[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

Size: px
Start display at page:

Download "[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)"

Transcription

1 . D : E = κ < : E = k > : : β A Green (Dated: June 6, 5) Schrödinger ħh m + g δ (D ) (x ) Ψ(x ) = E Ψ(x ) D D = D = (dimensional transmutation) g <. m D Schrödinger : ħh m + g δ (D ) (x ) Ψ(x ) = E Ψ(x ). (.) E g ħh m ħh m : ħh = m =. (.) Schrödinger (.): + g δ (D ) (x ) Ψ(x ) = E Ψ(x ). (.3) ħh = m =, D δ (D ) (x ) /

2 [ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) (renormalization)... D Schrödinger (.3) Green D D... : E = κ < E < E = κ (κ > ) Schrödinger : + V (x ) Ψ(x ) = κ Ψ(x ). (.4) V (x ) = g δ (D ) (x ) (.4) : Ψ(x ) = d D y G B (x,y ;κ)v (y )Ψ(y ). (.5) G B (x,y ;κ) Green : κ + x GB (x,y ;κ) = δ (D ) (x y ). (.6) (A): G B (x,y ;κ) = d D p e i p (x y ) (π) D κ p = π κ π x y D K D κ x y. (.7) K ν (z ) ν (.5) Schrödinger (.4) (.5) κ + x (.6) ( κ + )Ψ(x ) = V (x )Ψ(x ) Schrödinger (.4)(.5) Ψ /

3 (.5) Schrödinger V (y ) = g δ (D ) (y ) (.5) y : Ψ(x ) = g G B (x,;κ)ψ(). (.8) Ψ() E = κ < Green (.7) (.8) x = : Ψ() = g G B (,;κ)ψ(). (.9) : = g G B (,;κ). (.) κ κ g E = κ (.) (.) (self-consistency condition)... : E = k > E = k > (k > ) Schrödinger : + V (x ) Ψ(x ) = k Ψ(x ). (.) V (x ) = g δ (D ) (x ) V (x ) x Schrödinger (.) Ψ + k ( k ) : Ψ + k (x ) = ei k x + d D y G + (x,y ;k)v (y )Ψ + k (y ). (.) G + (x,y ;k) Green k + x G + (x,y ;k) = δ (D ) (x y ) (.3) : G + (x,y ;k) = d D p e i p (x y ) (π) D k p + i ε = i 4 k π x y D H () D k x y. (.4) ε H ν () (z ) ν (.) Lippmann- Schwinger. (.) Schrödinger (.4) (.) k + x (.3) (k + )Ψ + k (x ) = V (x )Ψ+ k (x ) Schrödinger (.)(.) Ψ + k Schrödinger (.) Lippmann-Schwinger Schrödinger Schrödinger (.4) ε 3/

4 (.) V (y ) = g δ (D ) (y ) y : x = : Ψ + k () : (.5): Ψ + k (x ) = ei k x + g G + (x,;k)ψ + k (). (.5) Ψ + k () = + g G + (,;k)ψ + k (). (.6) Ψ + k () = g G + (,;k). (.7) Ψ + k (x ) = ei k x + g G + (x,;k) g G + (,;k). (.8) Green Schrödinger H ν () : (z ) z G + (x,y ;k) k D 3 i[k x y (D e 3)π/4] 4π π x y D : πz ei (z (ν+)π/4) Green as x y. (.9) Ψ + k (x ) ei k x [k x (D 3)π/4] ei + f (k) x D as x. (.) f (k) :.. f (k) = k D 3 g Ψ + k 4π π () = k D 3 g 4π π g G + (,;k). (.) Schrödinger (.)(.) G B (,;κ) G + (,;k) : d D p G B (,;κ) = = for D, (.a) (π) κ + p d G + D p (,;k) = = for D. (.b) (π) k p + i ε g D = 4/

5 ... : (.a)(.b) p : d p (π) d p (π). (.3) p <Λ Λ (.) : d p (.) = g G B (,;κ) = g (π) κ + p Λ p <Λ Λ πp d p = g (π) κ + p = g d p 4π κ + p = g κ 4π log + Λ. (.4) κ Λ (.4) Λ = Λ : κ + Λ Λ log = log + κ Λ = log + log + κ κ κ Λ κ Λ κ = log + κ +. (.5) κ Λ Λ Taylor log(+ x ) = x x + Λ (.4) logλ (.5) Λ (.):... : g G B (,;κ) = g 4π log Λ Λ + O (Λ ). (.6) (.a)(.b) D ε D = ε : d p d D (π) p (π), (.7a) D κ g g µ D. (.7b) µ D g (D D ) µ (.) : d (.) = g µ D G B (,;κ) = g µ D D p (π) D κ + p g µ D = (4π) D / Γ (D /) d p κ + p = g (µ/κ) D (4π) D / Γ (D /) p D d x x D / + x = g (µ/κ) D Γ ( D /) (4π) D /. (.8) 5/

6 3 d D p f (p) = d p p D f (p ) (f p = p ) 4 x = p /κ B (p,q ) = πd / Γ (D /) x p Γ (p)γ (q ) d x = ( + x ) p +q Γ (p + q ) (.9) Γ () = (.8) D = D =.99 ε (.8): (.8) = g (µ/κ)ε Γ (ε/) (4π) ε/ D = ε (.3) = g ε/ 4π µ Γ (ε/). (.3) 4π κ ε (4πµ /κ ) ε/ Γ (ε/) ε = : ε/ 4π µ = e ε log 4π µ κ = + ε 4π κ log µ + O (ε ), (.3a) κ Γ (ε/) = ε γ + O (ε). (.3b) γ.577 Euler (.3)(.) : g µ D G B (,;κ) = g µ γ + log(4π) + log + O (ε). (.33) 4π ε κ..3. Λ ε g Λ ε (.6)(.33) g ( E = κ ) (.) : (): (): g = 4π g = 4π Λ µ log + log + O (Λ ), (.34a) µ κ µ γ + log(4π) + log + O (ε). (.34b) ε κ (.34a) µ : (): (): := lim Λ := lim ε g + Λ 4π log, (.35a) µ g + 4π ε γ + log(4π). (.35b) := lim ε g + 4π ε minimal subtraction ( MS) (.35b) modified minimal subtraction ( MS ( )) MS 6/

7 g Λ ε g (.34a)(.34b) Λ ε : = 4π log µ. (.36) κ E B = κ : 4π E B = µ exp. (.37) (.35a)(.35b)(.) D = : κ f (k) = 8πk g G + (,;k). (.38) G + (x,y ;k) = G B (x,y ; i k) κ = k G + (,;k) : Λ µ log + log + O (Λ ) (), G + 4π µ k (,;k) = (.39) µ γ + log(4π) + log + O (ε) (). 4π ε k (.35a)(.35b) f (k) = 8πk + 4π log µ (.4) k (.36) = µ 4π log( E B ) (.4) π f (k) = k log EB k (.4) E B E B g E B.3. β µ E B (.) µ E B µ E B µ : µ d d µ E B =. (.4) 7/

8 d d µ µ d d µ (.4) µ E B µ (µ) E B (µ, (µ)) µ d E B d µ = µ E B µ + µ d d µ (.4): E B µ µ + β(g R ) E B =. (.43) β( ) β : β( ) := µ d d µ. (.44) E B (.37) µ β : = µ E B µ + β( ) E B = µ e 4π/ + β( ) µ e 4π/ 4π gr = 4π gr β( ) E B. (.45) (.45) β (.46) (.47) d g R ( < t < ) : ḡ (t ) β( ) = π g R (.46) µ d d µ = π g R (.47) d g R = d µ π µ µ µet = µe t d µ π µ. (.48) µ ḡ (t ) µe t : ḡ (t ) = π t. (.49) ḡ (t ) (running coupling constant) ḡ (t ) e t k e t k ke t : f (ke t ; ) = 8πke t + 4π log µ k e t = e t 8πk t π + 4π log µ = e t 8πk ḡ (t ) + 4π log µ k k = e t f (k;ḡ (t )). (.5) 8/

9 ḡ (t ) π π t Figure : ḡ (t ) =. t = g π t R () ( ) e t / (.5) k e t k ḡ (t ) ḡ (t ) t ḡ (t ) () t. : C. Thorn, Quark confinement in the infinite-momentum frame, Phys. Rev. D9 (979) [INSPIRE]. Roman Jackiw 99 : R. Jackiw, Delta function potentials in two-dimensional and three-dimensional quantum mechanics, in M. A. B. Bég Memorial Volume, A. Ali and P. Hoodbhoy, eds. World Scientific Publishing, 99 [INSPIRE]; scanned version available in the KEK library: (self-adjoint extension) ( ) Jackiw Schrödinger (.3) Schrödinger. 9/

10 S[ψ,ψ ] = d t d x i ψ t ψ ψ g ψ 4 (.) 4 Γ (4) Γ (4) Oren Bergman 99 O. Bergman, Nonrelativistic field theoretic scale anomaly, Phys. Rev. D46 (99) [INSPIRE].. Lippmann-Schwinger Bernard Lippmann Julian Schwinger B. A. Lippmann and J. Schwinger, Variational Principles for Scattering Processes. I, Phys. Rev. 79 (95) [INSPIRE] Steven Weinberg Lectures on Quantum Mechanics..3Sidney Coleman Erick Weinberg 973 Coleman-Weinberg S. Coleman and E. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D7 (973) [INSPIRE] Kenneth G. Wilson K. G. Wilson and J. B. Kogut, The renormalization group and the ε expansion, Phys. Rep. (974) [INSPIRE] A. Green Green G B G B : ( κ + x )G B (x,y ;κ) = δ (D ) (x y ). (A.) Fourier : G B (x,y ;κ) = d D p (π) D e i p (x y ) κ + p. (A.) Schwinger : κ + p = d t e t (κ +p ). (A.3) /

11 Schwinger t Schwinger (A.3)(A.): G B (x,y ;κ) = = d D p (π) D d t e t κ = (4π) D / = κ 4π π x y d t e t (κ +p )+i p (x y ) x y 4t D j = d t t D / e t κ D x y 4t d s e s D / d p j π e t p j i x j y j t κ x y (s + s ). (A.4) s = κt / x y Green G B (x,y ;κ) = π κ π x y D K D κ x y (A.5) 3 : κ e κ x y G B (x,y ;κ) = π K κ x y for D = ; for D = ; (A.6) K / (z ) = K / (z ) = π z e z 4π x y e κ x y for D = 3. /

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0 1473 : de nouvelles perspectives 2006 2 pp 102 119 VI q 1 Tetsuya Kikuchi Sabro Kakei Drinfel d-sokolov Painlevé [KK1] [KK2] [KK3] [KIK] [ ] [ ] [KK3] three-wave equation Painlevé VI q q Drinfel d-sokolov

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

10 : 3010 : 54 1F Annex 1! 1 15:3015 : 58 1F Annex 1

10 : 3010 : 54 1F Annex 1! 1 15:3015 : 58 1F Annex 1 4 16 1 10:0010 : 24 1F Annex 1! 2 15:0015 : 24 1F Annex 1!! 10 : 3010 : 54 1F Annex 1! 1 15:3015 : 58 1F Annex 1 ! 2 10:0010 : 28 1F Annex 1 3 15:0015 : 28 1F Annex 1 4 10:3010 : 58 1F Annex 1 1 15:3015

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

10 10 10095 95 100 108

10 10 10095 95 100 108 25491231 21 21 114 10 10 10095 95 100 108 10 10 2510 079685 10 100 109 20 2015 110 134 e [ 350 350 145 18 111 112 16 18 16 18 1816 18 20 48 25 20315 28 113 114 25 05 03 01 20 100150 Q & A Q A 18 16 Q &

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

RX501NC_LTE Mobile Router取説.indb

RX501NC_LTE Mobile Router取説.indb 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 19 20 21 22 1 1 23 1 24 25 1 1 26 A 1 B C 27 D 1 E F 28 1 29 1 A A 30 31 2 A B C D E F 32 G 2 H A B C D 33 E 2 F 34 A B C D 2 E 35 2 A B C D 36

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

90 0 4

90 0 4 90 0 4 6 4 GR 4 7 0 5 8 6 9 0 4 7 00 0 5 8 0 6 9 4 7 0 5 8 6 9 0 4 7 00 0 5 8 0 6 9 4 7 0 5 8 6 9 0 4 7 00 0 5 8 0 6 9 0 0 4 5 6 7 0 4 6 4 5 7 5 6 7 4 5 6 4 5 6 7 4 5 7 4 5 6 7 8 9 0 4 5 6 7 5 4 4

More information

LECTURES 27 138 130 211 19 96 46 143 16 29 26 89 138 100 16 173 126 148 40 99 56 83 102 400 9 24 253 85 160 734 25 761 655 814 211 97 13 94 9 22 101 88 14 40 19 98 139 21 487 313 7 48 1037 23 12

More information

202

202 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 DS =+α log (Spread )+ β DSRate +γlend +δ DEx DS t Spread t 1 DSRate t Lend t DEx DS DEx Spread DS

More information

( ) p.2/70

( ) p.2/70 p.1/70 ( ) p.2/70 ( p.3/70 (1)20 1970 cf.box and Jenkins(1970) (2)1980 p.4/70 Kolmogorov(1940),(1941) Granger(1966) Hurst(1951) Hurst p.5/70 Beveridge Wheat Prices Index p.6/70 Nile River Water Level p.7/70

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A 7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

() 1 1 2 2 3 2 3 308,000 308,000 308,000 199,200 253,000 308,000 77,100 115,200 211,000 308,000 211,200 62,200 185,000 308,000 154,000 308,000 2 () 308,000 308,000 253,000 308,000 77,100 211,000 308,000

More information