!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x" name="description"> !!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x">

Microsoft Word - 触ってみよう、Maximaに2.doc

Size: px
Start display at page:

Download "Microsoft Word - 触ってみよう、Maximaに2.doc"

Transcription

1

2

3

4 i i e!

5

6 ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5

7 ! 3! 5! 7

8 2 x! 3x! 1 = 0 ",! " >!!!

9 # 2x + 4y = 30 "! x + y = 12

10 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x

11 log x 2! x sin ax + cosbx

12 10! i= 1 i 10!

13 2! bx + (ax + c) dx "! 0 2 # e x dx

14 2 x y = ce y! = 2xy y! = 2xy 2 xy " y! = 0

†ı25”Y„o-PDF.ren

†ı25”Y„o-PDF.ren 12,000 10,000 8,000 6,000 4,000 2,000 0 1998 1999 2000 2001 2002 2003 2004 1,200 1,000 800 600 400 200 0 1998 1999 2000 2001 2002 2003 2004 $ "! ''" '' ''$ ''% ''& '''! " ' & % $ "! ''" ' '$ '% '& ''!

More information

76

76 ! # % & % & %& %& " $ 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 % & &! & $ & " & $ & # & ' 91 92 $ % $'%! %(% " %(% # &)% & 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 !$!$ "% "%

More information

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb

●70974_100_AC009160_KAPヘ<3099>ーシス自動車約款(11.10).indb " # $ % & ' ( ) * +, -. / 0 1 2 3 4 5 6 7 8 9 : ; < = >? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y " # $ % & ' ( ) * + , -. / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

-----------------------------------------------------------------------------------------1 --------------------------------------------------------------------------------------1 -------------------------------------------------------------------------------------1

More information

›¼’à”v“lŠÍ1−ª

›¼’à”v“lŠÍ1−ª 3 1 1 2 3 4 5 6 7 8 8 10 12 14 16 18 20 22 24 2 1 2 3 4 5 6 7 8 9 10 11 12 26 28 30 32 34 36 38 40 42 44 46 48 50 4 3 1 2 3 4 5 52 54 56 58 60 6 62 7 8 9 10 64 66 68 70 72 5 1 1 4 2 5 6 6 7 1 8 1 9 2 10

More information

1 2 3 4 1 2 3 4 1 2 3 4 12 3 4

1 2 3 4 1 2 3 4 1 2 3 4 12 3 4 1 2 3 4 5 6 1 2 3 4 5 6 1 2 1 2 1 2 1 2 1 2 3 4 12 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 12 3 4 1 2 3 4 5 6 7 8 1 2 3 46 7 1 2 3 4 5 6 7 1 2 3 4 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 16 7 8 92 3 46 7 :

More information

- 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 2-12 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 1 - 2 - 3 6 1 1-4 - 5 - 6 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 130 3 130 5 2 50 1.5 48 59 62 63-9 - 1 - 2 - 3 () - 4 - 5 -

More information

S1460...........\1.E4

S1460...........\1.E4 3 4 3 4 5 3 4 5 3 4 3 4 3 3 3 3 4 3 4 3 3 4 4 3 3 3 3 4 3 4 3 3 3 3 3 3 4 3 4 3 4 5 4 3 5 4 3 3 4 5 3 4 5 4 3 4 3 3 4 3 4 3 3 3 3 3 4 3 3 4! "! " " 0 6 ! " 3 4 3 3 4 3 ! " 3 3 4 5 4 5 6 3 3

More information

財政金融統計月報第720号

財政金融統計月報第720号 ! # " $ % &! # % " $ &! # % " $ &! # %! # % " $ & " $ &! # % " $ & !!!!!!! !!!!!!! ! # " $ ! # " $ ! " # $! " # $ ! # " $ ! # $& %" !

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

EPSON

EPSON B K L & & & & & & & & L & & & & & & & K & & & & & L L L & & & K L L L & & L L L & & & & & & & & & & & & & & & & & & & & & & & & & & & L & K L K & & & & & & & L L & & L & & L L & & & & &

More information

bumon_pro.indd

bumon_pro.indd q w e r t y u i o!0 !1!2!3 !4!5!6 !7!8!9 @0 @1 @2 @3 @4 @5 @6 @7 @8 @9 #0 #1 #2 #3 #4 #5 #6 #7 #8 #0 $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 %0 %1 %2 %3 %4 %5 %6 %7 %8 %9 ^0 ^1 ^2 ^3 ^4 ^5 ^6 ^7 ^8 ^9 &0 &1 &2

More information

- 1 - - 2 - 320 421 928 1115 12 8 116 124 2 7 4 5 428 515 530 624 921 1115 1-3 - 100 250-4 - - 5 - - 6 - - 7 - - 8 - - 9 - & & - 11 - - 12 - GT GT - 13 - GT - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - -

More information

2012_05_GLK_cover.indd

2012_05_GLK_cover.indd c %& r Z \ W W n q & F % % & & % & & % % % & % & % & % & % & % & F F % % % & & & & % & A

More information

2.8% 2.0% 2.4% 2.4% 0.4% 0.1% 0.3% 0.5% 3.8% 5.6% 25.6% 29.3% 64.6% 60.0% 1

2.8% 2.0% 2.4% 2.4% 0.4% 0.1% 0.3% 0.5% 3.8% 5.6% 25.6% 29.3% 64.6% 60.0% 1 2.8% 2.0% 2.4% 2.4% 0.4% 0.1% 0.3% 0.5% 3.8% 5.6% 25.6% 29.3% 64.6% 60.0% 1 16 24 21 20 20 23 10 11 9 10 3 3 3 2 3 1 3 4 6 8 2 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 3 4 Q & A Q1 A1 Q2 A2 Q3 A3 7

More information

Q&A最低資本金特例030131.PDF

Q&A最低資本金特例030131.PDF & 1 2 2 3 2 2 3 2 2 3 10 11 10 90 12 13 14 15 16 17 18 19 20 2 2 3 21 2 2 3 22 23 24 25 20 10 26 27 28 10 8 1 29 30 10 8 2 31 32 2 2 3 33 10 8 3 10 11 2 34 10 8 3 10 12 2 35 36 20 10 37 38 39 40 41 42

More information

™…

™… 2/10 15 2010. No1362 1 1 216315 91430 Q A & 0.23% 1 1.4% 04-7120-2020 050-5540-2023 Q A & 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 1 2 3 4 5 6 7 8 9 10

More information

2012_10_A_cover.indd

2012_10_A_cover.indd c %& r Z \ W n % & & % % & % & & % % % & % & % & & % & % %& % & % & % % % & & & W W W W A

More information

‡o‡P†C‡P‡Q”R„û†^‡P†C‡P‡Q

‡o‡P†C‡P‡Q”R„û†^‡P†C‡P‡Q ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Q & A ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

#"

# !" #" !!! $" x %" 2011.3.11 3.12 3.1 4.02 4.17 4.24 4.28 4.29 5.8 5.14 6.4 7.3 8.1 8.10 8.23 8.28 9.10 9.30 11.13 11.21 12.23 12.28 2012.2.24 3.18 3.20 3.24 &" ! '" (" )" *" !+" !!" !#" !$" !%" !& !'"

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

表紙(社会系)/153024H

表紙(社会系)/153024H ! ""! Sa! "! " # $ % & ' Sa! !! " # $ % & " #! " # $ $ %! " # $ & '! " # $ Sa% "! " # $ Sa! ! " #! " #! " # $ $! " # $ % & % & '! " # $ Sa% ! " # Sa! ! " #! " # $ % & Sa% Sa! ! " # $ % Sa! Sa! Sa! ! "

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

Digital Series DS-00 5 6 5 P.7 5 P. 5 6 6 P.09 P.8 7 P.5 P.8 P.80 8 9 P. P. P.09 P.7 P. P.5 P.0 P.9 P.7 0 P.9 P. P.79 P.6 P.5 P.8 P.6 5 6 P. 7 P.9P. 8 P. 6 5 P.7 9 5 6 P. 0 6 5 P.7 5 6 P. 5 P.9 P.

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

2

2 J 2 3 " ' + # & $ % ( ) * " # $ % & ' Q ( ) * + 4 1 2 5 6 1 2 7 1 B 2 Q 3 8 V X 9 W q 10 V X W q 11 12 13 14 - - a 15 x M 16 A B C A B 17 1 2 3 a a 18 4 5 19 x M 20 Q 21 B A 22 1 2 1 l 23 2 3 Z 8:1 4:1

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

ユニセフ表紙_CS6_三.indd

ユニセフ表紙_CS6_三.indd 16 179 97 101 94 121 70 36 30,552 1,042 100 700 61 32 110 41 15 16 13 35 13 7 3,173 41 1 4,700 77 97 81 47 25 26 24 40 22 14 39,208 952 25 5,290 71 73 x 99 185 9 3 3 3 8 2 1 79 0 d 1 226 167 175 159 133

More information

semi4.dvi

semi4.dvi 1 2 1.1................................................. 2 1.2................................................ 3 1.3...................................................... 3 1.3.1.............................................

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information