152 Inaba 05 agon agon CO2 CO2 CO2 CO2 1/3 CO2 Inaba 153 05 agon agon 05 agon Check P.164 720 1770

More information

MDV-727DT_626DT.indb

MDV-727DT_626DT.indb MDV-727DT MDV-626DT 2010 Kenwood Corporation All Rights Reserved. B64-4816-08(J) LVT2206-001A 2 3 4 fl 5 6 7 8 P184 P19 9 2.4 FH 1 P137 P112 P21 10 P5 P13 P14 P83 P84 P135 P136 P145 P146 P159 P160 P201

More information

日本農産工業株式会社

日本農産工業株式会社 http://www.nosan.co.jp F E E D F O O D To Our Shareholders L I F E T E C H Review of Operations F E E D 17/3 16/3 15/3 17/3 16/3 15/3 17/3 16/3 15/3 Review of Operations F O O D Review of Operations Review

More information

untitled

untitled 1 17 () BAC9ABC6ACB3 1 tan 6 = 3, cos 6 = AB=1 BC=2, AC= 3 2 A BC D 2 BDBD=BA 1 2 ABD BADBDA ABC6 BAD = (18 6 ) / 2 = 6 θ = 18 BAD = 12 () AD AD=BADCAD9 ABD ACD A 1 1 1 1 dsinαsinα = d 3 sin β 3 sin β

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

テレビドアホン・インターホン・センサーカメラ 総合カタログ 2018/冬

テレビドアホン・インターホン・センサーカメラ 総合カタログ 2018/冬 5 2.4 VL-SWD505KS 170 4 5 VL-SWH705KS VL-SVH705KSC VL-SWD303KL VL-SZ50KP VL-SGZ30K 3-7 VL-SV38KL 7 3.53.5 2.7 2.4 2.4 2.23.5VL-SWH705KS / KL VL-SVH705KS / KL VL-SVH705KSC / KLC P8 P14 VL-SWD505KS / KF

More information

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa

A A = a 41 a 42 a 43 a 44 A (7) 1 (3) A = M 12 = = a 41 (8) a 41 a 43 a 44 (3) n n A, B a i AB = A B ii aa 1 2 21 2 2 [ ] a 11 a 12 A = a 21 a 22 (1) A = a 11 a 22 a 12 a 21 (2) 3 3 n n A A = n ( 1) i+j a ij M ij i =1 n (3) j=1 M ij A i j (n 1) (n 1) 2-1 3 3 A A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

More information

テレビドアホン/インターホン/センサーカメラ 総合カタログ 2018/春

テレビドアホン/インターホン/センサーカメラ 総合カタログ 2018/春 VL-SWH705KS 7 3-7 2.7 VL-SWH705KS / KL VL-SVH705KS / KL VL-SVH705KSC / KLC P6 P12 VL-SV38KL 2 NEWVL-SGD10L P22 HQI 50 10 10 10 10 50 3 170 4 VL-SWH705KS VL-SVH705KSC VL-SWD303KL VL-SZ50KP NEW 5 7 2.7 3

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

.. p.2/5

.. p.2/5 IV. p./5 .. p.2/5 .. 8 >< >: d dt y = a, y + a,2 y 2 + + a,n y n + f (t) d dt y 2 = a 2, y + a 2,2 y 2 + + a 2,n y n + f 2 (t). d dt y n = a n, y + a n,2 y 2 + + a n,n y n + f n (t) (a i,j ) p.2/5 .. 8

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

点眼薬 FAQ.PDF

点眼薬 FAQ.PDF Q&A 199419957 10-19 2530L 1 3050L 1. 2. 3. 4. 5. 6. 7. 8. 1. 2. 3. 1. 2. 3. 4. 5. 1. B2 2. B12 1. 2. 1. 2. 3. 4. 5., 6. 1 7. 8. T ( ( T( ( C ( ( ( - ( - ( ( ( - ( ( ( B ( - B ( EE ( - A (

More information

150MHz 28 5 31 260MHz 24 25 28 5 31 24 28 5 31 1.... 1 1.1... 1 1.2... 1 1.3... 1 2.... 2 2.1... 2 2.2... 3 2.3... 7 2.4... 9 2.5... 11 3.... 12 3.1... 12 3.2... 13 3.3... 16 3.4... 24 4.... 32 4.1...

More information

松風ブロック HC (カタログ)

松風ブロック HC (カタログ) SF151 1.2mm 0.8mm 1mm 1mm 1.7 106RD 102R SF106RD 107RD 2.3 SF107RD 2.3 145 4.9 2.9 SF145 4.9 2.9 265R 5.0 SF265R 5.0 2.0 SF114 8.0 1.3 5.6 2.8 SF151 108R 1108R 1.9 SF108R SF1108R 1.9 109R 1109R SF109R

More information

1 B64653 1 1 3.1....................................... 3.......................... 3..1.............................. 4................................ 4..3.............................. 5..4..............................

More information

untitled

untitled Cluster Dendrogram 20 15 10 5 Height 0 29 30 2 4 2011 10 Re2011 11 12 7 8 2 9 2011 6 18 upport 5 21 22 1 3 19 17 20 24 25 26 27 JBCI 2009 44 43 13 39 23 13 40 42 15 16 14 37 23 28 dist hclust (*, "ward")

More information

Türk-Tatar Diaspora in Northeast Asia, Japonya da Türk İzleri: bir kültür mirası olarak Mançurya ve Japonya Türk-Tatar Camileri, The Nagoya Muslim Mosque Islam in Japan: its past, present and future, The

More information

untitled

untitled 3-1 ( sit ) (stead state vibratio) (trasiet vibratio) sit(a)w s ( W s ) W / g C (b) sit ( + s ) ( + s ) c + W + sit W s si t + s + c + si t (3.1) si t (3.1) a C W b sit(respose) () 3- acost+ bsit a sit+

More information

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 ( 1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +

More information

取扱説明書 P703i 日本語

取扱説明書 P703i 日本語 289 290 29 2 3 2 2 3 +m-4-6 m l Vo Co Oo Oo 292 293 Oo l i Oo Oo l i i r 294 295 l Oo l l i i i 296 297 i Mo r i l i Mo 2 3 i Oo Oo r h 298 299 i l MoOo l i Oo i Oo i No No i l i 300 i l MoOo Oo i l i

More information

法人のお客様用サンプル

法人のお客様用サンプル 2007 4 06 144 TFJ Bi-Weekly Monetary Affairs TFJ 4 5 6 7 8 9 10-13 14-18 19-20 ( ) 21-22 1 2-3 23-24 25-26 27-28 (TFJ ) 29 Page 1 RP TFJ Bi-Weekly Monetary Affairs 4/06/2007 Page 2 Page 3 Page 4 Page 5

More information

平成 27 年 11 月更新 配管材料 NO. 品目名称 帳簿在庫数量販売単価 ( 税込 ) 1 発泡三層管 RF VP 発泡三層管 RF VP 発泡三層管 RF VP ,302 4 カラーパイプVP100X3000 ココア

平成 27 年 11 月更新 配管材料 NO. 品目名称 帳簿在庫数量販売単価 ( 税込 ) 1 発泡三層管 RF VP 発泡三層管 RF VP 発泡三層管 RF VP ,302 4 カラーパイプVP100X3000 ココア 1 発泡三層管 RF VP 65 14 314 2 発泡三層管 RF VP 75 4 799 3 発泡三層管 RF VP 100 4 1,302 4 カラーパイプVP100X3000 ココア 2 692 5 カラーパイプVU75X2800 ココア 18 242 6 ヒシパイプLP VB 32A X4M 25 975 7 ヒシパイプLP VB 125A X4M 4 4,660 8 ヒシパイプSP VD

More information

untitled

untitled Molecular Devices Japan KK / Imaging Team (1/11) Molecular Devices Japan KK / Imaging Team (2/11) Language for non-unicode programs English (United States) Japanese OK Molecular Devices Japan KK / Imaging

More information

 

  190 87 28 1 212 77 1777 77 219 1 171 28 201 1 1 16 102 17 10 1 16 99 1 1 1 1 960 1 1 1 1 1 2 168 1 12 2 18 100 2 1 6 1 61 7 16 18 20 2 961 2 11 6 2 6 6 0 17 86 1 2 16 1 1 9 2 1 1 1 1 1 1 0 2 17 16 6 1

More information

untitled

untitled ...1... 3 1... 3 2... 4 3... 4 4... 5...... 6 1... 6 2... 7 3... 8 4... 9 5... 10... 12 1... 12 2... 13 3... 14 4... 16...... 19 1... 19 2... 20 3... 22 4... 24...... 25... 26 1... 26 2... 26 3... 26......

More information

τ p ω πτ p ω π τ p (t) = 2 2 t 2 exp(i t)exp 8 2 S(,t) = s( ) (t )d d 2 E x dz 2 = 2 E x z E x = E 0 e z, = + j = 1 2 0 tan = 0, v = c r 10 11 Horn Circulator Net Work Analyzer t H = E t E = H E t B =

More information

/ / / ~~~~~ / / / / / ~~~~ ~~~~ / / / / / / / / / / / / / ~~~~~~~~~

/ / / ~~~~~ / / / / / ~~~~ ~~~~ / / / / / / / / / / / / / ~~~~~~~~~ 1 / WC / / / / / / / ~~~~~ / / / / / ~~~~ ~~~~ / / / / / / / / / / / / / ~~~~~~~~~ MASTURBATION MASTURBATION DA DADA / // // / / / / / / DADAIST DADAIST DADAIST / / / / / //// / / // / / MATA / / / / /

More information

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a

f(x) = x (1) f (1) (2) f (2) f(x) x = a y y = f(x) f (a) y = f(x) A(a, f(a)) f(a + h) f(x) = A f(a) A x (3, 3) O a a + h x 1 f(x) x = a 3 3.1 3.1.1 A f(a + h) f(a) f(x) lim f(x) x = a h 0 h f(x) x = a f 0 (a) f 0 (a) = lim h!0 f(a + h) f(a) h = lim x!a f(x) f(a) x a a + h = x h = x a h 0 x a 3.1 f(x) = x x = 3 f 0 (3) f (3) = lim h 0 (

More information

untitled

untitled http:www.ipss.go.jp 1 2 3 ( ) 300 250 200 150 100 270 4.32 136 1.58 209 2.14 2003 112 1.29 5 4 3 2 50 1 0 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 0 4 5 TFR TFR TFR() t = 0 Bat (, )

More information

H I GHLIGHT S 2, 15, 1, 5, 1 4,336 1,195 16,968 15,531 14, ,6 1, , ,5 1, ,

H I GHLIGHT S 2, 15, 1, 5, 1 4,336 1,195 16,968 15,531 14, ,6 1, , ,5 1, , H I GHLIGHT S 2, 15, 1, 5, 1 4,336 1,195 16,968 15,531 14,336 27 28 29 1,6 1,2 8 4 1,277 576 227 35 27 28 576 29 1,5 1,2 9 6 3 1,25 564 239 325 27 28 564 29 8 6 4 2 699 253 25 47 27 28 253 29 Growth Action

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

MDV-737DT_535DT_01.indb

MDV-737DT_535DT_01.indb MDV-737DT MDV-535DT 2012 JVC KENWOOD Corporation B64-4916-08/02(J) LVT2315-001C 2 3 4 5 6 P45 P64 P78 P80 P42 P82 P88 7 P110 P113 P116 P95 P98 P125 P169 P120 P120 P132 P146 P138 P63 P114 8 P143 P162 9

More information

MDV-434DT_333.indb

MDV-434DT_333.indb MDV-434DT MDV-333 2012 JVC KENWOOD Corporation B64-4917-08/01(J) LVT2316-001B 2 3 4 5 6 P45 P60 P74 P76 P42 P78 P84 7 P91 P110 P113 P116 P94 P125 P104 P120 P120 P132 P146 P138 P58 P114 8 P143 9 fl 10 11

More information

K E N Z U 01 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.................................... 4 1..1..................................... 4 1...................................... 5................................

More information

y & x& = b y x d log( y) = dt da dt = da dy dy dt y& = y dx b dt = bx& 1 = y&= y y& y 40 30 20 10 0 both far near 当 期 1 期 前 2 期 前 3 期 前 4 期 前 5 期 前 0.45 0.4 0.35 0.3 0.25 0.2 0.15

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

6-1 6-2 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 1-16 1-17 1-18 1-19 1-20 1-21 1-22 1-23 1-24 1-25 1-26 1-27 1-28 1-29 1-30 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12

More information

082 N N N N

082 N N N N 082 N 1608 300 N 1610 700 N 1658 280 N 1640 650 N 1667 380 083 N 1664 220 N 1609 300 N 1659 280 N 1620 400 084 N 1622 250 N 1624 200 N 1623 250 N 1623S 150 085 N 1617 300 N-1615 680 N-1630 340 N 1600A

More information

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx x E E E e i ω t + ikx k λ λ π k π/λ k ω/v v n v c/n k nω c c ω/π λ k πn/λ π/(λ/n) κ n n κ N n iκ k Nω c iωt + inωx c iωt + i( n+ iκ ) ωx c κω x c iω ( t nx c) E E e E e E e e κ e ωκx/c e iω(t nx/c) I I

More information

You ve Got Mail 1

You ve Got Mail 1 You ve Got Mail 1 1993 1999 2000 18 2 50 1993 3 1955 1975 1985 82:74-86 1995 1 4 A Rational Choice Model of Mutual Trust 1995 1996 15 1992 11 12 5 UCLA 6 1999 2000 2 1999 8 2000 3 15 1997 2000 3 1999 2000

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

new15_27-28_0

new15_27-28_0 Feature & Interface R Pure Audio Components R 1 2 Reference Hi-Fi Series CD Player Speaker System Network Stereo Receiver Network CD Player Pre-Main Amplifier Digital Audio Accessory Direct Drive Turntable

More information

. ż ż 57 a v i ż ż v o b a ż v i ż v i ż v o ż v o a b 57. v i ż ż v o v o = Ġ v i (86) = ż ż + ż v i (87) v o v i Ġ = ż ż + ż (88) v i v o?? Ġ 6

. ż ż 57 a v i ż ż v o b a ż v i ż v i ż v o ż v o a b 57. v i ż ż v o v o = Ġ v i (86) = ż ż + ż v i (87) v o v i Ġ = ż ż + ż (88) v i v o?? Ġ 6 D:.BUN 7 8 4 B5 6.................................... 6.. C........................... 6..3 ω s............................. 63..4 Bode Diagram.......................... 64..5................................

More information

Report10.dvi

Report10.dvi [76 ] Yuji Chinone - t t t = t t t = fl B = ce () - Δθ u u ΔS /γ /γ observer = fl t t t t = = =fl B = ce - Eq.() t ο t v ο fl ce () c v fl fl - S = r = r fl = v ce S =c t t t ο t S c = ce ce v c = ce v

More information