今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未"

Transcription

1 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期

2 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法 拘束がある場合の運動方程式 拘束力がある場合のエネルギー保存則

3 ラグランジュの運動方程式運動方程式の導出 レジュメ p.44, 45 d dt L x& L x が成り立つことの証明 ( ハミルトンの原理 最小作用の原理 )

4 ラグランジュの運動方程式運動方程式の導出 レジュメ p.44, 45 d dt L x& L x が成り立つことの証明 ( ハミルトンの原理 最小作用の原理 ) 手順 一般化ダランベールの原理 δ W n i ( f & x ) δx i m i から出発し 変分問題に帰着 i i

5 リンク機構機構のラグランジュの運動方程式 運動エネルギー K & T q Mq& M: 慣性行列 xcom lg l xcom lg m I q m I q

6 リンクリンクリンクリンク リンクリンクリンクリンク機構機構機構機構機構機構機構機構のラグランジュラグランジュラグランジュラグランジュの運動方程式運動方程式運動方程式運動方程式ラグランジュラグランジュラグランジュラグランジュの運動方程式運動方程式運動方程式運動方程式運動エネルギー運動方程式 q q lg lg l m I m I xcom xcom Mq q & & T K d d + + h Mq q Mq Mq q q && & & && & K K K t M: 慣性行列

7 M 慣性行列 M M i i J m T comi i 慣性行列 M m i i J I i comi xcom lg l xcom lg m I q m I q x& comi J comi q& x& comi : i リンク目の重心の速度

8 非線形微分方程式とカオス 一定の規則に従う ( 決定論的 ) にもかかわらず 予測不能な複雑な振る舞いをすることを カオスと呼ぶ 例 一定の規則 ( 非線形微分方程式 ) カオス M& q& + h+ g q は複雑に振舞う

9 バタフライ効果 ブラジルでの蝶の羽ばたきがテキサスで トルネードを引き起こすこと 小さな初期条件の違いが 未来に大きな影響を及ぼすという意味 天気予報が当たらない理由

10 リンク機構機構のエネルギーエネルギー保存則 リンク機構に保存力だけが作用する場合 全エネルギーは時間によって変化しない

11 リンク機構機構のエネルギーエネルギー保存則 リンク機構に保存力だけが作用する場合 全エネルギーは時間によって変化しない 全エネルギー E K+ U 運動エネルギー K 重力によるポテンシャルエネルギー U mglg sin q+ mg g + q 運動方程式 M& q& + h+ g { l sin q + l sin( q )} & T q Mq& xcom lg l xcom lg m I q m I q g

12 リンク機構機構のエネルギーエネルギー保存則 リンク機構に保存力だけが作用する場合 全エネルギーは時間によって変化しない 全エネルギー E K+ U 運動エネルギー K 重力によるポテンシャルエネルギー U mglg sin q+ mg g + q { l sin q + l sin( q )} & T q Mq& E& q& T 運動方程式 M& q& + h+ g ( T T q Mq+ q Mq & T && & & & + q& Mq&& ) Mq&& + Mq & U & + q q& T + q& T U q Mq & & h xcom lg l xcom lg m I q m I q g

13 エネルギー パワーパワー 速度速度 力の関係 全エネルギー ( 単位は [J]) エネルギーの時間微分はパワー ( 単位は [W]) 力 [N] 速度 [m/s] パワー [W] ( 回転系では トルク [Nm] 角速度 [rad/s] パワー [W])

14 エネルギー パワーパワー 速度速度 力の関係 全エネルギー ( 単位は [J]) エネルギーの時間微分はパワー ( 単位は [W]) 力 [N] 速度 [m/s] パワー [W] ( 回転系では トルク [Nm] 角速度 [rad/s] パワー [W]) 例 エネルギー パワー & E mx + kx ( mx kx) E & x& & + 速度 力

15 エネルギー パワーパワー 速度速度 力の関係 全エネルギー ( 単位は [J]) エネルギーの時間微分はパワー ( 単位は [W]) 力 [N] 速度 [m/s] パワー [W] ( 回転系では トルク [Nm] 角速度 [rad/s] パワー [W]) 例 エネルギー パワー E& E & T q T q & Mq&& + M& q& 角速度トルク Mq& xcom lg l xcom lg m I q m I q

16 外力が作用作用するする場合場合の運動方程式 レジュメ p.47 系に外力 ( トルク ) が作用する場合 運動方程式の右辺に外力 ( トルク ) を加える

17 外力が作用作用するする場合場合の運動方程式 レジュメ p.47 系に外力 ( トルク ) が作用する場合 運動方程式の右辺に外力 ( トルク ) を加える 例 k m x f d dt 運動方程式 L L mx && + kx x& x f

18 外力外力外力外力が作用作用作用作用するするするする場合場合場合場合の運動方程式運動方程式運動方程式運動方程式外力外力外力外力が作用作用作用作用するするするする場合場合場合場合の運動方程式運動方程式運動方程式運動方程式レジュメ p.47 系に外力 ( トルク ) が作用する場合 運動方程式の右辺に外力 ( トルク ) を加える f kx mx x L x L t + && & d d τ h Mq q q + d d τ τ && & K K t 例 x m k f q q lg lg l m I m I xcom xcom τ τ 運動方程式運動方程式

19 粘性 速度と逆方向に速度に比例した力 トルクを粘性力 トルクと呼ぶ k x 例 m -dx

20 粘性 速度と逆方向に速度に比例した力 トルクを粘性力 トルクと呼ぶ k x 例 m -dx m & x 運動方程式 + kx dx&

21 粘性によるによるエネルギーエネルギー消散 系に保存力と粘性による力が働く場合 系の全エネルギーは時間の経過に伴い単調に減少する k x E m -dx t

22 粘性粘性粘性粘性粘性粘性粘性粘性によるによるによるによるエネルギーエネルギーエネルギーエネルギー消散消散消散消散によるによるによるによるエネルギーエネルギーエネルギーエネルギー消散消散消散消散系に保存力と粘性による力が働く場合 系の全エネルギーは時間の経過に伴い単調に減少する + kx mx E & x m k -dx 全エネルギー運動方程式 dx kx x m & & & +

23 粘性粘性粘性粘性粘性粘性粘性粘性によるによるによるによるエネルギーエネルギーエネルギーエネルギー消散消散消散消散によるによるによるによるエネルギーエネルギーエネルギーエネルギー消散消散消散消散 ( ) + + dx kx mx x kxx mxx E & && & & &&& & 系に保存力と粘性による力が働く場合 系の全エネルギーは時間の経過に伴い単調に減少する + kx mx E & x m k -dx 全エネルギー運動方程式 dx kx x m & & & +

24 慣性 粘性粘性 剛性剛性と微分方程式 k x m -dx m x 運動方程式 && + dx& + kx

25 慣性 粘性粘性 剛性剛性と微分方程式 k x m -dx m x 運動方程式 && + dx& + kx 慣性粘性剛性 ( 弾性 ) 各力の物理的性質と微分の次数が対応している

26 拘束条件 レジュメ p.49 幾何学的 力学的拘束を 関数 f ( x, x& ) で表したもの

27 拘束条件 レジュメ p.49 幾何学的 力学的拘束を 関数 f ( x, x& ) で表したもの 例 三平方の定理 (xr,yr) r ( x x ) + ( y y ) r r f ( x, y) 拘束条件 ( 位置 ) ( ) ( ) x x + y y r r r m (x,y)

28 位置 f 速度加速度 拘束条件の例 π q, q) q+ q l kabe sin 4 ( f &( q, q) q& + q& && f ( q, q) q&& + q& q q lkabe π 4 [rad] x

29 位置 f 速度加速度 拘束条件の例 π q, q) q+ q l kabe sin 4 ( f &( q, q) q& + q& && f ( q, q) q&& + q& q q lkabe π 4 [rad] x 速度 位置 加速度 f ( q, q ) y ykabe y l sin q+ l sin( q+ q) f & q, q ) y& ( y& l & + & + & q sin q l( q q)sin( q+ q) && f q, q ) & y ( & y J& q& + y J y q& J y q& l q l x q f ykabe

30 ラグランジュの未定乗数法 拘束条件 f がある場合 関数 g(x) が 極値をとる条件は x g ( + λ f) である

31 ラグランジュの未定乗数法 拘束条件 f がある場合 関数 g(x) が 極値をとる条件は 例 x g 各辺の長さが a,b, ( + λ f) 周囲の長さが l ( 定数 ) の長方形の 面積が最大となる条件を求めよ b である a 最大化したい関数 g(a,b) ab 拘束条件 (a+b) l

32 ラグランジュの未定乗数法 拘束条件 f がある場合 関数 g(x) が 極値をとる条件は a b 例 極値の条件 ( g+ λf) ( g+ λf) λ l 8, a + + x g ( a+ b) l l 4 b a, b λ λ ( + λ f) l 4 b である a λ: ラグランジュの未定乗数

33 ラグランジュの未定乗数法未定乗数法による 拘束があるがある場合場合の運動方程式運動方程式の導出 極値を求めたい関数 L K - U 拘束条件 レジュメ p. 5 f(x)

34 ラグランジュの未定乗数法未定乗数法による 拘束があるがある場合場合の運動方程式運動方程式の導出 極値を求めたい関数 L K - U 拘束条件 レジュメ p. 5 f(x) 極値をとる条件 ( 運動方程式 ) L L + λ f d dt L x& L x

35 ラグランジュの未定乗数未定乗数の物理的意味 拘束条件が位置のとき ラグランジュの未定乗数は運動方程式において力を表す

36 ラグランジュの未定乗数未定乗数の物理的意味 拘束条件が位置のとき ラグランジュの未定乗数は運動方程式において力を表す 例 運動方程式 ヤコビ行列 x f M& q& + h λ J T y 式の次元はトルク λ は力 f λ l q l q ykabe

37 拘束があるがある場合場合のエネルギーエネルギー保存則拘束力によって系の全エネルギーは変化しない

38 拘束があるがある場合場合のエネルギーエネルギー保存則拘束力によって系の全エネルギーは変化しない 例運動方程式 M& q& + h λ 速度の拘束条件 &y J y q & 拘束力が系に加えるパワー P T T P q& J λ λ J q& y 全エネルギー E & T q J T y ( ) y Mq& xcom lg l xcom lg m I q m I q

39 拘束があるがある場合場合のエネルギーエネルギー保存則拘束力によって系の全エネルギーは変化しない 例運動方程式 M& q& + h λ 速度の拘束条件 &y J y q & 拘束力が系に加えるパワー P T T P q& J λ λ J q& y 全エネルギー E Mq& E & T T T q & Mq&& + Mq & & q& Mq & & h+ J y λ P & T q J T y ( ) y xcom lg l xcom lg m I q m I q

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

入門講座 

入門講座  第 4 章発展方程式ここでは組織形成を連続体モデルに基づき記述する道具である非線形発展方程式の基礎について説明し 非線形発展方程式の数学的導出法および物理的意味等について述べる 4- バランス方程式多くの連続体モデルにおける発展方程式の基本は全てバランス方程式 (3) に帰着するので まずこれについて説明する なお以下において太文字はベクトルを表す 時間 t および空間位置 r = ( x, x,

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

39 Fig. 2 倒立 2 輪ロボットシステム Fig. 4 倒立 2 輪ロボットモデル Table. 1 物理パラメータ る そしてその角度情報がターミナルボードを介して, ディジタルコントロールボードに送られ, その情報をもとに を利用して 内で演算され, 制御に必要なモータトルクの指令信号が

39 Fig. 2 倒立 2 輪ロボットシステム Fig. 4 倒立 2 輪ロボットモデル Table. 1 物理パラメータ る そしてその角度情報がターミナルボードを介して, ディジタルコントロールボードに送られ, その情報をもとに を利用して 内で演算され, 制御に必要なモータトルクの指令信号が 38 佐藤光 * 木澤悟 Stabilization of the Wheeled Inverted Pendulum with Optimal Robust Servo System * ( 平成 年 月 日受理 ) 1. 緒言 近年, セグウェイ等に代表されるような倒立 輪ロボットの開発, 研究が盛んに行われている そこで本研究では, 実際に一から倒立 輪ロボットを製作し, そして製作したロボットをモデル化することにより,

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

DVIOUT-n_baika

DVIOUT-n_baika 1 三角関数の n 倍角の公式とその応用について述べます. なお Voyage 200 の操作の詳細は http://sci-tech.ksc.kwansei.ac.jp/~yamane にある はじめての数式処理電卓 Voyage 200 をご覧下さい. 2 倍角の公式 cos 2x =2cos 2 x 1=1 2sin 2 x sin 2x =2sinxcos x はよく知られています.3 倍角の公式

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A>

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A> 第 3 章 GDP の決定 練習問題の解説 1. 下表はある国の家計所得と消費支出です 下記の設問に答えなさい 年 所得 (Y) 消費支出 (C) 1 年目 25 15 2 年目 3 174 (1) 1 年目の平均消費性向と平均貯蓄性向を求めなさい (2) 1 年面から 2 年目にかけての限界消費性向を求めなさい 解答 (1).6 と.4 (2).48 解説 (3 頁参照 ) (1) 所得に対する消費の割合が平均消費性向です

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h]

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h] 第 3 章変形と理論強度 目的 弾性変形および塑性変形に関し, 原子レベルからの理解を深める. 3. 弾性変形 (elastic defomation) 3.. 原子間に作用する力 3.. ポテンシャルエネルギー 33 3..3 フックの法則 3..4 弾性率の温度依存性 3..5 弾性変形時のポアソン比 3..6 理論強度 3. 塑性変形 (plastic defomation) 3.. すべり

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

Microsoft Word - ultrasonic_2010.doc

Microsoft Word - ultrasonic_2010.doc 超音波の基礎 改訂版 機能材料工学科 阿部洋 目次. 音響振動と音場音場. 音圧. 速度ポテンシャル. 音響インピーダンス 5. 超音波の反射と透過 6. 液浸法 ( パルス超音波透過 ). 超音波吸収 8. 減衰定数 8. 音速測定 9. 測定例 9. 横波反射法を用いたずりいたずりインピーダンスインピーダンス測定. 弾性 0. 粘性 0. 粘弾性. 音波の緩和現象 5 付録 A 弾性論 7 参考文献

More information

電気電子発送配変電二次練習問題

電気電子発送配変電二次練習問題 Copy Rght (c) 008 宮田明則技術士事務所 . ()() () n n 60 f f f 50, 60503000rp(n - ) f 60, 66060300rp(n - ) f 50, 060500300rp(n - ) f 50, 46050500rp(n - ) N N N (6) N () Copy Rght (c) 008 宮田明則技術士事務所 . r a, r a a a

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

- 14 -

- 14 - - 13 - - 14 - - 15 - 14 15 2-3-1 14 (KP1.81.4) 4,000(m 3 /) 14 2-3-2 c b c a a b c - 16 - 2-3-1 15 1960 (Cs-137Pb-210) (KP1.42.5) 1960(KP-2.51.4) 132,000m 3 3,300m 3 / 116,000m 3 15,900m 3 Cs-137Pb-210

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

Microsoft Word - 表紙資料2-4

Microsoft Word - 表紙資料2-4 (1) / 130 g 25 g 520% 170 g 30 g 560% 70 mg 600 mg 11.6% 0 10.5 mg 0% (1) (2) / 50100 g 25 g 200400% 50100 g 30 g 167333% 5001000 mg 600 mg 83167% 1020 mg 10.5 mg 95190% (2) / (1) 45.6 g 30 g 152% (2)

More information

レッスン6part

レッスン6part 再履修線形代数 分解定理を主軸に整理整頓レッスン ジョルダン分解 Pa II レッスン ジョルダン分解 Pa II このレッスンでは ジョルダン分解の応用として 行列関数の定義 スペクトル写像定理 微分方程式解法を扱う 行列関数 f ( の定義には 最初の節で定義する M 演算による方法がわかりやすい 直接代入形 ジョルダン分解代入形である M 演算形 コーシーの積分公式 f ( f( λ( λ π

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

Microsoft Word - 09弾性02基礎方程式.doc

Microsoft Word - 09弾性02基礎方程式.doc 第 章基礎方程式と弾性問題の解. フックの法則 応力に対してひずみが生じ 応力をゼロに戻すとひずみも消失する性質を 弾性 という 弾性挙動を示す棒の軸方向の応力 とひずみの間には式 の関係が成り立つ これが フックの法則 であり をヤング率または弾性率と呼ぶ 棒を軸 縦 方向に引張ると直交 横 方向に収縮し 逆に縦方向に圧縮すると横方向に膨張する 棒の縦横の長さを L,d とし 縦ひずみを L L-L

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

() 1 1 2 2 3 2 3 308,000 308,000 308,000 199,200 253,000 308,000 77,100 115,200 211,000 308,000 211,200 62,200 185,000 308,000 154,000 308,000 2 () 308,000 308,000 253,000 308,000 77,100 211,000 308,000

More information

Microsoft Word - 力学PC1.doc

Microsoft Word - 力学PC1.doc 基礎物理コース I 第 5 回 A 7/6/5, :-:, 9-49, 後藤貴行 -5B, -8-56, gotoo-t@sophia.ac.jp パソコンで微分方程式を解く. 基本 ( ( ( これが式で与えられる は微小量とする ( 何に比べて小さいかは後で述べる ( ( (. 簡単な例 ただの積分, ( e ( [ もちろん 解析的に解けて ( e ( ( e 6 前の値 78 となる ] (

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

DVIOUT

DVIOUT 車両のモデリングと制御 松尾孝美 まえがき 制御理論は世の中のあらゆるものを対象として, それを数学的に解釈するとともに, いかに自分の目的とする解を得るようにその対象を変形していくかということにその本質がある. ベースとなるのは数学と物理学のこれまでの美しい 金字塔である. 難しさゆえに数物系学問は他分野の理工系人にとっても敬遠されがちであるが, ものごとの本質を理解する上で欠かせないものである.

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

2142B/152142B

2142B/152142B ! EFGH FIJG EFGH O m A kg A lm knm Q m B kg B m B m A A B gms x y z P Q R S T U y xz S T U D F G y F I G J z F I G J D J H G U A I y z x u O d α B P Q R S T F D E A um O ωrads u m A l kω! m A l kω m A

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

多変数系における

多変数系における 章熱力学の基礎 -1 熱力学関係式熱力学の体系を理解するには変数の定義を明確にすることが大切である 一定量の物質を対象に 熱力学的平衡状態にて 一意的に値が確定する変数は状態変数と呼ばれる 圧力 P, 体積, 温度, およびエントロピー などは状態変数であるが 熱量 Q や仕事 W は状態変数ではない また状態変数には 示量変数 (xtnsv varabl): その変数が量に依存し いわゆる流量もしくは変位量としてイメ

More information

WTENK5-6_26265.pdf

WTENK5-6_26265.pdf 466 2014年秋季 極域 寒冷域研究連絡会 の報告 海 カラ海 北大西洋 北米大陸の北部 東アジアで が多重に見られることが多い 南極昭和基地 69.0 S, 寒気質量の減少傾向が 中央シベリアの内陸部とベー 39.6 E における PANSY レーダー Sato et al.2014 リング海で寒気質量の増加傾向が5つの再解析データ のデータは このような小さな に共通して見られた 中央シベリアの内陸部の寒気質

More information

< F55542D89F090CD97CD8A778D758B60836D815B>

< F55542D89F090CD97CD8A778D758B60836D815B> 解析力学 百科全書 初版 Dynamique 動力学 の頁 高知大学附属図書館蔵 高知大学理学部理学科物理科学 津江保彦 c Yasuhiko TSUE ホームページは, http://www.cc.kochi-u.ac.jp/ tsue/ 目次 1 章 粒子と波の二重性.......................................... 2 1.1 二重スリットの実験.....................................

More information

竹田式数学 鉄則集

竹田式数学  鉄則集 合格への鉄則集 数学 ⅡB 竹鉄 ⅡB-01~23 竹鉄 ⅡB-1 式と証明 (1) 方程式の決定 方程式の決定問題 a+bi が解なら,a-bi も解 解と係数の関係を活用する 例題 クリアー 140 a,b は実数とする 3 次方程式 x 3 +ax 2 +bx+10=0 が 1+2i を解にもつとき, 定数 a,b の値を求めよ また, 他の解を求めよ 鉄則集 21 竹鉄 ⅡB-2 式と証明

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

Microsoft PowerPoint _OpenCAE並列計算分科会.pptx

Microsoft PowerPoint _OpenCAE並列計算分科会.pptx 地球流体力学に関する GPGPU を用いた数値計算 神戸大学惑星科学研究センター西澤誠也 地球流体力学とは 地球 惑星に関連がある流体の力学 回転, 重力の影響 e.g. 大気, 海洋, マントル 数値計算は天気予報 & 弾道軌道予測から始まった ベクトル計算機 地球流体の計算はベクトル長が長いものが多い ベクトル計算機の凋落 某社の次世代スパコンからの撤退 個人的スパコンの将来予想 個々の演算器はシンプルに

More information

(個別のテーマ) 放射線検査に関連した医療事故

(個別のテーマ) 放射線検査に関連した医療事故 - 131 - III - 132 - - 133 - III - 134 - - 135 - III - 136 - - 137 - III - 138 - - 139 - III - 140 - - 141 - III - 142 - - 143 - III - 144 - - 145 - III - 146 - - 147 - III - 148 - - 149 - III - 150 - -

More information

(個別のテーマ) 薬剤に関連した医療事故

(個別のテーマ) 薬剤に関連した医療事故 - 67 - III - 68 - - 69 - III - 70 - - 71 - III - 72 - - 73 - III - 74 - - 75 - III - 76 - - 77 - III - 78 - - 79 - III - 80 - - 81 - III - 82 - - 83 - III - 84 - - 85 - - 86 - III - 87 - III - 88 - - 89

More information

英語                                    英-1

英語                                    英-1 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

システム工学実験 パラメータ推定手順

システム工学実験 パラメータ推定手順 システム工学実験パラメータ推定手順 大木健太郎 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 1 アウトライン 1. 線形システムと周波数情報 2. パラメータ推定 3. 実際の手順 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 2 線形時不変システムと伝達関数 入力と出力の関係が線形な定係数微分方程式で与えられるとき, この方程式を線形時不変システムという

More information

untitled

untitled ()(H) () / (havng) W W mg ρg d (.) m ρ d d () ( d ) F ρg (.) ρg m () G B :m :W W mg ρg m ρ (.3) η ( d η) F ρg ( d η) (.4) G B :m :W η F()- F()- η ρ ρ d F W d d m g g η ρ ρ d d m g g (.5) a (.5) Laplac

More information

Microsoft Word 国家2種経済.doc

Microsoft Word 国家2種経済.doc NO.36 X 財と Y 財の 2 財について 所得変化及び価格変化が需要量に与える効果に関する次の記 述のうち妥当なのはどれか 1.X 財が下級財の場合には その財の需要の所得弾力性は1よりも小さくなり X 財と Y 財の間に描くことのできる所得 消費曲線は右上がりとなる 2.X 財 Y 財ともに上級財であり 両財が代替財の関係にある場合 X 財の価格が低下すると Y 財は代替効果によっても所得効果によっても需要量が減少するので

More information

PowerPoint Presentation

PowerPoint Presentation . カーネル法への招待 正定値カーネルによるデータ解析 - カーネル法の基礎と展開 - 福水健次統計数理研究所 / 総合研究大学院大学 統計数理研究所公開講座 0 年 月 34 日 概要 カーネル法の基本 線形データ解析と非線形データ解析 カーネル法の原理 カーネル法の つの例 カーネル主成分分析 : PCA の非線形拡張 リッジ回帰とそのカーネル化 概要 カーネル法の基本 線形データ解析と非線形データ解析

More information

りあげるここでは補償伝達関数である設計の目的はいかなる外乱が加っても未知プラントの出力が規範モデルの出力に一致するようにを決定することである 外乱 設定入力 出力 図 フィードバック制御系 重合せの定理が成り立つ線形領域では図のブロック線図から次の関係を得ることができる ここで いまとなるように補償

りあげるここでは補償伝達関数である設計の目的はいかなる外乱が加っても未知プラントの出力が規範モデルの出力に一致するようにを決定することである 外乱 設定入力 出力 図 フィードバック制御系 重合せの定理が成り立つ線形領域では図のブロック線図から次の関係を得ることができる ここで いまとなるように補償 適応制御 大分大学工学部福祉環境工学科松尾孝美 まえがき 制御系設計でははじめに制御対象と制御目的が与えられている理想的な設計手法を用いる場合は, まず, 制御対象の数学モデルを作る同時に制御目的を仕様の形で表わすため評価関数の設定とか振幅減衰度の指定といったようななんらかの数量化を行うつぎに制御方式を定めこれに従って種々提案されている設計手法を用いて制御装置 ( コントローラ ) を設計することになるこのように制御系の設計は制御対象

More information

第2章

第2章 第 2 章 企業の行動 : 第二部 ここでは 短期の供給曲線がなぜ右上がりになるのか述べます 企業は利潤を最大化すると仮定します (1) π = TR TC π : 利潤 TR : 総収入 TC : 総費用 企業は自己の生産物の価格 P に影響をしない と仮定します このことは 生 産物市場が完全競争市場であるということを意味します 詳しくは 完全競争 市場の定義について教科書などを参考にしてください

More information

Microsoft PowerPoint - kyoto

Microsoft PowerPoint - kyoto 研究集会 代数系アルゴリズムと言語および計算理論 知識の証明と暗号技術 情報セキュリティ大学大学院学院 有田正剛 1 はじめに 暗号技術の面白さとむずかしさ システムには攻撃者が存在する 条件が整ったときのベストパフォーマンスより 条件が整わないときの安全性 攻撃者は約束事 ( プロトコル ) には従わない 表面上は従っているふり 放置すると 正直者が損をする それを防ぐには 知識の証明 が基本手段

More information

2 α 2 A α 1 α 5 α 3 α 4 1.2: A 3 π n 4 n 3 n = 3 n 3 n = 2 1 α A 4π α/2π A = 4π α 2π = 2α n = 2 α α 1.3: 2 n = 3,, R 3 α, β, γ S 2,, R,, R 2, R 2 T T

2 α 2 A α 1 α 5 α 3 α 4 1.2: A 3 π n 4 n 3 n = 3 n 3 n = 2 1 α A 4π α/2π A = 4π α 2π = 2α n = 2 α α 1.3: 2 n = 3,, R 3 α, β, γ S 2,, R,, R 2, R 2 T T 1 I: 1.1 3 1 S 2 = {(x, y, z) : x 2 + y 2 + z 2 = 1} O S 2 S 2 n n O (a) (b) 3 1.1: 3 n A α 1,, α n n α j = (n 2)π + A j=1 n (n 2)π 2 α 2 A α 1 α 5 α 3 α 4 1.2: A 3 π n 4 n 3 n = 3 n 3 n = 2 1 α A 4π α/2π

More information

Processingをはじめよう

Processingをはじめよう Processing をはじめよう 第 7 章 動きその 2 目次 フレームレート スピードと方向 移動 回転 拡大 縮小 2 点間の移動 乱数 タイマー 円運動 今回はここまで 2 2 点間の移動 Example 7-6 (EX_08_06) 始点 (startx, starty) から終点 (stopx, stopy) まで移動する 座標更新の計算方法は後述 始点と終点を変更しても動作する 変更して確認

More information

概要 LCGTでは排熱のためのヒートリンクをサスペンションに接続 ヒートリンクからの振動混入が問題となる これまでヒートリンクからの振動混入は簡単なバネモデルでしか計 算されてこなかった 今回は有限要素法を用いた解析を行なった Overview * Connect LCGT heatlink for

概要 LCGTでは排熱のためのヒートリンクをサスペンションに接続 ヒートリンクからの振動混入が問題となる これまでヒートリンクからの振動混入は簡単なバネモデルでしか計 算されてこなかった 今回は有限要素法を用いた解析を行なった Overview * Connect LCGT heatlink for 有限要素解析によるLCGTヒートリンク の防振性能評価 Finite element analysis Hitorinku LCGT Evaluation of damping LCGT f2f meeting 2010/6/16 @ICRR 東大理 麻生洋一 概要 LCGTでは排熱のためのヒートリンクをサスペンションに接続 ヒートリンクからの振動混入が問題となる これまでヒートリンクからの振動混入は簡単なバネモデルでしか計

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

SICE東北支部研究集会資料(2011年)

SICE東北支部研究集会資料(2011年) 269 (2011.12.12) 269-10 Basic analysis of coaching in sprint motion using three dimensional motion capture data Masahiro Nagayama,Takayuki Takahashi *, ** *Graduate School Fukushima University,**Fukushima

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

Microsoft Word - elastostatic_analysis_ docx

Microsoft Word - elastostatic_analysis_ docx 静弾性解析 1. 定式化と離散化の概要 1.1 線形弾性体の定式化 Fig.1 に示される線形弾性体の境界値問題を考える. ただし, 微小変形を仮定する.Fig.1 N において,N を次元数とすると, は有界領域であり, はその境界である. ここで, d は変位境界条件が与えられる境界, t は応力境界条件が与えられる境界である. d と t の間には, d および t d の関係が成り立つとする.

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ロボティックス Robotics 先端工学基礎課程講義 小泉憲裕 2016/5/6 講義情報 当面はこちらのサイト, http://www.medigit.mi.uec.ac.jp/lect_robotics.html ロボットの運動学 ロボットの運動学 ロボットの運動学は現在 ニュートン力学を発展させた解析力学を基盤とすることが多い 解析力学では物体を 剛体としてあらわす 第 4 回 座標変換平行

More information

Title 高等学校における微積分の初歩としての二次関数の指導過程 Author(s) 大田, 邦郎 Citation 北海道大學教育學部紀要 = THE ANNUAL REPORTS ON EDUCATIONAL SCIENCE, 40: 31-87 Issue Date 1982-03 DOI Doc URLhttp://hdl.handle.net/2115/29254 Right Type

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

Microsoft PowerPoint - 宇宙学セミナー16slides.pptx

Microsoft PowerPoint - 宇宙学セミナー16slides.pptx 京都大学宇宙総合学研究ユニット 宇宙学セミナー 京都大学吉田キャンパス, 2016 年 7 月 4 日 最適制御の考え方と最近の展開 京都大学大学院情報学研究科 システム科学専攻大塚敏之 自己紹介 氏名大塚敏之 所属情報学研究科システム科学専攻 兼担工学部物理工学科機械システム学コース 専門非線形システム理論, 最適制御 モノの上手な動かし方 機械システム ( 自動車, ロボット, etc.), 宇宙構造物,

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w

More information