E x(n) µ = E[x(n)] (4 1) x(n) x(n) x(0), x(1), x(2),, x(n 1) ˆµ = 1 N 1 x(n) N n=0 (4 2) (4 1) x(n) R xx (m) = E[x(n)x

Size: px
Start display at page:

Download "E x(n) µ = E[x(n)] (4 1) x(n) x(n) x(0), x(1), x(2),, x(n 1) ˆµ = 1 N 1 x(n) N n=0 (4 2) (4 1) x(n) R xx (m) = E[x(n)x"

Transcription

1 c /(41)

2 E x(n) µ = E[x(n)] (4 1) x(n) x(n) x(0), x(1), x(2),, x(n 1) ˆµ = 1 N 1 x(n) N n=0 (4 2) (4 1) x(n) R xx (m) = E[x(n)x(n + m)] (4 3) x(n) y(n) R xy (m) = E[x(n)y(n + m)] (4 4) c /(41)

3 x(0), x(1), x(2),, x(n 1) ˆR xx (m) = N m 1 n=0 x(n)x(n + m) m 0 R xx ( n) m < 0 (4 5) (4 3) E[ ˆR xx (m)] = (N m )R xx (m) (4 6) (4 5) N m N m ˆR xy (m)/(n m ) (4 3) 1 R xx (m) m R xx (m) = R xx ( m) (4 7) 2 R xx (m) m = 0 R xx (0) R xx (m) (4 8) x(0), x(1), x(2),, x(n 1) ˆR xx (m) = N m 1 1 x(n)x(n + m) m 0 (4 9) N m n=0 x(n), n = 0, 1, 2,, N = 1 x(n + m), n = 0, 1,, N m 1 x(n) x(n + m) m x(n) x(n + m) m m x(n) x(n) x(n + m) m = 0 x(n) 2 1 x(n) x(n + m) m c /(41)

4 x(n) 1 Hz 1 s x(n) R xx (m) x(n) 0 R xx (m) S xx (ω) = R xx (m)e jωm m= (4 10) S xx (ω) x(n) ω f R xx (m) = 1 2π π π S xx (ω)e jωm dω (4 11) (4 11) m = 0 E[x(n) 2 ] E[x(n) 2 ] = 1 2π π π S xx (ω)dω (4 12) (4 12) x(n) [ π, π] [ω, ω + dω] S xx (ω)/2π S xx (ω)/2π (4 10)(4 11) x(n) S xx (ω) 1 S xx (ω) 1 (4 10) R xx ( m) = R xx (m) c /(41)

5 S xx (ω) = R xx (m)(cos(ωm) j sin(ωm)) m= = R xx (0) + = R xx (0) m= R xx (m)(cos(ωm) j sin(ωm)) + R xx (m) cos(ωm) m=1 R xx (m)(cos(ωm) + j sin(ωm)) m=1 (4 13) 2 S xx (ω) S xx (ω) = S xx ( ω) (4 14) 1 (4 14) S xx (ω) = R xx (m) cos(ωm) m= (4 15) (4 13)(4 15) R xx (m) S xx (ω) ω = 0 ω = 0 3 S xx (ω) S xx (ω) 0 (4 16) 4) x(n), n = 0, 1, 2,, N 1 x(n) ˆr xx (τ) = 1 N 1 x(n)x(n + τ) N n=0 (4 17) c /(41)

6 Ŝ xx (ω) = N 1 τ= (N 1) ˆr xx (τ)e jωτ (4 18) ˆr xx (τ) 0 (4 17) ˆr xx (τ) = 1 N N τ 1 n=0 x(n)x(n + τ), τ = 0, 1, 2,, N 1 (4 19) ˆr xx ( τ) = ˆr xx (τ), τ = 1, 2,, N 1 (4 20) τ = 0 N τ 1 τ = N 1 1 τ M Ŝ xx (ω) = w(τ)ˆr xx (τ)e jωτ τ= M (4 21) (4 21) Blackman-Tukey method (4 21) w(τ) 4 2 S xx (ω) = r xx (τ)e jωτ τ= (4 22) r xx (τ) τ =, 2, 1, 0, 1, 2, S xx (ω) (4 22) S xx (ω) = lim 2M M τ= 2M 1 = lim M 2M + 1 ( 1 ) τ r xx (τ)e jωτ 2M + 1 2M τ= 2M (2M + 1 τ )r xx (τ)e jωτ (4 23) c /(41)

7 4 1 1 n M w(n) = 0 n > M 1 n M w(n) = n M 0 n > M 1 2 w(n) = + 1 πn 2 cos M n M 0 n > M cos πn M w(n) = n M 0 n > M 2(1 n M )3 (1 2 n M )3 n M 2 w(n) = 2(1 n M )3 M 2 < n M 0 n > M 2M M M (2M + 1 τ )r xx (τ) = r xx (m n) τ= 2M m= M n= 2M (4 24) S xx (ω) 1 S xx (ω) = lim M 2M + 1 M M m= M n= 2M r xx (m n)e jωτ (4 25) r xx (τ) r xx (τ) = E[x(m)x(n)] S xx (ω) = lim E 1 M M x(m)x(n)e M 2M + 1 jω(m n) m= M n= M = lim E 1 M M x(m)e jωm x(n)e jωn M 2M + 1 (4 26) m= M n= M m n 2 S xx (ω) = lim E 1 M M 2M + 1 x(n)e jωn (4 27) n= M S xx (ω) x(n) (4 27) x(n), n = 0, 1, 2,, N 1 (4 27) c /(41)

8 Ŝ xx (ω) = 1 N 1 2 N x(n)e jωn n=0 (4 28) (4 28) periodogram 2 0 (4 18) (4 18) (4 17) (4 22) Ŝ xx (ω) = = N 1 τ= (N 1) 1 N ˆr xx (τ)e jωτ N 1 2 x(n)e jωn n=0 (4 29) w(τ) = 1 M = N 1 (37) E[ˆr xx (τ)] = N k N r xx(τ), τ N 1 (4 30) N N k (4 29) c /(41)

9 E[Ŝ xx (ω)] = = N 1 τ= (N 1) N 1 τ= (N 1) = F[w B (τ)r xx (τ)] = π π E[ˆr xx (τ)]e jωτ N k N r xx(τ)e jωτ W B (ω ξ)s xx (ξ)dξ (4 31) F w B (τ) W B (ω) W B (ω) W B (ω) = 1 N ( ) 2 sin(ωn/2) (4 32) sin(ω/2) (4 31) N W B (ω) δ dirac (ω) w B (τ) = 1 lim E[Ŝ xx (ω)] S xx (ω) N (4 33) Ŝ xx (ω) = F[w(τ)ˆr xx (τ)] = π W(ω ξ)ŝ xx (ξ)dξ π π E[Ŝ xx (ω)] = W(ω ξ)e[ŝ xx (ξ)]dξ π (4 34) (4 35) N (4 33) E[Ŝ xx (ω)] = π π W(ω ξ)s xx (ξ)dξ (4 36) c /(41)

10 ( ) 2 sin(ωn) var[ŝ PE (ω)] = S xx (ω) N sin ω (4 37) var[ŝ BT (ω)] = S xx(ω) 2 N M w(τ) τ= M (4 38) Ŝ PE (ω) Ŝ BT (4 38) (4 37) (4 37) ω, 0, ± π var[ŝ PE (ω)] S xx (ω) 2 (4 39) f N f 1 N (4 40) 2M + 1 f 1 M (4 41) c /(41)

11 M (4 35) W(ω) (4 38) M M = N/5 (4 35) E[Ŝ xx (ω)] x(n) = sin(2π(015)n) + sin(2π(020)n) + w(n) (4 42) w(n) 5dB N = M = N/5 = dB 20dB 1),,,, ),,,, ),,,, ),, MATLAB,, ) SM Kay, Modern Spectral Estimation: Theory and Application, Prentice Hall, ) P Stoica and R Moses, Introduction to Spectral Analysis, Prentice Hall, 1997 c /(41)

12 1 群 5 編 4 章 ver1/ 図 4 1 ペリオドグラムによるスペクトル解析結果 図 4 2 ブラックマン チューキー法によるスペクトル解析結果 c 電子情報通信学会 2011 電子情報通信学会 知識ベース 12/(41)

13 AR Autoregressive Model MA Moving Average Model ARMA Autoregressive Moving Average Model AR x(t) = MA x(k) = p i=1 q i=0 i=1 a i x(k i) + w(k), x(k) = 1 A(z) w(k) b i w(k i), x(k) = B(z)w(k) p q ARMA x(k) = a i x(k i) + b i w(k i), x(k) = B(z) A(z) w(k) i=0 (4 43) (4 44) (4 45) w(k) E{w(k)} = 0, E{w(k)w(l)} = σ 2 wδ kl A(z) = p a i z i, B(z) = i=0 q b i z i, a 0 = b 0 = 1 i=0 AR (4 43) x(k) x(k 1),, x(k p) w(k) E{w 2 (k)} AR {a i } r xx (l) + p σ 2 w l= 0 a i r xx (l i) = 0 l 0 i=1 (4 46) r xx (l) x(k) r xx (l) = E{x(k)x(k + l)} l 0 Yule-Walker r xx (0) r xx ( 1) r xx ( p + 1) r xx (1) r xx (0) r xx ( p + 2) r xx (p 1) r xx (p 2) r xx (0) a 1 a 2 a p = r xx (1) r xx (2) r xx (p) (4 47) {x(0), x(1),, x(n 1)} r xx (n) c /(41)

14 ˆr xx = 1 N N n 1 t=1 x(t)x(t + n) (4 48) r xx (n) ˆr xx (n) (4 47) AR (4 46) l = 0 σ 2 w AR P AR ( f ) = σ 2 w 1 + p i=1 a i exp( j2π f i) 2 (4 49) (4 47) O(p 3 ) O(p 2 ) Levinson Lattice Levinson (m 1) AR {a (m 1) i } m AR {a (m) i } κ m a (m) m = 1 m 1 ρ m 1 r xx(m) + a (m 1) i r xx (m i) (4 50a) i=1 a (m) i = a (m 1) i + κ m a (m 1) m i, i = 1, 2,, m 1 (4 50b) ρ m = (1 κm)ρ 2 m 1 (4 50c) κ 1 = r xx (1)/r xx (0), ρ 1 = (1 κ1 2)r xx(0) AR (4 50a) {κ m } m AR e (m) f (k) = x(k) + m m 1 = x(k) + a (m) i=1 i=1 m 1 i x(k i) = x(k) + ( a (m 1) i i=1 a (m) i x(k 1) + κ m x(k m) ) + κ m a (m 1) m i x(k i) + κm x(k m) (4 50b) m 1 m 1 = x(k) + a (m 1) i x(k i) +κ m x(k m) + a (m 1) m i x(k i) i=1 i=1 } {{ }} {{ } e (m 1) f (k) e (m 1) b (k 1) AR (m 1) m f (k) = e (m 1) f (k) + κ m e (m 1) b (k 1) (4 51a) (k) = e(m 1) (k 1) + κ m e (m 1) f (k) (4 51b) e (m) e (m) b b e (0) f (k) = e (0) b (k) = x(k) (m 1) m c /(41)

15 κ m κ m e (m 1) f (k) e (m 1) b (k 1) Burg Itakura Burg κ m = 2 N 1 k=m e(m 1) f (k)e (m 1) N 1 k=m [(e(m 1) f b (k 1) (k)) 2 + (e (m 1) b (k 1)) 2 ] (4 52) (4 52) AR AR {r 0, r 1,, r p } S ( f ) {r 0, r 1,, r p, r p+1, r p+2, } ARMA (4 43) IIR x(k) = h j z j w(k) = H(z 1 )w(k) (4 53) j=0 (4 45) x(k n) AR Yule-Walker r xx (q) r xx (q 1) r xx (q p + 1) 1 r xx (q + 1) r xx (q + 1) r xx (q) r xx ( p + 1) a 1 r xx (q + 2) = r xx (q + p 1) r xx (q + p 2) r xx (q) a p r xx (q + p) (4 54) AR Yule-Walker MA q k r xx (l) = σ 2 w b ( j)b( j + l) for l = 0, 1,, q (4 55) j=0 {r xx (l)} MA MA {x(k)} AR 1/C(z 1 ) AR c 0, c 1,, c L (p L < N 1) B(z 1 )/A(z 1 ) 1/C(z 1 ) c p c p 1 c p q+1 b 1 c p+1 c p+1 c p c p q+2 b 2 c p+2 = c L c L 1 c L q+1 b q c L (4 56) c /(41)

16 MA MA ARMA (a) AR 1/C(z 1 ) w(k) ŵ(k) L ŵ(k) = c i x(k i) i=0 (4 57) (b) {x(k), ŵ(k)} {a i, b j } MA MA ŵ(k) x(k) z(k), y(k) (c) ARMA 3 ARMA P ARMA ( f ) = σ2 w 1 + q i=1 b i exp( j2π f i) p i=1 a i( j2π f i) 2 (4 58) p, q AIC AIC(i, j) = N ˆσ 2 w(i, j) + 2(i + j) (4 59) i, j AR MA ˆσ 2 w(i, j) w(k) N AIC(i, j) i, j AR MA x(k) = p A i exp( j2π f i k + jϕ i ) + w(k), k = 0,, N 1 (4 60) i=1 {A i, f i, ϕ i } i p w(k) σ 2 w (4 60) c /(41)

17 x(0) x(1) x(n 1) = 1 1 exp( j2π f 1 ) exp( j2π f p ) exp( j2π f 1 (N 1)) exp( j2π f p (N 1)) a 1 a 2 a p + w(0) w(1) w(n 1) S = [ s 1, s 2,, s p ] s i = (1, exp( j2π f i ),, exp( j2π f i (N 1))) T a = (a i, a 2,, a p ) T a i = A i exp( jϕ i ) x = (x(0), x(1),, x(n 1)) T w = (w(0), w(1),, w(n 1)) T x=sa+ w (4 61) w(k) x Sa ( 1 p(x Sa) = exp 1 ) (x Sa) H (x Sa) (4 62) π N σ 2N w σ 2 w { f i } {a i } (4 62) L(a, f) = (x Sa) H (x Sa) (4 63) a â = [S H S] 1 S H x (4 64) (4 64) (4 63) L(â, f) = x H x x H S[S H S] 1 S H x (4 65) 2 (4 60) p r xx (l) = P i exp( j2π f i l) + σ 2 wδ(l) i=1 (4 66) P i = A 2 i i M M(M > p) R xx = E{x M x H M } = p P i s i si H + σ 2 wi = R ss + R ww (4 67) i=1 R ss p R ww M R ss {λ i } R xx c /(41)

18 R xx = p (λ i + σ 2 w)u i ui H + i=1 M σ 2 wu i ui H i=p+1 U s = [u i,, u p } {s 1, s 2,, s p } s H i M α i u j = 0, for i = 1, 2,, p (4 68) j=p+1 Pisarenko M = p + 1 (4 69) si H u p+1 = 0 p (u p+1 ) n+1 exp( j2π f i n) = 0, for i = 1, 2,, p (4 69) n=0 (u p+1 ) n+1 p (u p+1 ) n+1 z n = 0 (4 70) n=0 2π f i f i s1 Hu 1 2 s2 Hu 1 2 s H p u 1 2 P 1 λ 1 λ p+1 s1 Hu 2 2 s2 Hu 2 2 s H p u 2 2 P 2 λ 2 λ p+1 = (4 71) s1 Hu p 2 s2 Hu p 2 s H p u p 2 P p λ p λ p+1 λ i ( p + 1) (p + 1) R xx λ p+1 = σ 2 w MUSIC P MUSIC ( f ) = 1 Mi=p+1 s H ( f )u i 2 (4 72) s( f ) = (1, exp( j2π f ),, exp( j2π f (M 1))) T f { f i } s H ( f j )ν i = 0 (4 72) AR AR R xx M R xx c /(41)

19 a PC = R 1 xx r xx p i=1 1 λ i u i u H i r xx (4 73) p Capon AR a MV = 1 s H ( f )R 1 xx s( f ) (4 74) a T x(k) 2 s H ( f )a = 1 ESPRIT x(k) = (x(k),, x(k + m 1)) T y(k) = (x(k + 1),, x(k + m)) T (4 61) x(k) = Sa + w(k), y(k) = SΦa + w(k + 1) (4 75) Φ = diag[e j2π f1,, e j2π fp ] S ESPRIT { f i } Φ x(k) y(k) R xx = E{x(k)x H (k)} = SPS H + σ 2 wi (4 76a) R xy = E{x(k)y H (k)} = SPΦ H S H + σ 2 wz (4 76b) Z = E{w(k)w H (k + 1)} 1 2 C xx = R xx σ 2 wi = SPS H C xy = R xy σ 2 wz = SPΦ H S H Φ C xx ξc xy = SP(I ξφ H )S H ξ = exp( j2π f i ) C xx ξc xy ESPRIT R xx U s S U s = ST T (4 75) J 1 SΦ = J 2 S (4 77) J 1 1 (M 1) J 2 2 M S U s c /(41)

20 E x = J 1 U s E y = J 2 U s S U s R xx E x E x = J 1 ST J 1 S = E x T 1 E y E y = J 2 U s = J 2 ST = J 1 SΦT E y = J 2 U s = J 2 ST = J 1 SΦT = E x T 1 ΦT S Φ T 1 ΦT Ψ E y = E x Ψ Ψ Ψ AIC(i) = 2N ln Σ i (a, f) + 6i i i AIC(i) = (M i) ln 1 M i Mj=i+1 λ j Mj=i+1 λ (M i) j + i(2m i) (4 78) c /(41)

21 f x (t) = 1 d 2π dt arg{x(t)} (4 79) x R (t) x H (t) x(t) = x R (t) + jx H (t) (4 80) STFT X w (ω, τ) = + w(t τ)x(t)e jωt dt (4 81) x(t) w(t) (4 81) X w (ω, τ) 2 2 STFT STFT 2 ω 0 c /(41)

22 rad/s ω 0 + ω rad/ s t 0 s t 0 + t s STFT (4 81) X w (ω, τ) = 1 jωτ e 2π + X(ω )W(ω ω )e jτω dω (4 82) + σ 2 t = (t t ) 2 w(t) 2 dt (4 83) + σ 2 ω = (ω ω ) 2 W(ω) 2 dω (4 84) t ω w(t) W(ω) (4 83) (4 84) σ t σ ω 1 2 (4 85) (4 85) STFT STFT STFT x(τ) = 1 2πw(0) + X w (ω, τ)e jωτ dω (4 86) w(0) 0 (4 86) 3 STFT (4 81) x(t) STFT x(n) STFT X w (Ω, m) = + n= w(n m)x(n)e jωn (4 87) Ω X w (Ω, m) 2 c /(41)

23 STFT - x(m) = 1 2πw(0) +π π X w (Ω, m)e jωm dω (4 88) STFT m Ω k (4 87) X w (Ω k, m) = h(n) [ x(n)e jωkn] (4 89) h(n) = w( n) (4 89) STFT h(n) 4 3 x(n) h(n) X w ( Ω k, m) j e Ω n k 4 3 STFT (4 87) X w (Ω k, m) = e jωkm [ x(n) h(n)e jωkn] (4 90) 4 4 STFT h(n)e jωkn x(n) j n h(n) e Ω k X w ( Ω k, m) j e Ω m k 4 4 STFT Ω 0 2π K Ω k = 2πk/K k= 0, 1,, K 1 STFT DFT STFT STFT M K DFT c /(41)

24 X w (k, m) = + n= h(m n)x(n)e j 2πnk K, k = 0, 1,, K 1 (4 91) 4 5 M DFT K STFT L (4 91) L = DFT 4 STFT 1 L = M X w (k, Mm) = e j 2πMm K [ ] M x(n) h(n)e j 2πkn K (4 92) M M L = M L < M L > M IIR STFT K h(n) FBS OLA FBS c /(41)

25 K 1 H(Ω 2πk/K) = Kh(0) k=0 (4 93) M = 1 ˆx(m) = 1 K 1 X w (k, m)e j 2πkm K Kh(0) k=0 (4 94) OLA M ˆx(m) = M H(0) + p= 1 K 1 X w (k, Mp)e j 2πkm K K k=0 (4 95) IDFT OLA M = 1 + p= h(mp n) = H(0) M (4 96) g(n) K 1 ˆx(m) = + k=0 p= g(m Mp)X w (k, Mp)e j 2πkm K (4 97) (4 97) FBS OLA g(m) = δ(m) FBS g(m) = 1/H(0) OLA (4 97) K 1 ˆx(m) = k=0 e j 2πMm K [ Xw (k, Mn) g(n)e j 2πkn K M ] (4 98) M M FBS + m= g(n Mm)h (Mm n + sk) = δ(s) (4 99) M = L FFT c /(41)

26 (4 81) + + X w (ω, τ) 2 = w(t τ)x(t)e jωt 2 = r xw,x w (u, τ)e jωu du + r xw,x w (u, τ) = w(t τ)x(t)w (t τ u)x (t u)dt (4 100) (4 101) x(t) w(t τ) x w (t) r xw,x w (u, τ) (4 100) (4 101) (4 102) r xx (τ) = + x(t)x(t τ)dt (4 102) τ (4 100) W x (t, ω) = + ( x t + τ ) ( x t τ ) e jωτ dτ 2 2 (4 103) (4 103) (4 103) W x (t, ω) = 1 2π + ( X ω + ξ ) ( X ω ξ ) e jξt dξ 2 2 (4 104) 1) x(t) = 0 t (t 1, t 2 ) W x (t, ω) = 0 t (t 1, t 2 ) X(ω) = 0 ω (ω 1, ω 2 ) W x (t, ω) = 0 ω (ω 1, ω 2 ) 2) Wx(t, ω) = W x (t, ω) 3) W x (t, ω) = W x (t, ω) + 4) W x(t, ω)dω = x(t) 2 + W x(t, ω)dt = X(ω) W x(t, ω)dωdt = + x(t) 2 dt = 1 + 2π X(ω) 2 dω 5) x(t) x(t t 0 )e jω0t W x (t, ω) W x (t t 0, ω ω 0 ) 6) x(t) = 1 2πx (0) + W x ( t 2, ω ) e jωt dω (4 105) c /(41)

27 2) (4 80) h(τ) + ( WPS x (t, ω) = h(τ)x t + τ ) ( x t τ ) e jωτ dτ 2 2 (4 106) 4) Φ(t, ω) S W x (t, ω) = + + Φ(t t, ω ω )W x (t, ω )dt dω (4 107) X w (ω, τ) 2 = + + W x (t, ω )W w (t t, ω ω)dt dω (4 108) (4 103) A x (τ, ν) = + ( x t + τ ) ( x t τ ) e jνt dt 2 2 (4 109) (4 109) A x (τ, ν) = + ( X ω + ν ) ( x ω ν ) e jτω dω 2 2 (4 110) (4 109) ν = 0 (4 110) τ = 0 A x (τ, ν) = + + W x (t, ω)e j(νt τω) dtdω (4 111) W x (m, Ω) = 2 + n= x(m + n)x (m n)e j2ωn (4 112) c /(41)

28 Cohen class S (t, ω) = + ( x u + τ ) ( x u τ ) φ(ν, τ)e j(νt+ωτ uν) dνdτdu 2 2 (4 113) φ(ν, τ) φ (θ, τ) Wigner φ(θ, τ) = 1 Spectrogram Margenau-Hill Kirkwood Rihaczek Born-Jordan Cohen Page W w (t, ω) cos 1 2 θτ e jθτ/2 sin 1 2 θτ/ 1 2 θτ e jθ τ Choi-Williams e θ2 τ 2 /σ Zhao-Atlas-Marks sin aθτ g(τ) τ aθτ + + ( t ) t AS W x (t, ω) = Φ a, aω W x (t, ω )dt dω (4 114) ( t W x,ψ (a, b) 2 = W x (t, ω ) b )W Ψ a, aω dt dω = 1 + ( ) t b 2 x(t)ψ dt (4 115) a a 4 6 (4 115) a b j k a = 2 j b= 2 j k 2 c /(41)

29 ω 1 a a σ 1 t ω 1 σ t σ ω 1 ω1 a 1 σ a ω 1 ω 0 σt σ ω ω 1 0 a 0 a0σ t σω a 0 τ τ 1 0 t b 0 t b 1 a b W x,ψ ( j, k) 2 = + x(t)2 j/2 Ψ (2 j t k)dt 2 (4 116) 2 1) Jont B Allen and Lawerence R Rabiner, A Unified Approach to Short-Time Fourier Analysis and Synthesis, Proc of the IEEE, vol65, no11, pp , ) Michael R Portnoff, Time-Frequency Representation of Digital Signals and Systems Based on Short- Time Fourier Analysis, IEEE Trans Acoustics, Speech and Signal Processing, volassp-28, no1, pp55-69, ) TACM Claasen and WFG Mecklenbrauker, The Wigner Distribution A Tool for Time-Frequency Signal Analysis Part I: Continuous-Time Signals, Philips J Res 35, pp , ) TACM Claasen and WFG Mecklenbrauker, The Wigner Distribution A Tool for Time-Frequency Signal Analysis Part II: Discrete-Time Signals, Philips J Res 35, pp , ) TACM Claasen and WFG Mecklenbrauker, The Wigner Distribution A Tool for Time-Frequency Signal Analysis Part III: Relations with Other Time-Frequency Signal Transformations, Philips J Res 35, pp , ) O Rioul and P Flandrin, Time-Scale Energy Distributions: A General Class Extending Wavelet Transforms, IEEE Trans on Signal Processing, vol40, no7, pp , ) Boualem Boashash, Estimating and Interpreting the Instantaneous Frequency of a Signal Part 1: Fundamentals, Proc of the IEEE, vol80, no4, pp , ) Boualem Boashash, Estimating and Interpreting the Instantaneous Frequency of a Signal Part 2: Algorithm and Applications, Proc of the IEEE, vol80, no4, pp , ) F Hlawatsch and GF Boudreaux-Bartels, Linear and Quadratic Time-Frequency Signal Representations, IEEE SP Magazine, pp21-67, 1992 c /(41)

30 10) RE Crochiere and LR Rabiner, Multi-Rate Digital Signal Processing, Prentice-Hall, Inc, Englewood Cliffs, NJ, ) L Cohen, Time-Frequency Analysis, Prentice-Hall, Inc, Englewood Cliffs, NJ, ), (a) (b) Case 1 Case 2(a) (b) 2 1) u(k) y(k) 4 7 Time-Varying Model 4 7 u(k) c /(41)

31 2, 3, 4, ARMA 5) n m y(k) = a i (k)y(k i) + u(k) + b j (k)u(k j) + w(k) i=1 j=1 (4 117) a i (k) b j (k) w(k) 6, a i (k) MA FIR 7) b j (k) 8, 9, AR IIR 10) AR AR Case 1 (4 117) 8, 9, 11) MEM MLM Case 2 Case 2(a) (4 117) 14) Case 2(b) (4 117) AR 11) ARMA 12, 13) 15, 16, 17) p(k + 1) = A(k)p(k) + q(k) y(k) = h(k) t p(k) + w(k) (4 118) p(k) k h(k) A(k) q(k) (4 117) A(k) q(k) p(k) (4 117) 6, M-1 LMS 7) 1, 2, 3, M-2 RLS 4) M-3 c /(41)

32 5, 10) 3 M-1 M-2 M-3 (4 118) 3 18) y(k) = s c i (k) f (i, k) + w(k) i=1 (4 119) f (i, k) c i (k) c i (k) c i (k) f (i, k) y(k) u(k) 4 8 Time-Varying Model Network (4 119) Radial Base Function (RBF) 19, 20, 21) y(k) = s t c i (k) f (i, k) + g i,k (u(k)) + n(k) i=1 i=1 (4 120) f (i, k) (4 119) g i,k (u(k)) RBF 4 8 c /(41)

33 RBF RBF 22) (4 120) 4 1) Yoshikazu Miyanaga, Eisuke Horita, Jun ya Shimizu, Koji Tochinai, Design of Time-Varying ARMA Models and Its Adaptive Identification, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vole77-a, no5, pp , May ) Hiroyoshi Morikawa, Adaptive estimation of time-varying model order in the ARMA speech analysis, IEEE Transactions on Acoustics, Speech and Signal Processing, vol38, no7, pp , July ) Yoshikazu Miyanaga, Nobuhiro Miki, Nobuo Nagai, Kozo Hatori, A Speech Analysis Algorithm Which Eliminates the Influence of Pitch Using the Model Reference Adaptive System, IEEE Transaction on Acoustic, Speech and Signal Processing, volassp-30, no1, pp88-96, Feb ) Yoshikazu Miyanaga, Nobuhiro Miki, Nobuo Nagai, Adaptive Identification of a Time-Varying ARMA Speech Model, IEEE Transaction on Acoustic, Speech and Signal Processing, volassp-34, no3, pp , June ) EN Demiris, SD Likothanassis, BG Konstadopoulou, DG Karelis, Real time nonlinear ARMA model structure identification, IEEE Proceedings of th International Conference on Digital Signal Processing, no2, pp , July ) Saeed Gazor, Prediction in LMS-type adaptive algorithms for smoothly time varying environments,, IEEE Transactions on Signal Processing, vol47, no6, pp , June ) T Naito, K Hidaka, Xin Jingmin, H Ohmori, and A Sano, Adaptive equalization based on internal model principle for time-varying fading channels, IEEE Proceedings of 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp , Oct ) JR Bellegarda and DC Farden, Time-varying modelling of arbitrary non-stationary signals, IEEE Proceedings of 1988 International Conference on Acoustics, Speech, and Signal Processing, volicassp-88, no4, pp , April ) MK Emresoy and A El-Jaroudi, Evolutionary Burg spectral estimation, IEEE Signal Processing Letters, vol4, no6, pp , June ) M Arnold, XHR Milner, H Witte, R Bauer, C Braun, Adaptive AR modeling of nonstationary time series by means of Kalman filtering, IEEE Transactions on Biomedical Engineering, vol45, no5, pp , May 1998 c /(41)

34 11) A Harma, M Juntunen, A method for parametrization of time-varying sounds, IEEE Signal Processing Letters, vol9, no5, pp , May ) Yoshikazu Miyanaga, Nobuo Nagai, Nobuhiro Miki, ARMA Digital Lattice Filter Based on New Criterion, IEEE Transaction on Circuits and Systems, volcas-34, no6, pp , June ) M Haseyama, N Nagai, and N Miki, N, An adaptive ARMA four-line lattice filter for spectral estimation with frequency weighting, IEEE Transactions on Signal Processing, vol41, no6, pp , June ) KS Nathan, HF Silverman, Time-varying feature selection and classification of unvoiced stop consonants, IEEE Transactions on Speech and Audio Processing, vol2, no3, pp , July ) P Falcone, M Tufo, F Borrelli, J Asgari, HE Tseng, HE, A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems, IEEE Proceedings of th IEEE Conference on Decision and Control, pp , Dec ) J Chauvin, G Corde, P Moulin, M Castagne, N Petit, P Rouchon, Real-time combustion torque estimation on a diesel engine test bench using an adaptive Fourier basis decomposition, IEEE Proceedings of rd IEEE Conference on Decision and Control, no2, pp , Dec ) Junqing Wang and Tsu-Chin Tsao, Laser Beam Raster Scan Under Variablew Process Speed An Application of Time Varying Model Reference Repetitive Control System, IEEE Proceedings of 2005 International Conference on Advanced Intelligent Mechatronics, July ) Yi-Teh Lee and HF Silverman, On a general time-varying model for speech signals, IEEE Proceedings of 1988 International Conference on Acoustics, Speech, and Signal Processing, 1988 volicassp- 88, no1, pp95-98, April ) Hideaki Imai, Yoshikazu Miyanaga, Koji Tochinai, A Nonlinear Spectrum Estimation System Using RBF Network Modified for Signal Processing, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vole80-a, no8, pp , Aug ) NM Haan, SJ Godsill, A time-varying model for DNA sequencing data, IEEE Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, pp , Aug ) Hui Peng, H Shioya, Xiaoyan Peng and K Sato, Nonlinear MPC based on the state-space form of RBF-ARX model, Proceedings of the 2004 IEEE International Conference on Control Applications, no2, pp , Sep ) C Andrieu, M Davy, A Doucet, Efficient particle filtering for jump Markov systems Application to time-varying autoregressions, IEEE Transactions on Signal Processing, vol51, no7, pp , July 2003 c /(41)

35 ) n x 1, x 2,, x n p = m 1 + m m n Mom ( x m1 1, xm2 2,, ) [ xmn n = E x m 1 1 xm2 2 ] xmn n (4 121) E[ ] j Φ(ω 1, ω 2, ω n ) = E [ exp ( j(ω 1 x 1 + ω 2 x ω n x n ) )] Mom ( x m1 1, xm2 2,, ) xmn n = ( j) p p Φ(ω 1, ω 2,, ω n ) ω m1 1 ωm2 2 ωmn n ω1=ω 2= =ω n=0 (4 122) (4 123) Ψ(ω 1, ω 2,, ω n ) = ln ( Φ(ω 1, ω 2,, ω n ) ) p (4 124) c /(41)

36 Cum ( x m1 1, xm2 2,, ) xmn n = ( j) p p Ψ(ω 1, ω 2,, ω n ) ω m1 1 ωm2 2 ωmn n ω1=ω 2= =ω n=0 (4 125) 2 k = 0, ±1, ±2, x(k) x(k) k Mom ( x(k), x(k + l 1 ),, x(k + l n 1 ) ) = Mom ( x(0), x(0 + l 1 ),, x(0 + l n 1 ) ) (4 126) n n R(l 1, l 2,, l n 1 ) = Mom ( x(k), x(k + l 1 ),, x(k + l n 1 ) ) (4 127) 1 R = µ = E[x(k)] n n R c (l 1, l 2,, l n 1 ) = Mom ( x(k) µ, x(k + l 1 ) µ,, x(k + l n 1 ) µ ) (4 128) 2 R c (l) x(k) n n C(l 1, l 2,, l n 1 ) = Cum ( x(k), x(k + l 1 ),, x(k + l n 1 ) ) (4 129) : : 2 C(l) = 2 R(l) µ 2 = 2 R c (l) (4 130) 3 C(l 1, l 2 ) = 3 R(l 1, l 2 ) µ( 2 R(l 1 ) + 2 R(l 2 ) + 2 R(l 2 l 1 )) + 2µ 3 = 3 R c (l 1, l 2 ) (4 131) µ = 0 2 R(l) = 2 R( l), (4 132) 3 R(l 1, l 2 ) = 3 R(l 2, l 1 ) = 3 R( l 2, l 1 l 2 ) = 3 R( l 1, l 2 l 1 ) (4 133) 0 l 2 l 1 3 n (n 1) 1, n 2) c /(41)

37 n S (ω 1,, ω n 1 ) = n C(l 1,, l n 1 ) l 1= l n 1= exp ( ( jω 1 l jω n 1 l n 1 ) ), π ω i π (4 134) P(ω) = 2 S (ω) = 2 C(l) exp( jωl) (4 135) l= 3 S (ω 1, ω 2 ) 4 f (x(k + l 1 ),, x(k + l n )) = ( 1 exp 1 ) (2π) n/2 Γ 1/2 2 xt Γ 1 x (4 136) k Γ ( ) γ i j = 2 R c li l j (4 137) n n, x x = ( x(l 1 ) µ, x(l 2 ) µ,, x(l n ) µ ) t (4 138) (4 136) n R c (l 1,, l n 1 ) 0 ; n : n R c (l 1,, l n 1 ) = (4 139) 2 R c (l i l m ) ; n : allpairing (i,m) 3) (1,, n) n/2 (i, m) 0 c /(41)

38 0 0 4) B(ω 1, ω 2 ) = 3 S (ω 1, ω 2 ) = l 1= l 2= 3 C(l 1, l 2 ) exp ( ( jω 1 l 1 + jω 2 l 2 ) ) (4 140) (4 131) 3 C(l 1, l 2 ) 3 R c (l 1, l 2 ) 0 a P(ω) = P( ω), 0 ω π (4 141) B(ω 1, ω 2 ) = B(ω 2, ω 1 ) = B ( ω 2, ω 1 ) = B( ω 1 ω 2, ω 2 ) = B(ω 1, ω 1 ω 2 ), 0 ω 1, ω 2 π (4 142) (ω 1, ω 2 ) [ π, π] [ π, π] (0 ω 1 ω 2, ω 1 05π, ω 2 π ω 1 ) 1) 3 S (ω 1, ω 2 ) b (ω 1, ω 2 ) 2 θ a, θ b [ π, π] c /(41)

39 x(k) = cos(ω a k + θ a ) + cos(ω b k + θ b ) + cos(ω c k + θ c ), (4 143) ω c = ω a + ω b θ c = θ a + θ b x(k) B(ω 1, ω 2 ) = 1 ( 2 π2 δ(ω a ω 1 )δ(ω b ω 2 ), 0 ω 1 ω 2, ω 1 π ) 2, ω 2 π (4 144) 1) θ c θ a θ b 0 c B u (ω 1, ω 2 ) u(k) H(ω) x(k) B x (ω 1, ω 2 ) B x (ω 1, ω 2 ) = H(ω 1 )H(ω 2 )H (ω 1 + ω 2 )B u (ω 1, ω 2 ) (4 145) H H d B u (ω 1, ω 2 ) u(k) g(k) x(k) = u(k) + g(k) B x (ω 1, ω 2 ) B u (ω 1, ω 2 ) 0 2 (4 145) bic(ω 1, ω 2 ) = B(ω 1, ω 2 ) P(ω1 )P(ω 2 )P(ω 1 + ω 2 ) (4 146) 1, 5) (4 146) 6, 2 7) 3 L x(k), k = 0, 1,, L 1 N M x i (k), k = 0, 1,, N 1 i = 1, 2,, M W(k), k = 0, 1,, N N 1 X i (ω) = W(k) ( x i (k) µ ) exp ( jωk) k=0 (4 147) c /(41)

40 µ = 1 L 1 x(k) L k=0 (4 148) B(ω 1, ω 2 ) = 1 M M X i (ω 1 )X i (ω 2 )Xi (ω 1 + ω 2 ) i=1 (4 149) 3 R c (l 1, l 2 ) = 1 L 0 k, k+l 1, k+l 2<L ( x(k) µ ) ( x(k + l1 ) µ ) ( x(k + l 2 ) µ ) (4 150) W(l 1, l 2 ), ( K l 1, l 2 K) B(ω 1, ω 2 ) = K l 1= K l 2= K K W(l 1, l ) 3 2 R c (l 1, l 2 ) exp ( j(ω 1 l 1 + ω 2 l 2 )) (4 151) (4 145) 8) 9) 10) P(ω) = 1 M M X i (ω)xi (ω) i=1 (4 149) B(ω 1, ω 2 ) (4 152) bic(ω 1, ω 2 ) = B(ω 1, ω 2 ) P(ω 1 ) P(ω 2 ) P(ω 1 + ω 2 ) (4 153) 1 11, 14) 7) 11) 12) 13) 14) 15) 16) 17) c /(41)

41 18) 1) CL Nikias, AP Petropulu, Higher-order spectra analysis, Prentice Hall, ) DR Brillinger and M Rosenblatt, Asymptotic theory of estimation of k-th order spectra, Spectral Analysis of Time Series(Ed by B Harris), John Wiley & Sons, INC, pp , ),,, ),,, ),,, ) MJ Hinich, Tests for Gaussianity and linearity of a stationary timeseries, Journal of Timeseries Analysis, vol3, no3, pp , ) A, volj91-a, no9, pp , ) MR Raghuveer and CL Nikias, Bispectrum estimation: a parametric approach, IEEE Trans ASSP, vol33, no5, pp , ),, A, volj79-a, no6, pp , ),, A, volj88-a, no8, pp , ) YC Kim and EJ Powers, Digital Bispectral Analysis and Its Appliction to Nonlinear Wave Interactions, IEEE Trans Plasma Science, volps-7, no2, pp , ) 3 31, Journal of Plasma and Fusion Research, vol81, no12, pp , ) Tong H, Non linear time series, Oxford Science Publications, ) JWA Fackrell, Bispectral Analysis of Speech Signals, PhD Thesis, The University of Edinburgh, ) A Pillepich, C Porciani and S Matarrese, The bispectrum of redshifted 21 centimeter fluctuations from the dark ages, The Astrophysical J, vol662, pp1-14, ) D Kocur and R Stanko, Order Bispectrum: A New Tool for Reciprocated Machine Condition Monitoring, Mechanical Systems and Signal Processing, vol14, no6, pp , ),, ME, vol11, no4, pp , ) PS Glass, etal, Bispectral Analysis Measures Sedation and Memory Effects of Propofol, Midazolam, Isoflurame, and Alfentanil in Healthy Volunteers, Anesthesiology, vol86, no4, pp , 1997 c /(41)

ds2.dvi

ds2.dvi 1 Fourier 2 : Fourier s(t) Fourier S(!) = s(t) = 1 s(t)e j!t dt (1) S(!)e j!t d! (2) 1 1 s(t) S(!) S(!) =S Λ (!) Λ js T (!)j 2 P (!) = lim T!1 T S T (!) = T=2 T=2 (3) s(t)e j!t dt (4) T P (!) Fourier P

More information

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5 1 -- 5 5 2011 2 1940 N. Wiener FFT 5-1 5-2 Norbert Wiener 1894 1912 MIT c 2011 1/(12) 1 -- 5 -- 5 5--1 2008 3 h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)]

More information

1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N = 2 3--1-

1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N = 2 3--1- 1 -- 9 3 2009 2 LMS NLMS RLS FIR IIR 3-1 3-2 3-3 3-4 c 2011 1/(13) 1 -- 9 -- 3 3--1 LMS NLMS 2009 2 LMS Least Mean Square LMS Normalized LMS NLMS 3--1--1 3 1 AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N

More information

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 1, 2 1 1 1 Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1 Nobutaka ONO 1 and Shigeki SAGAYAMA 1 This paper deals with instrument separation

More information

main.dvi

main.dvi 3 Discrete Fourie Transform: DFT DFT 3.1 3.1.1 x(n) X(e jω ) X(e jω )= x(n)e jωnt (3.1) n= X(e jω ) N X(k) ωt f 2π f s N X(k) =X(e j2πk/n )= x(n)e j2πnk/n, k N 1 (3.2) n= X(k) δ X(e jω )= X(k)δ(ωT 2πk

More information

main.dvi

main.dvi 6 FIR FIR FIR FIR 6.1 FIR 6.1.1 H(e jω ) H(e jω )= H(e jω ) e jθ(ω) = H(e jω ) (cos θ(ω)+jsin θ(ω)) (6.1) H(e jω ) θ(ω) θ(ω) = KωT, K > 0 (6.2) 6.1.2 6.1 6.1 FIR 123 6.1 H(e jω 1, ω

More information

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) ) 1 -- 5 6 2009 3 R.E. Kalman ( ) H 6-1 6-2 6-3 H Rudolf Emil Kalman IBM IEEE Medal of Honor(1974) (1985) c 2011 1/(23) 1 -- 5 -- 6 6--1 2009 3 Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t

More information

untitled

untitled 18 1 2,000,000 2,000,000 2007 2 2 2008 3 31 (1) 6 JCOSSAR 2007pp.57-642007.6. LCC (1) (2) 2 10mm 1020 14 12 10 8 6 4 40,50,60 2 0 1998 27.5 1995 1960 40 1) 2) 3) LCC LCC LCC 1 1) Vol.42No.5pp.29-322004.5.

More information

カルマンフィルターによるベータ推定( )

カルマンフィルターによるベータ推定( ) β TOPIX 1 22 β β smoothness priors (the Capital Asset Pricing Model, CAPM) CAPM 1 β β β β smoothness priors :,,. E-mail: koiti@ism.ac.jp., 104 1 TOPIX β Z i = β i Z m + α i (1) Z i Z m α i α i β i (the

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

p03.dvi

p03.dvi 3 : 1 ( ). (.. ), : 2 (1, 2 ),,, etc... 1, III ( ) ( ). : 3 ,., III. : 4 ,Weierstrass : Rudin, Principles of Mathematical Analysis, 3/e, McGraw-Hil, 1976.. Weierstrass (Stone-Weierstrass, ),,. : 5 2π f

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

Microsoft Word - 信号処理3.doc

Microsoft Word - 信号処理3.doc Junji OHTSUBO 2012 FFT FFT SN sin cos x v ψ(x,t) = f (x vt) (1.1) t=0 (1.1) ψ(x,t) = A 0 cos{k(x vt) + φ} = A 0 cos(kx ωt + φ) (1.2) A 0 v=ω/k φ ω k 1.3 (1.2) (1.2) (1.2) (1.1) 1.1 c c = a + ib, a = Re[c],

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1 72 12 2016 pp. 739 748 739 43.60.+d 2 * 1 2 2 3 2 125 Hz 0.3 0.8 2 125 Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1. 1.1 PSS [1] [2 4] 2 Wind-induced noise reduction

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1. Section Title Pages Id 1 3 7239 2 4 7239 3 10 7239 4 8 7244 5 13 7276 6 14 7338 7 8 7338 8 7 7445 9 11 7580 10 10 7590 11 8 7580 12 6 7395 13 z 11 7746 14 13 7753 15 7 7859 16 8 7942 17 8 Id URL http://km.int.oyo.co.jp/showdocumentdetailspage.jsp?documentid=

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

impulse_response.dvi

impulse_response.dvi 5 Time Time Level Level Frequency Frequency Fig. 5.1: [1] 2004. [2] P. A. Nelson, S. J. Elliott, Active Noise Control, Academic Press, 1992. [3] M. R. Schroeder, Integrated-impulse method measuring sound

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3) 72 12 2016 pp. 777 782 777 * 43.60.Pt; 43.38.Md; 43.60.Sx 1. 1 2 [1 8] Flexible acoustic interface based on 3D sound reproduction. Yosuke Tatekura (Shizuoka University, Hamamatsu, 432 8561) 2. 2.1 3 M

More information

2013 M

2013 M 2013 M0110453 2013 : M0110453 20 1 1 1.1............................ 1 1.2.............................. 4 2 5 2.1................................. 6 2.2................................. 8 2.3.................................

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke

More information

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2

x T = (x 1,, x M ) x T x M K C 1,, C K 22 x w y 1: 2 2 Takio Kurita Neurosceince Research Institute, National Institute of Advanced Indastrial Science and Technology takio-kurita@aistgojp (Support Vector Machine, SVM) 1 (Support Vector Machine, SVM) ( ) 2

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

03.Œk’ì

03.Œk’ì HRS KG NG-HRS NG-KG AIC Fama 1965 Mandelbrot Blattberg Gonedes t t Kariya, et. al. Nagahara ARCH EngleGARCH Bollerslev EGARCH Nelson GARCH Heynen, et. al. r n r n =σ n w n logσ n =α +βlogσ n 1 + v n w

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

橡表紙参照.PDF

橡表紙参照.PDF CIRJE-J-58 X-12-ARIMA 2000 : 2001 6 How to use X-12-ARIMA2000 when you must: A Case Study of Hojinkigyo-Tokei Naoto Kunitomo Faculty of Economics, The University of Tokyo Abstract: We illustrate how to

More information

(1970) 17) V. Kucera: A Contribution to Matrix Ouadratic Equations, IEEE Trans. on Automatic Control, AC- 17-3, 344/347 (1972) 18) V. Kucera: On Nonnegative Definite Solutions to Matrix Ouadratic Equations,

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

24 201170068 1 4 2 6 2.1....................... 6 2.1.1................... 6 2.1.2................... 7 2.1.3................... 8 2.2..................... 8 2.3................. 9 2.3.1........... 12

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

power.tex

power.tex Contents ii 1... 1... 1... 7... 7 3 (DFFT).................................... 8 4 (CIFT) DFFT................................ 10 5... 13 6... 16 3... 0 4... 0 5... 0 6... 0 i 1987 SN1987A 0.5 X SN1987A

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x

2D-RCWA 1 two dimensional rigorous coupled wave analysis [1, 2] 1 ε(x, y) = 1 ε(x, y) = ϵ mn exp [+j(mk x x + nk y y)] (1) m,n= m,n= ξ mn exp [+j(mk x 2D-RCWA two dimensional rigoros copled wave analsis, 2] εx, εx, ϵ mn exp +jmk x x + nk ] m,n m,n ξ mn exp +jmk x x + nk ] 2 K x K x Λ x Λ ϵ mn ξ mn K x 2π Λ x K 2π Λ ϵ mn ξ mn Λ x Λ x Λ x Λ x Λx Λ Λx Λ

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

ohpr.dvi

ohpr.dvi 2003/12/04 TASK PAF A. Fukuyama et al., Comp. Phys. Rep. 4(1986) 137 A. Fukuyama et al., Nucl. Fusion 26(1986) 151 TASK/WM MHD ψ θ ϕ ψ θ e 1 = ψ, e 2 = θ, e 3 = ϕ ϕ E = E 1 e 1 + E 2 e 2 + E 3 e 3 J :

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se The Visual Servo Control of Drone in Consideration of Dead Time,, Junpei Shirai and Takashi Yamaguchi and Kiyotsugu Takaba Ritsumeikan University Abstract Recently, the use of drones has been expected

More information

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B I ino@hiroshima-u.ac.jp 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T 2.6 FFT(Fast Fourier Transform 2.6. T g(t g(t 2 a 0 + { a m b m 2 T T 0 2 T T 0 (a m cos( 2π T mt + b m sin( 2π mt ( T m 2π g(t cos( T mtdt m 0,, 2,... 2π g(t sin( T mtdt m, 2, 3... (2 g(t T 0 < t < T

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ = 1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 4 2010 9 3 3 4-1 Lucas-Kanade 4-2 Mean Shift 3 4-3 2 c 2013 1/(18) http://wwwieice-hbkborg/ 2 2 4 2 -- 2 -- 4 4--1 2010 9 4--1--1 Optical Flow t t + δt 1 Motion Field

More information

05Mar2001_tune.dvi

05Mar2001_tune.dvi 2001 3 5 COD 1 1.1 u d2 u + ku =0 (1) dt2 u = a exp(pt) (2) p = ± k (3) k>0k = ω 2 exp(±iωt) (4) k

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

画像工学特論

画像工学特論 .? (x i, y i )? (x(t), y(t))? (x(t)) (X(ω)) Wiener-Khintchine 35/97 . : x(t) = X(ω)e jωt dω () π X(ω) = x(t)e jωt dt () X(ω) S(ω) = lim (3) ω S(ω)dω X(ω) : F of x : [X] [ = ] [x t] Power spectral density

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

seminar0220a.dvi

seminar0220a.dvi 1 Hi-Stat 2 16 2 20 16:30-18:00 2 2 217 1 COE 4 COE RA E-MAIL: ged0104@srv.cc.hit-u.ac.jp 2004 2 25 S-PLUS S-PLUS S-PLUS S-code 2 [8] [8] [8] 1 2 ARFIMA(p, d, q) FI(d) φ(l)(1 L) d x t = θ(l)ε t ({ε t }

More information

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ  Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation ( ) ( ) 2016 12 17 1. Schrödinger focusing NLS iu t + u xx +2 u 2 u = 0 u(x, t) =2ηe 2iξx 4i(ξ2 η 2 )t+i(ψ 0 +π/2) sech(2ηx

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information