6 : MacWilliams M

Size: px
Start display at page:

Download "6 : MacWilliams M"

Transcription

1 LCG GFSR TGFSR Mersenne Twister

2 6 : MacWilliams MacWilliams v k

3 1.2 ( ) 1943 [4] Lehmer ( ) M, a, c x j+1 := ax j + c mod M (1) x 0 mod M M (Linear Congruential Generator, LCG) 3

4 1.2. M = 7, a = 3, c = 0 x 0 = 4 x j 4, 5, 1, 3, 2, 6, 4, 5, c = 0,x 0 = 0 x j /7 M M 1.4. M = 2 n, a = 1, c = M M = , a = 16807, c = 0 0 M 1 M LCG M 0,..., M 1 1 M 1 6 0,1,2,3,4,5 M 6 1 M, a, c, x 0 M M 1 x

5 1.4 LCG LCG M M M 2 8 F 2 := {0, 1} = 0 ( 4.1 ) F m 2 m m m A x j+1 := Ax j A??? LCG 1.6. LCG( 1.1) M 1. (c, M) = 1 (c M ) 2. M a 1 3. M 4 a

6 S, O f : S S s 0 S o : S O S S f S f o 100 s 0 s i+1 = f(s i ) s 0, s 1, s 2,... o(s 0 ), o(s 1 ), o(s 2 ), S := Z/M, f(x) := 10x mod M, o(x) := [10x/M] s 0 /M Z/M := {0, 1,..., M 1} M Z/M 2.2 6

7 2.3. S #(S) 2.4. x 1, x 2,... ( ) 1 p N n N x n+p = x n (2) (2) 1 p (period) 5. (2) p x 1, x 2,... n 0 N x n0, x n0 +1, x n0 +2,... n 0 x 1,..., x n0 1 x n0, x n0 +1, x n0 +2,.... ( 2.3 ) s 0, s 1,... N := #(S) s 1, s 2,..., s N+1 1 p < n N + 1 s n = s n p f n o(s n ) o(s n ) s n , π 2.7. #(S) s i S 6. S {s i } i=0,1,2,... f 2.8. LCG( 1.1 ) M 7. (1) M a 1 mod M M 1 a M 1 M (Z/M) M 1 7

8 3 3.1 CPU {0, 1} 32 := {(x 31, x 30,..., x 0 ) x i = 0 1} w W := {0, 1} w CPU W CPU W ( ) w = 6 AND (C &) & = OR (C ) = EXOR (C ˆ) = = F 2 := {0, 1} = 0 2 W F 2 w F w 2 EXOR 8

9 3.2 LCG 1.1 LCG x j+1 := ax j + c mod M 1990 ANSI-C rand LCG a = , c = 12345, M = 2 31 M C static unsigned long x=3; /* initial seed */ unsigned long rand(void) { x = x * ; x &= 0x7fffffff; /* mod 2^31 */ return x; } C mod m 2 m xyz

10 1: ANSI C rand() 2: GFSR 1 =w F 2 w F w 2 n > m > 0 x j+n := x j+m + x j (j = 0, 1,...) (3) Generalized Feedbacked Shiftregister (GFSR) GFSR x j+3 := x j+1 + x j (j = 0, 1,...) n 1 (n, m) (3) n n 3.2. W g : W n W x 0,..., x n 1 W x j+n = g(x j+n 1,..., x j ) W W n 10

11 3.3. n S := W n, f(x j+n 1,..., x j ) = (g(x j+n 1,..., x j ), x j+n 1,..., x j+1 ) f : S S n n (3) x 0 x 1 x 2 x n := x 0 + x m x 1 x 2 x n x n+1 := x 1 + x m+1 x 2 x n x n+1 x n+2 := x 2 + x m+2. x m. x m. x m. x m x m+1 x m+1 x m+1 x m x n 1 x n 1 x n 1 x n 1 C n = 1279, m = gfsr() init gfsr() [3, page 31 36] 1279/32 = /32 #define N 1279 #define M 418 #define W 32 /* W should be power of 2 */ static unsigned long state[n]; static int state_i; void init_gfsr(unsigned long s) { int i, j, k; static unsigned long x[n]; s &= 0xffffffffUL; for (i=0; i<n; i++) { x[i] = s>>31; s = UL * s + 1UL; 11

12 } s &= 0xffffffffUL; for (k=0,i=0; i<n; i++) { state[i] = 0UL; for (j=0; j<w; j++) { state[i] <<= 1; state[i] = x[k]; x[k] ^= x[(k+m)%n]; k++; if (k==n) k = 0; } } } state_i = 0; unsigned long gfsr(void) { int i; unsigned long *p0, *p1; if (state_i >= N) { state_i = 0; p0 = state; p1 = state + M; for (i=0; i<(n-m); i++) *p0++ ^= *p1++; p1 = state; for (; i<n; i++) *p0++ ^= *p1++; } } return state[state_i++]; 3.4 TGFSR Twisted GFSR [8][9] GFSR x j+n := x j+m + x j A (j = 0, 1,...) 12

13 A F 2 w A a 0 a 1 a w 1 a { shiftright(x) (x 0 ) xa = shiftright(x) + a (x 1 ) shiftright 2 nw 1 n = 25, w = 32 TT800 /* A C-program for TT800 : July 8th 1996 Version */ /* by M. Matsumoto, matumoto@math.keio.ac.jp */ /* genrand() generate one pseudorandom number with double precision */ /* which is uniformly distributed on [0,1]-interval */ /* for each call. One may choose any initial 25 seeds */ /* except all zeros. */ /* See: ACM Transactions on Modelling and Computer Simulation, */ /* Vol. 4, No. 3, 1994, pages */ #include <stdio.h> #define N 25 #define M 7 double genrand() { unsigned long y; static int k = 0; static unsigned long x[n]={ /* initial 25 seeds, change as you wish */ 0x95f24dab, 0x0b685215, 0xe76ccae7, 0xaf3ec239, 0x715fad23, 0x24a590ad, 0x69e4b5ef, 0xbf456141, 0x96bc1b7b, 0xa7bdf825, 0xc1de75b7, 0x8858a9c9, 0x2da87693, 0xb657f9dd, 0xffdc8a9f, 0x8121da71, 0x8b823ecb, 0x885d05f5, 0x4e20cd47, 0x5a9ad5d9, 0x512c0c03, 0xea857ccd, 0x4cc1d30f, 0x8891a8a1, 0xa6b7aadb 13

14 } }; static unsigned long mag01[2]={ 0x0, 0x8ebfd028 /* this is magic vector a, don t change */ }; if (k==n) { /* generate N words at one time */ int kk; for (kk=0;kk<n-m;kk++) { x[kk] = x[kk+m] ^ (x[kk] >> 1) ^ mag01[x[kk] % 2]; } for (; kk<n;kk++) { x[kk] = x[kk+(m-n)] ^ (x[kk] >> 1) ^ mag01[x[kk] % 2]; } k=0; } y = x[k]; y ^= (y << 7) & 0x2b5b2500; /* s and b, magic vectors */ y ^= (y << 15) & 0xdb8b0000; /* t and c, magic vectors */ y &= 0xffffffff; /* you may delete this line if word size = 32 */ y ^= (y >> 16); /* added to the 1994 version */ k++; return( (double) y / (unsigned long) 0xffffffff); /* this main() output first 50 generated numbers */ main() { int j; for (j=0; j<50; j++) { printf("%5f ", genrand()); if (j%8==7) printf("\n"); } printf("\n"); } 3.5 Mersenne Twister Mersenne Twister TGFSR [10] x j+n := x j+m + x j+1 B + x j C (j = 0, 1,...) x j+n = x j+m + (x j w r, x j+1 r )A A w x j r C S nw r 14

15 2 nw r 1 r f ϕ f ( 5.3 ) C mt19937ar.c m-mat/mt.html 4 GFSR, TGFSR, MT W = F w 2 n 4.1 ( ) Z M Z/M ( 2.2) Q Z/M M 4.2. S + G1 (x + y) + z = x + (y + z) (S, +) S 0 G2 x + 0 = x, 0 + x = x (S, +, 0) S x x 15

16 G3 x + ( x) = 0, ( x) + x = 0 (S, +, 0, ()) G4 x + y = y + x (S, +, 0, ()) S S 1 (S,, 1) G1,G2,G R1 a (b + c) = a b + a c R2 (a + b) c = a c + b c (S, +, 0, (),, 1) S x S x 0 y S xy = yx = 1 S S S S 4.3. N Z/N := {0, 1, 2,..., N 1} N N N p F p := Z/p p = 2 F S V S S (V, +, 0) S V V, (a, v) a v a, b S v 1, v 2 V 16

17 M1 a (v 1 + v 2 ) = a v 1 + a v 2 M2 (a + b) v = a v + b v M3 (ab) v = a (b v), 1 v = v S K K- K 4.5. K n K n a K K 4.6. K V, W f : V W K f(v 1 + v 2 ) = f(v 1 ) + f(v 2 ), f(a v) = a f(v) V = K n W V S K f : S S K x j+1 = f(x j ) 1 S S K S = K d, f(x) = F x F K d w 0,1 w F w 2 : x xb 17

18 TGFSR TGFSR n x j+n := x j+m + x j A (j = 0, 1,...) x j w 1 f : (x n 1, x n 2,..., x 1, x 0 ) (x m + x 0 A, x n 1,..., x 2, x 1 ) x j f : F nw 2 F nw 2 (x n 1, x n 2,..., x 1, x 0 ) f nw I w I w I w B =... A nw 9. Mersenne Twister x j+n = x j+m + (x j w r, x j+1 r )A 1 I w f : (x n 1, x n 2,..., x 1, {x 0 w r }) (x n, x n 1,..., x 2, {x 1 w r }) f : F nw r 2 F nw r x 0 K d, x j+1 = Bx j (4) B d 18

19 K B x 0 B p x 0 = x 0 p 1 B p+k x 0 = B k x 0 k 0 p K B d d x 0 K d x j+1 = Bx j #(K) d 1 #(K) d 1 x 0 0 x j 0 B 0 #(K) d K d #(K) d 0 K d B0 = 0 B #(K) d K d B j x #(K) d 1 0 #(K) d 1 B ( 5.1) B p x = x p B p p = p 19

20 4.8. d B d x {g(t) K[t] g(b)x = 0} K[t] K[t] 0 ( 1 ) x B annihilator ϕ B,x (t) g(b)x = 0 ϕ B,x (t) g(t). (5) 4.9. K K K[t] K[t] K R I R R I x, y I x + y I, x I, r R rx I R a, b R ab = 0 a b R R I I = {ra r R} R a (a) K[t] K[t] (5) annihilator x, Bx, B 2 x,... 20

21 F d 2 d B j x j d 0 a 0, a 1,..., a j K a 0 x + a 1 Bx + a 2 B 2 x + + a j B j x = 0 j 1 a j 0 a j B j 1 ϕ(t) := a 0 + a 1 t + a 2 t t j ϕ(b)x = 0 ϕ(t) g(b)x = 0 g(t) 0 h(t) h(b)x = 0 h x, Bx, B 2 x,..., ϕ(t) {g(t) K[t] g(b)x = 0} annihilator ϕ B,x (t) ϕ(t) = ϕ B,x (t) annihilator B K d x K d x, Bx, B 2 x,... x, Bx, B 2 x,..., B j x a 0 x + a 1 Bx + + a j 1 B j 1 x + B j x = 0 a i K B x annihilator ϕ B,x (t) ϕ B,x (t) = t j + a j 1 t j a 1 t + a 0 d (B p I)x = 0 21

22 p (5) p ϕ B,x t p 1 K[t]/ϕ B,x ϕ B,x ϕ B,x p t deg(ϕ B,x ) ϕ B,x K deg(ϕ B,x ) (K[t]/ϕ B,x ) K[t]/ϕ B,x K K t (K[t]/ϕ B,x ) t ϕ B,x K x K d B M d (K) t ϕ B,x t (K[t]/ϕ B,x ) #(K) d 1 deg ϕ B,x = d (K[t]/ϕ B,x ) #(K) d 1 t. d := deg ϕ B,x #((K[t]/ϕ B,x ) ) #(K) d 1 #(K) d 1 t 22

23 K ϕ(t) K[t]/ϕ(t) t #(K) deg ϕ(t) K ϕ(t) K[t]/ϕ(t) t #(K) deg ϕ(t) ϕ(t) ϕ(t) t (K[t]/ϕ(t)) ϕ B,x d (d B ) t K[t]/ϕ B,x 1 1 t / (K[t]/ϕ B,x ) ϕ(t) = t m ψ(t) t ψ(t) t t ψ(t) p K[t]/ϕ(t) = K[t]/t m K[t]/ψ(t) t (K[t]/ψ(t)) ϕ(t) t m (t p 1) m m, p p m, p

24 4.17. K d B ϕ B (t) {g(t) K[t] g(b) = 0} g(b) = 0 ϕ B (t) g(t) K d B χ B (t) χ B (t) = det(ti d B) K[t] d ϕ B,x (t) ϕ B (t) χ B (t).. ϕ B (B)x = 0 χ B (B) = 0 Cayley-Hamilton K B K d x K d {0} 1. x B #(K) d 1 2. ϕ B,x (t) d 3. χ B (t) : 4.19 ϕ B,x χ B (t) d d 3 2: ( 4.14) ϕ B,x = 1 χ B (t) = 1 I d x = 0 x = 0 ϕ B,x (t) = χ B (t)

25 Cayley-Hamilton Cayley-Hamilton (Cayley-Hamilton K: ) A K n χ A (A) = 0. ti A M n (K[t]) Q(t) t Q(t) = Q n 1 t n Q 0 (Q i M n (K)) (ti A)Q(t) = Q(t)(tI A) = det(ti A)I = χ A (t)i M n (K[t]) (6) AQ(t) = Q(t)A t i A Q i Q i A (6) t A 0 = χ A (A) (ti A)Q(t) = (tq n 1 t n tq 0 ) (AQ n 1 t n AQ 0 ) = χ A (t)i Q n 1, Q n 2 AQ n 1,..., Q 0 AQ 1, AQ 0 χ A (t) I X M n (K) (Q n 1 X n + + Q 0 X) (AQ n 1 X n AQ 0 ) = χ A (X)I X = A A Q i K d d B #(K) d 1 25

26 B χ B B 5.1. d d ϕ(#(k) d 1)/d ( ϕ ) 5.2. d d B. ( 3.4 ) p m p m F p m F p m F p n m n K = F p m d K d L = F p md L α α ϕ α (t) K[t]/ϕ α (t) = L, t α α #(L ) = #(K) d 1 t ϕ α (t) L d 26

27 d : 1 d d : 1 L/K ϕ(#(k) d 1) d K S = K d, f : S S B #(K) d 1 B 0 W = F w 2 K d {0} n x j+n = g(x j+n 1,..., x j ) 1 S = W n = F nw nw 1 ( 15 g ) (x j+n 1,..., x j ) (x j+n,..., x j+1 ) 2 nw 1 n w ( 4.7) n ( multi-set ) {(x j+n 1,..., x j ) j = 0, 1,..., 2 nw 2} 2 nw 0 window property n 27

28 0 1 n GFSR nw 2 n 1 TGFSR Mersenne Twister {(x j+n 1,..., x j+1, x j w r )} 15. n, w x j+n = g(x j+n 1,..., x j ) 2 nw 1 g 16. Mersenne Twister window property 5.3 F 2 1. B 2. (1) B 5.3. G t, a G {n N {0} t n a = a} s N {0} 0 28

29 t 0 a := a. 0 s = 0 s n s r a = t n a = t r t qs a = t r a r < s s r = G e g G r 1. g r = e, 2. r p g r/p e. 5.3 t = g, a = e g n = e n s g n = e s n 1 s r r/s 1 p 2 r = s g n n n log 2 (n) g n n a 2 a 1 a 0 1. x 1 2. x g a 2 x 3. x x 2 4. x g a 1 x 5. x x 2 6. x g a 0 x x g n 2 log 2 (n) a i = r r g e, g r = e r 29

30 5.5. G g G, g e, g r = e r g r 5.6. G G p G p G 5.7. K q q m 1 m. ϕ(t) m K[t]/ϕ(t) (K[t]/ϕ(t)) q m 1 1 q m 1 t 4.13 ϕ(t) q m 1 = (q 1)(q m 1 + q m ) q = 2 q 3 m = 1 ϕ(t) 1 2 m 1 m m 5.8. m φ(t) F 2 m φ(t) F 2 [t]/φ(t) t 2 t t (2m) = t. t 2 m a = t = g, n = 2 m 1 n s n = 2 m m 1 t l t l = 0, 1,..., 2 m 2 0 F 2 [t]/φ(t) 0 t 1 t t 2 m 1 φ(t) 5.9. φ(t) = t 7 + t = 127 t 27 mod φ(t) t t 2 t 4 t 8 = t 2 + t t 4 + t 2 t 8 + t 4 = t 4 + t 2 + t t 8 + t 4 + t 2 = t 4 + t t 8 + t 2 = t 7 t φ(t) q > 2 (q m 1)/(q 1) 30

31 6 : k t ( ) k /2 k t n n k ( ) k > n 3 GFSR 6.1 {0, 1} M M 0-1 G : S {0, 1} M (S: ) (M = 10): G(s 0 ) = ( ), G(s 1 ) = ( ),. S {0, 1} M 2 2 Mersenne Twister [ ] 31

32 m 1 k 1 M := m + k x {0, 1} M = {0, 1} m {0, 1} k, wt o (x) := x m 1 wt f (x) := x k 1 (wt weight o observed f future) x 0 s m 0 t k wt o (x) = s wt f (x) = t p k,m (t s) := Prob(w f (x) = t w o (x) = s) 0,1 m s k t p k,m (t s) = p k,m (t s) ( k t ) /2 k F 2 - MacWilliams ( 6.4) 6.2 random() C 90 ( ) x i+31 = x i+28 + x i mod 2 32 (i = 1, 2,...) 32

33 + 2 EXOR x i+31 = x i+28 + x i mod 2 (i = 1, 2,...) F 2 ran array() Knuth 97 [4] x i+100 := x i+63 + x i mod 2 30 (i = 1, 2,...) Lüscher x i+100 := x i+63 + x i mod 2 (i = 1, 2,...) F p k,m (0 t) random prob weight random() 1 p 8,31 (0 s) (10 s 22) 31 s 8 1/256=

34 ran_array prob weight ran array() 1 p 8,100 (0 s) (40 s 60) 100 s 8 1/256= {0, 1} M = {0, 1} m {0, 1} k G(S) {0, 1} M x G(S) G(S) G(S) G [ ] 17. p k,m (t s) := Prob(w f (x) = t w o (x) = s) A ij := #{x G(S) wt o (x) = i, wt f (x) = j} (0 i m, 0 j k) 34

35 p k,m (t s) = A st /(A s0 + A s1 + + A sk ). A ij G(S) 2 A ij 1. G(S) F M 2 F 2 - ( F 2 2. M = k + m G(S) F M MacWilliams C F m+k 2 (G(S) ) A ij := #{x C wt o (x) = i, wt f (x) = j}(0 i m, 0 j k) A ij dim C NP- ( A ij > 0 i + j NP- A, Vardy 1997 reference???) M dim C MacWilliams C C F M 2 C := {y F M 2 < x, y >= 0 for all x C}. < (x 1,..., x M ), (y 1,..., y M ) >:= M x i y i. i=1 C W C (x, y, X, Y ) := 0 i m,0 j k A ijx m i y i X k j Y j, 6.1. ( MacWilliams ) W C (x, y, X, Y ) = 1 W #(C ) C (x + y, x y, X + Y, X Y ). 35

36 dim C (= M dim C) W C (x, y, X, Y ) A ij p k,m (t s) dim C 8 dim C 521 G(S) 3 5 [5] MacWilliams 1 [11] 6.5 MacWilliams V := F M 2, W := F M 2 e : V W {±1}, (v, w) e(v w) := ( 1) <v,w> < v, w > R f f : W R, f : V R f(w) := f(v)e(v w) (±1 R e(v w) R ) v V 36

37 6.2. V = W = F 2 R = Q[x, y], f : V R f(0) = x, f(1) = y f(0) = v=0,1 f(v)e(v 0) = f(0) + f(1) = x + y, f(1) = v=0,1 f(v)e(v 1) = f(0) f(1) = x y C V C W C := {w W < v, w >= 0 for all v C} 6.3. (Poisson ) v C f(v) = 1 #C w C f(w). f(w) = f(v)e(v w) w C w C v V = f(v)( e(v w)) v V w C = f(v)#(c ) v C #(C ) 6.4. w C e(v w) = { 0 v / C #(C ) v C. e(v w) = 1 v / C C F 2, w < v, w > 0 F e(v w) 0 37

38 18. f : G 1 G 2 x G 1 f(x) f x + Kerf R f : V R Q[x 1, x 2,..., x M, y 1, y 2,..., y M ] f(v 1,..., v M ) := f 1 (v 1 )f 2 (v 2 ) f M (v M ) v i F 2 f i : F 2 R ( 6.2 ) f i (0) = x i, f i (1) = y i W C (x 1, y 1,..., x M, y M ) := v C f(v) C M 6.5. W x 1 = x 2 = = x m := x, y 1 = y 2 = = y m := y, x m+1 = x m+2 = = x m+k = X, y m+1 = y m+2 = = y m+k = Y (7) W C (x, y, X, Y ). W f 1 (v 1 )f 2 (v 2 ) f M (v M ) x m i y i X k j Y j v 1,..., v m i 1 v m+1,..., v m+k j 1 wt o (v) = i, wt f (v) = j v W v C A ij Aij x m i y i X k j Y j = W C (x, y, X, Y ) 38

39 Poisson 6.3 W := v C f(v) = 1 #C w C f(w) w C f(w) W C (x + y, x y, X + Y, X Y ) MacWilliams f : V R V = V 1 V 2 f f 1 : V 1 R f 2 : V 2 R f(v 1 v 2 ) = f 1 (v 1 )f 2 (v 2 ) 6.6. f(w 1 w 2 ) = f 1 (w 1 ) f 2 (w 2 ) f i : W i R W = W 1 W 2 = V2 V1 19. f f(v 1,..., v M ) = f 1 (v 1 )f 2 (v 2 ) f(v M ) V = F 2 F 2 F 2 = V 1 V M ( V i i ) W = W 1 W 2 W M 6.2 f i (0) = f i (0)e(0 0) + f i (1)e(1 0) = x i + y i f i (1) = f i (0)e(0 1) + f i (1)e(1 1) = x i y i f i (w i ) f i (w i ) x i x i + y i, y i x i y i 39

40 f(w 1,..., w M ) = f 1 (w 1 ) f M (w M ) = f 1 (w 1 ) f M (w M ) x i x i + y i y i x i y i f(w) w C = w C (f(w) ) = W C (x 1 + y 1, x 1 y 1,..., x M + y M, x M y M ) 6.7. ( MacWilliams ) W C (x 1, y 1,..., x M, y M ) = 1 W #(C ) C (x 1 + y 1, x 1 y 1,..., x M + y M, x M y M ). (7) MacWilliams x 1 = = x M = x, y 1 = = y M = y MacWilliams MacWilliams MacWilliams [7, P.147, Theorem 14] MacWilliams [7, P.158, Eq.(52)] f 1 f : R/Z C f f(x) = a n exp(2πinx) n Z 6.9. f f(x) = f(x) a n = a n f(x) = C + n N(s n cos nx + t n sin nx) 40

41 a n a n = R/Z a n R/Z e 2πimx e 2πinx dx = f(x)e 2πinx dx { 0 (m n) 1 (m = n) a : Z C, a(n) := a n f : R/Z C a : Z C a(n) = f(x)e 2πinx dx R/Z f(x) = n Z a(n)e 2πinx C 1 1 e : R/Z Z C 1, (x, n) e(x n) := exp(2πinx) well-defined 1. e x 0 R/Z e(x 0 ) : Z C 1, n e(x 0 n) n 0 e( n 0 ) : R/Z C 1, x e(x n 0 ) 2. R/Z Hom(Z, C 1 ), x 0 e(x 0 ) 41

42 3. Z Hom(R/Z, C 1 ), n 0 e( n 0 ) V, W e ( V = R/Z, W = Z ) G Ĝ := Hom(G, C 1 ) (Pontryagin ) G G Ĝ R/Z, Z Z/M, Z/M, e(n m) := exp(2πinm/m) F M 2, F M 2, e(v w) := exp(2πi < v, w > /2) = ( 1) <v,w> ( ) Haar R/Z Z V, W, e f : V C f : W C, f(w) := f(v)e(v w)dv V f dv V Haar V = F M f V = R/Z W = Z f : V C f(n) = f(x)e(x n)dx = a( n) R/Z 42

43 V = Z W = R/Z a : V C â(x) = n Z a(n)e(x n) Poisson C V (Poisson ) f(v)dv C = f(w)dw C. C C ( [14, Theorem 5.5.2] ) 6.3 R/Z Z Poisson random() ran array() M [12] f(x) = f( x) K?? S, O K f : S S, o : S O K K F 2 43

44 7.1 v k 7.2. v k k v 2 kv v = w k ( 5.2 ) w 2 w [0, 1) k 2 v 7.3. kv kv G : S F kv 2 F 2 G F 2 (0 ) v k G 21. v k k(v) k(v)v dim S v = 1, 2,..., w k(v) = dim S/v TGFSR, MT dim S = nw, nw r v = 1 k(1) = dim S v = 2 k(2) = n < nw/2 3 n TGFSR, MT (tempering) w T x xt y x + (x ) & 44

45 y x + (x ) Defects of MSB MT(MT521) tempering v = 1,..., k(v) 45

46 Table II. Parameters and k-distribution of Mersenne Twisters Generator The order of equidistribution ID Parameters k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8) k(9) k(10) k(11) k(12) (the number of k(13) k(14) k(15) k(16) k(17) k(18) terms in the k(19) k(20) k(21) k(22) k(23) k(24) characteristic k(25) k(26) k(27) k(28) k(29) k(30) polynomial) k(31) k(32) Upper bounds nw r for v (w, n, r) = (32, 351, 19) v MT11213A (w, n, m, r) = (32, 351, 175, 19) a = E4BD75F u = s = 7,b = 655E (177) t = 15,c = FFD l = MT11213B (w, n, m, r) = (32, 351, 175, 19) a = CCAB8EE u = s = 7,b = 31B6AB (151) t = 15,c = FFE l = Upper bounds nw r for v (w, n, r) = (32, 624, 31) v MT19937 (w, n, m, r) = (32, 624, 397, 31) a = 9908B0DF u = s = 7, b = 9D2C (135) t = 15, c = EFC l = TT800 (w, n, m, r) = (32, 25, 7, 0) a = 8EBFD u : not exist s = 7, b = 2B5B (93) t = 15, c = DB8B l = ran array Knuth s new recommendation Here we list the trivial upper bounds tempering k(v) try-anderror ([1]) 7.2 F 2 s S v k(v) (x 10, x 20,..., x v0 ), (x 11, x 21,..., x v1 ),... A := F 2 [[t]] w(s) := ( x 1i t i, x 2i t i,..., x vi t i ) i=0 i=0 46 i=0

47 S w : S A v F := F 2 ((t)) F A a i t i := 2 m (a m 0) i= m F v sup (x 1,..., x v ) := max { x i } i=1,2,...,v A v x + y max{ x, y } v e i := (0,..., 0, 1/t, 0,..., 0) F 2 (i 1/t) F v F v = A v + F 2 [t 1 ] < e 1, e 2,..., e v > e i F 2 [t 1 ] s 0 S {e 1, e 2,..., e v, w(s 0 )} F 2 [t 1 ] L F v w(s) = L A v. s 0 m s m w(s m ) = t m w(s 0 ) w(s m ) L. w(s m ) A v m w(s m ) w(s) {0} F 2 L := w(s) + F 2 [t 1 ] < e 1, e 2,..., e v > t 1 ( <> F 2 [t 1 ] ) F 2 [t 1 ] w(s 0 ) w(s) L L A v 47

48 F v L F 2 [t 1 ] B 7.5. L 2 k(v) F 2 [t 1 ] L F v L r F v L r r L 7.7. k L 2 k. 2 k kv k =t k 1 A v x L x 2 k x x A v x L A v, x x 2 k. x k x x w(s) kv k kv L A v 2 k A v F 2 F v = A v + F 2 [t 1 ] < e 1, e 2,..., e v > L F 2 [t 1 ] < e 1, e 2,..., e v > L 2 k. ( 7.4 ) 2 k+1 L 2 k 2 k+1 B L 2 k B L F B F v x F v x = i a i b i, a i F, B = {b 1,..., b v } 48

49 a i F 2 [t 1 ] α i a i α i 1/2 x i α i b i = i (a i α i )b i 1/2 B 2 k 2 k+1 L F v e i = (0,..., 0, 1/t, 0,..., 0) t k e i l i 2 k (8) l i L t k e i = 2 k+1 l i = 2 k+1 l 1,..., l v (8) t k e i l i mod t k, mod t k l i (0, 0,..., 0, t k 1, 0,..., 0) l i a i l i = 0, a i F i t a i A 1 a 1 mod t k (t k 1,,..., ) 0 2 k+1 L v B ( w(s) w(s) ϕ(t) 1 A v ϕ(t) 0 2 deg(ϕ(t)) L L x B F 2 [t 1 ] B F x B F 2 [t 1 ] x x B ta x = 0 0 B ta x B x Lenstra[6] 49

50 [1] R. Couture, P. L Ecuyer, and S. Tezuka, On the distribution of k- dimensional vectors for simple and combined Tausworthe sequences, Math. Comp. 60 (1993), [2] Luc Deveroye, Nonuniform random variate generation. Springer-Verlag, [3],,, [4] Knuth, D. E. The Art of Computer Programming. Vol. 2. Seminumerical Algorithms 3rd Ed. Addison-Wesley, [5] Haramoto, H., Matsumoto, M., Nishimura, T. Computing conditional probabilities for F 2 -linear pseudorandom bit generator by splitting Mac- Williams identity, International Journal of Pure and Applied Mathematics, Vol.38 No.1, [6] Lenstra, A. K. Factoring multivariate polynomials over finite fields. J. Comput. System Sci. 30, [7] F.J. MacWilliams and N.J.A. Sloane, The theory of error correcting code. North-Holland, [8] Matsumoto, M. and Kurita, Y. Twisted GFSR Generators, ACM Transactions on Modeling and Computer Simulation 2 (1992), [9] Matsumoto, M. and Kurita, Y. Twisted GFSR Generators II, ACM Transactions on Modeling and Computer Simulation 4 (1994), [10] Matsumoto, M. and Nishimura, T. Mersenne Twister: a 623- dimensionally equidistributed uniform pseudo-random number generator ACM Trans. on Modeling and Computer Simulation 8 (1998), [11] M. Matsumoto and T. Nishimura A Nonempirical Test on the Weight of Pseudorandom Number Generators in: Monte Carlo and Quasi- Monte Carlo methods 2000, Springer-Verlag [12] M. Matsumoto and T. Nishimura Sum-discrepancy test on pseudorandom number generators Mathematics and Computers in Simulation, Vol. 62 (2003), pp

51 [13] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. SIAM, [14] Reiter, S. and Stegeman, J.D.: Classical harmonic analysis and locally compact groups. Oxford Science Publications, Oxford,

6 : 28 6.1...................... 28 6.2.......................... 30 6.3.......................... 31 6.4 MacWilliams........................ 32 6.5 M

6 : 28 6.1...................... 28 6.2.......................... 30 6.3.......................... 31 6.4 MacWilliams........................ 32 6.5 M 16 11 26 1 2 1.1............................ 2 1.2.......................... 3 1.3............................. 3 1.4.......................... 4 2 5 2.1.............. 5 2.2........................ 6 3

More information

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N RMT 1 1 1 N L Q=L/N (RMT), RMT,,,., Box-Muller, 3.,. Testing Randomness by Means of RMT Formula Xin Yang, 1 Ryota Itoi 1 and Mieko Tanaka-Yamawaki 1 Random matrix theory derives, at the limit of both dimension

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen

(check matrices and minimum distances) H : a check matrix of C the minimum distance d = (the minimum # of column vectors of H which are linearly depen Hamming (Hamming codes) c 1 # of the lines in F q c through the origin n = qc 1 q 1 Choose a direction vector h i for each line. No two vectors are colinear. A linearly dependent system of h i s consists

More information

学習内容と日常生活との関連性の研究-第2部-第4章-1

学習内容と日常生活との関連性の研究-第2部-第4章-1 69 V A V + A V A 2A 2 http://www.jba-hp.jp/ http://www.kbn3.com/ http://www.usba.org/ 70 (1) (1996)35 7 pp.28-33 (2) (1994) 71 () 3 1 1 99 8 1 10 1 11.3 2.5 1 100 11.4 30.9 1 72 (1) http://www.stat.go.jp/data/zensho/1999/zuhyou/a906-6.xls

More information

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k

II K116 : January 14, ,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k : January 14, 28..,. A = (a ij ) ij m n. ( ). B m n, C n l. A = max{ a ij }. ij A + B A + B, AC n A C (1) 1. m n (A k ) k=1,... m n A, A k k, A. lim k A k = A. A k = (a (k) ij ) ij, A k = (a ij ) ij, i,

More information

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2

1.2 y + P (x)y + Q(x)y = 0 (1) y 1 (x), y 2 (x) y 1 (x), y 2 (x) (1) y(x) c 1, c 2 y(x) = c 1 y 1 (x) + c 2 y 2 (x) 3 y 1 (x) y 1 (x) e R P (x)dx y 2 1 1.1 R(x) = 0 y + P (x)y + Q(x)y = R(x)...(1) y + P (x)y + Q(x)y = 0...(2) 1 2 u(x) v(x) c 1 u(x)+ c 2 v(x) = 0 c 1 = c 2 = 0 c 1 = c 2 = 0 2 0 2 u(x) v(x) u(x) u (x) W (u, v)(x) = v(x) v (x) 0 1 1.2

More information

6. Euler x

6. Euler x ...............................................................................3......................................... 4.4................................... 5.5......................................

More information

å‰Łçı—訋çfl»æ³Łã†¨ã…Łã‡£ã…œã…−ã……ã…†æŁ°, ㆚ㆮ2æ¬¡è©Łä¾¡å‹ƒå›²ã•† ㅋㅪㅜã…−ã……ã…†æŁ°å‹Šã†«ã‡‹ã‡‰é•£ã†®ç¢ºç”⁄訋箊

å‰Łçı—訋çfl»æ³Łã†¨ã…Łã‡£ã…œã…−ã……ã…†æŁ°,   ㆚ㆮ2æ¬¡è©Łä¾¡å‹ƒå›²ã•† ㅋㅪㅜã…−ã……ã…†æŁ°å‹Šã†«ã‡‹ã‡‰é•£ã†®ç¢ºç”⁄訋箊 , 2 August 28 (Fri), 2016 August 28 (Fri), 2016 1 / 64 Outline 1 2 3 2 4 2 5 6 August 28 (Fri), 2016 2 / 64 fibonacci Lucas 2 August 28 (Fri), 2016 3 / 64 Dynamic Programming R.Bellman Bellman Continuum

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx,

/ 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point R n set space R n R n x = x 1 x n y = y 1 y n distance dx, 1 1.1 R n 1.1.1 3 xyz xyz 3 x, y, z R 3 := x y : x, y, z R z 1 3. n n x 1,..., x n x 1. x n x 1 x n 1 / 2 n n n n x 1,..., x n 1 n 2 n R n n ndimensional Euclidean space R n vector point 1.1.2 R n set

More information

ii-03.dvi

ii-03.dvi 2005 II 3 I 18, 19 1. A, B AB BA 0 1 0 0 0 0 (1) A = 0 0 1,B= 1 0 0 0 0 0 0 1 0 (2) A = 3 1 1 2 6 4 1 2 5,B= 12 11 12 22 46 46 12 23 34 5 25 2. 3 A AB = BA 3 B 2 0 1 A = 0 3 0 1 0 2 3. 2 A (1) A 2 = O,

More information

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1.

1 1 n 0, 1, 2,, n n 2 a, b a n b n a, b n a b (mod n) 1 1. n = (mod 10) 2. n = (mod 9) n II Z n := {0, 1, 2,, n 1} 1. 1 1 n 0, 1, 2,, n 1 1.1 n 2 a, b a n b n a, b n a b (mod n) 1 1. n = 10 1567 237 (mod 10) 2. n = 9 1567 1826578 (mod 9) n II Z n := {0, 1, 2,, n 1} 1.2 a b a = bq + r (0 r < b) q, r q a b r 2 1. a = 456,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

untitled

untitled II(c) 1 October. 21, 2009 1 CS53 yamamoto@cs.kobe-u.ac.jp 3 1 7 1.1 : : : : : : : : : : : : : : : : : : : : : : 7 1.2 : : : : : : : : : : : : : : : : 8 1.2.1 : : : : : : : : : : : : : : : : : : : 8 1.2.2

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

2012 A, N, Z, Q, R, C

2012 A, N, Z, Q, R, C 2012 A, N, Z, Q, R, C 1 2009 9 2 2011 2 3 2012 9 1 2 2 5 3 11 4 16 5 22 6 25 7 29 8 32 1 1 1.1 3 1 1 1 1 1 1? 3 3 3 3 3 3 3 1 1, 1 1 + 1 1 1+1 2 2 1 2+1 3 2 N 1.2 N (i) 2 a b a 1 b a < b a b b a a b (ii)

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1  appointment Cafe David K2-2S04-00 : C 2S III IV K200 : April 16, 2004 Version : 1.1 TA M2 TA 1 10 2 n 1 ɛ-δ 5 15 20 20 45 K2-2S04-00 : C 2S III IV K200 60 60 74 75 89 90 1 email 3 4 30 A4 12:00-13:30 Cafe David 1 2 TA 1 email appointment Cafe

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

(search: ) [1] ( ) 2 (linear search) (sequential search) 1

(search: ) [1] ( ) 2 (linear search) (sequential search) 1 2005 11 14 1 1.1 2 1.2 (search:) [1] () 2 (linear search) (sequential search) 1 2.1 2.1.1 List 2-1(p.37) 1 1 13 n

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ii

ii i 2013 5 143 5.1...................................... 143 5.2.................................. 144 5.3....................................... 148 5.4.................................. 153 5.5...................................

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( (

2.2 ( y = y(x ( (x 0, y 0 y (x 0 (y 0 = y(x 0 y = y(x ( y (x 0 = F (x 0, y(x 0 = F (x 0, y 0 (x 0, y 0 ( (x 0, y 0 F (x 0, y 0 xy (x, y (, F (x, y ( ( (. x y y x f y = f(x y x y = y(x y x y dx = d dx y(x = y (x = f (x y = y(x x ( (differential equation ( + y 2 dx + xy = 0 dx = xy + y 2 2 2 x y 2 F (x, y = xy + y 2 y = y(x x x xy(x = F (x, y(x + y(x 2

More information

2017 p vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = 0 (79) J s flux (67) J (79) J( r, t) = k δf δs s( r,

2017 p vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = 0 (79) J s flux (67) J (79) J( r, t) = k δf δs s( r, 27 p. 47 7 7. vs. TDGL 4 Metropolis Monte Carlo equation of continuity s( r, t) t + J( r, t) = (79) J s flux (67) J (79) J( r, t) = k δf δs s( r, t) t = k δf δs (59) TDGL (8) (8) k s t = [ T s s 3 + ξ

More information

°ÌÁê¿ô³ØII

°ÌÁê¿ô³ØII July 14, 2007 Brouwer f f(x) = x x f(z) = 0 2 f : S 2 R 2 f(x) = f( x) x S 2 3 3 2 - - - 1. X x X U(x) U(x) x U = {U(x) x X} X 1. U(x) A U(x) x 2. A U(x), A B B U(x) 3. A, B U(x) A B U(x) 4. A U(x),

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A B f : A B 4 (i) f (ii) f (iii) C 2 g, h: C A f g = f h g = h (iv) C 2 g, h: B C g f = h f g = h 4 (1) (i) (iii) (2) (iii) (i) (3) (ii) (iv) (4)

More information

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1

one way two way (talk back) (... ) C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 1 1.1 1.2 one way two way (talk back) (... ) 1.3 0 C.E.Shannon 1948 A Mathematical theory of communication. 1 ( ) 0 ( ) 1 ( (coding theory)) 2 2.1 (convolution code) (block code), 3 3.1 Q q Q n Q n 1 Q

More information

x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i )

x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x i ) A(x i ) = h 2 {f(x i) + f(x i+1 ) = h {f(a + i h) + f(a + (i + 1) h), (2) 2 a b n A(x i ) 1 f(x) a b f(x)dx = n A(x i ) (1) ix [a, b] n i A(x i ) x i 1 f(x) [a, b] n h = (b a)/n y h = (b-a)/n y = f (x) h h a a+h a+2h a+(n-1)h b x 1: 1 x h = (b a)/n [x i, x i+1 ] = [a+i h, a+ (i + 1) h] A(x

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

[ 1] 1 Hello World!! 1 #include <s t d i o. h> 2 3 int main ( ) { 4 5 p r i n t f ( H e l l o World!! \ n ) ; 6 7 return 0 ; 8 } 1:

[ 1] 1 Hello World!! 1 #include <s t d i o. h> 2 3 int main ( ) { 4 5 p r i n t f ( H e l l o World!! \ n ) ; 6 7 return 0 ; 8 } 1: 005 9 7 1 1.1 1 Hello World!! 5 p r i n t f ( H e l l o World!! \ n ) ; 7 return 0 ; 8 } 1: 1 [ ] Hello World!! from Akita National College of Technology. 1 : 5 p r i n t f ( H e l l o World!! \ n ) ;

More information

DVIOUT

DVIOUT A. A. A-- [ ] f(x) x = f 00 (x) f 0 () =0 f 00 () > 0= f(x) x = f 00 () < 0= f(x) x = A--2 [ ] f(x) D f 00 (x) > 0= y = f(x) f 00 (x) < 0= y = f(x) P (, f()) f 00 () =0 A--3 [ ] y = f(x) [, b] x = f (y)

More information

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x 1 1.1 4n 2 x, x 1 2n f n (x) = 4n 2 ( 1 x), 1 x 1 n 2n n, 1 x n n 1 1 f n (x)dx = 1, n = 1, 2,.. 1 lim 1 lim 1 f n (x)dx = 1 lim f n(x) = ( lim f n (x))dx = f n (x)dx 1 ( lim f n (x))dx d dx ( lim f d

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

特集_03-07.Q3C

特集_03-07.Q3C 3-7 Error Detection and Authentication in Quantum Key Distribution YAMAMURA Akihiro and ISHIZUKA Hirokazu Detecting errors in a raw key and authenticating a private key are crucial for quantum key distribution

More information

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1

( [1]) (1) ( ) 1: ( ) 2 2.1,,, X Y f X Y (a mapping, a map) X ( ) x Y f(x) X Y, f X Y f : X Y, X f Y f : X Y X Y f f 1 : X 1 Y 1 f 2 : X 2 Y 2 2 (X 1 2013 5 11, 2014 11 29 WWW ( ) ( ) (2014/7/6) 1 (a mapping, a map) (function) ( ) ( ) 1.1 ( ) X = {,, }, Y = {, } f( ) =, f( ) =, f( ) = f : X Y 1.1 ( ) (1) ( ) ( 1 ) (2) 1 function 1 ( [1]) (1) ( ) 1:

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

MOSFET HiSIM HiSIM2 1

MOSFET HiSIM HiSIM2 1 MOSFET 2007 11 19 HiSIM HiSIM2 1 p/n Junction Shockley - - on-quasi-static - - - Y- HiSIM2 2 Wilson E f E c E g E v Bandgap: E g Fermi Level: E f HiSIM2 3 a Si 1s 2s 2p 3s 3p HiSIM2 4 Fermi-Dirac Distribution

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

9 8 7 (x-1.0)*(x-1.0) *(x-1.0) (a) f(a) (b) f(a) Figure 1: f(a) a =1.0 (1) a 1.0 f(1.0)

9 8 7 (x-1.0)*(x-1.0) *(x-1.0) (a) f(a) (b) f(a) Figure 1: f(a) a =1.0 (1) a 1.0 f(1.0) E-mail: takio-kurita@aist.go.jp 1 ( ) CPU ( ) 2 1. a f(a) =(a 1.0) 2 (1) a ( ) 1(a) f(a) a (1) a f(a) a =2(a 1.0) (2) 2 0 a f(a) a =2(a 1.0) = 0 (3) 1 9 8 7 (x-1.0)*(x-1.0) 6 4 2.0*(x-1.0) 6 2 5 4 0 3-2

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

26.fx95MS_Etype_J-cover_SA0311D

26.fx95MS_Etype_J-cover_SA0311D P fx-95ms fx-100ms fx-570ms fx-912ms (fx-115ms) fx-991ms English Manual Readers! Please be sure to read the important notice on the inside of the front cover of this manual. J http://www.casio.co.jp/edu/

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

( )

( ) 18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N.

Basic Math. 1 0 [ N Z Q Q c R C] 1, 2, 3,... natural numbers, N Def.(Definition) N (1) 1 N, (2) n N = n +1 N, (3) N (1), (2), n N n N (element). n/ N. Basic Mathematics 16 4 16 3-4 (10:40-12:10) 0 1 1 2 2 2 3 (mapping) 5 4 ε-δ (ε-δ Logic) 6 5 (Potency) 9 6 (Equivalence Relation and Order) 13 7 Zorn (Axiom of Choice, Zorn s Lemma) 14 8 (Set and Topology)

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

:00-16:10

:00-16:10 3 3 2007 8 10 13:00-16:10 2 Diffie-Hellman (1976) K K p:, b [1, p 1] Given: p: prime, b [1, p 1], s.t. {b i i [0, p 2]} = {1,..., p 1} a {b i i [0, p 2]} Find: x [0, p 2] s.t. a b x mod p Ind b a := x

More information

,2,4

,2,4 2005 12 2006 1,2,4 iii 1 Hilbert 14 1 1.............................................. 1 2............................................... 2 3............................................... 3 4.............................................

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

26 Feature Extraction with Randomness for an Application to Machine Learning from Text Data

26 Feature Extraction with Randomness for an Application to Machine Learning from Text Data 26 Feature Extraction with Randomness for an Application to Machine Learning from Text Data 1175087 Random Forest Random Forest SPAM SPAM600 SPAM1000 SPAM Random Forest i 2 10 2 3% Random Forest Mersenne

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

t14.dvi

t14.dvi version 1 1 (Nested Logit IIA(Independence from Irrelevant Alternatives [2004] ( [2004] 2 2 Spence and Owen[1977] X,Y,Z X Y U 2 U(X, Y, Z X Y X Y Spence and Owen Spence and Owen p X, p Y X Y X Y p Y p

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

Pari-gp /7/5 1 Pari-gp 3 pq

Pari-gp /7/5 1 Pari-gp 3 pq Pari-gp 3 2007/7/5 1 Pari-gp 3 pq 3 2007 7 5 Pari-gp 3 2007/7/5 2 1. pq 3 2. Pari-gp 3. p p 4. p Abel 5. 6. 7. Pari-gp 3 2007/7/5 3 pq 3 Pari-gp 3 2007/7/5 4 p q 1 (mod 9) p q 3 (3, 3) Abel 3 Pari-gp 3

More information

1 return main() { main main C 1 戻り値の型 関数名 引数 関数ブロックをあらわす中括弧 main() 関数の定義 int main(void){ printf("hello World!!\n"); return 0; 戻り値 1: main() 2.2 C main

1 return main() { main main C 1 戻り値の型 関数名 引数 関数ブロックをあらわす中括弧 main() 関数の定義 int main(void){ printf(hello World!!\n); return 0; 戻り値 1: main() 2.2 C main C 2007 5 29 C 1 11 2 2.1 main() 1 FORTRAN C main() main main() main() 1 return 1 1 return main() { main main C 1 戻り値の型 関数名 引数 関数ブロックをあらわす中括弧 main() 関数の定義 int main(void){ printf("hello World!!\n"); return

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

kato-kuriki-2012-jjas-41-1.pdf

kato-kuriki-2012-jjas-41-1.pdf Vol. 41, No. 1 (2012), 1 14 2 / JST CREST T 2 T 2 2 K K K K 2,,,,,. 1. t i y i 2 2 y i = f (t i ; c) + ε i, f (t; c) = c h t h = c ψ(t), i = 1,...,N (1) h=0 c = (c 0, c 1, c 2 ), ψ(t) = (1, t, t 2 ) 3

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information