図 3. ワイブル分布の確率密度 P f() m=1 m=3 m=2 0 m= 時間 信頼性では故障率 λ()

Size: px
Start display at page:

Download "図 3. ワイブル分布の確率密度 P f() m=1 m=3 m=2 0 m= 時間 信頼性では故障率 λ()"

Transcription

1 第 2 章 -1 ワイブル分布 P 正規分布と正規確率紙目次に戻る 我々の身長や体重, くせ のない工程で作った製品の寸法や電気的特性が一般的に つりがね形 の分布すなわち,{ 正規分布 } をすることはよく知られたことである 正規分布をするデータを要約する重要なパラメータに, 1 平均値 そのデータの中心 2 標準偏差 データのばらつきの程度 ( 約 68% のデータが ±1σ の中に入る ) の 2 つがある 平均値はともかくとして, 標準偏差を計算するのはかなり面倒なことである ( 現在は電卓で簡単にできるが ) しかし我々の先輩は, 1 平均値 2 標準偏差をグラフで求めることができる, いわゆる { 正規確率紙 } を工夫してくれた 1.2 ワイブル分布目次に戻る 製品の寿命分布の代表的なものには, 1 指数分布 2 ワイブル分布 3 対数正規分布がある その他にガンマ分布, 二重指数分布も特殊な場合に利用される 自転車のチェーンを思い出してみて欲しい 1 本のチェーンは約 150 個の輪からできている この輪の 1 個でも切れればチェーンの機能は停止し自転車に乗ることはできない 図 1. は 6 個の輪 ( リンク :link) を鎖状 ( チェーン :chain) につないだものを両方から f という力で引張り,A で切れたところである 図 1. 最弱リンクモデル f 同じ条件で作ったはずの6 個の輪をつないだのだが, 3の輪のAのところが一番弱かったために引っ張る力に耐えきれず切れてしまった { 最弱リンクモデル } といわれるものである A 輪 図 2. 直列系システム A B C D E F 図 2. は A,B,,F の 6 個の部品を直列につないだ装置である 直列系システムといわれるものである 今部品 C が壊れればシステムは働かない ( 機能を失う ) 図 1. のチェーン ( 最弱リンクモデル ) と同じである このようなモデルに { ワイブル分布 } はよくあてはまるといわれている ワイブル分布は,1949 年スェーデンの材料強度の専門家 W.Weibull によって, 初めて導入され,.1960 年前後に米国のカオ (J.H.KAO) によって実用化されたものである F()=1-e または, F()=1-e -( -γ (1) - (-γ α (1)' と表される ただし, α 1/m =

2 図 3. ワイブル分布の確率密度 P f() m=1 m=3 m=2 0 m= 時間 信頼性では故障率 λ() を定義して解析 検討することがある f() λ()= (2) R() ここで, f()= ワイブル分布の確率密度 R()(=1-F())= 製品の信頼度 (F()= 不信頼度,R()+F()=1) λ()= m m m-1 (3) ワイブル分布の平均 1 μ=γ( +1) m (4) ワイブル分布の確率密度 :f() m f()= m m-1 e-( (5) ただし, γ=0 1.3 ワイブル分布のパラメータ目次に戻る ワイブル分布のパラメータについて検討してみよう ワイブル分布は (1) 式に記した様に -γ F()=1- e-( (1) 式 ワイブル分布の確率密度 f() は,(1) 式を微分すれば求められる d m -γ -γ f()= F()= ( e-( d -1 (6) 以下ワイブル分布の重要なパラメータについて実例を示して説明しよう

3 1 形状パラメータ : m P.20 m -γ -γ (6) 式 f()= ( -1 e-( 今,=1,γ=0 とすれば f()=m m-1 e- m 表 1. mとf() m=1/2 m=1 m=2 m= e- 0.5 e - 2e e 図 4. m と f() f() m=0.5 m=1 m=3 m= 表 1 および図 4 より m の値によってワイブル分布の確率密度 f() はその形状が大きく変わるので, m : 形状パラメータという

4 2 尺度パラメータ : P.21 m -γ -γ (6) 式 f()= ( -1 e-( 今,m=2,γ=0とすれば 2 2 f()= ( )e-( ) 2 = 2 e-( ) 2 f() 表 2. mとf() =0.5 =1.0 =2.0 8 e e e-(0.5) (4) 式 μ=γ( +1) m m (3) 式 λ()= m-1 m 図 5. と f() =0.5 = より m または が大きい ( 小さい ) と (4) 式より平均寿命 μは長く ( 短く ) (3) 式より故障率 λ() は小さく ( 大きく ) なるもで, を尺度のパラメータという =2

5 3 位置パラメータ : γ P.22 m -γ -γ (6) 式 f()= ( -1 e -( 今,=1,m=2とすれば f()=2(-γ) e-(-γ) 2 表 3. γとf() γ=-1 γ=0 γ=1 2(+1)e-(+1) 2 2 e- 2 2(-1)e-(-1) 図 6. γ と f() 1.0 γ=-1 γ=0 γ= f() 表 3と図 6よりγによってf() は 軸上を平行移動する γ>0の場合 =0~γの間は故障はないと考える γ<0の場合 = 負 (-) の時間 ~0までの間, 故障があってもとり除かれたと考える このように γは故障開始の位置を示すので,γを位置パラメータという

6 P ワイブル分布の特徴目次に戻る m 1 故障率が (3) 式 λ()= m m-1 障に対する物理的な意味が考えやすい で与えられるので m の値によって故 2 先輩たちのデータ解析の経験によって, 寿命分布としては比較的よくデータにあてはまることが分かっている -γ 3 (1) 式のワイブル分布の式 F()=1- e-( は一見複雑のように見えるが, 先輩たちが使いやすいように工夫 ( 例えば, ワイブル確率紙 ) してあるので, 数学的知識をほとんど持たない人でも簡単に前記のワイブルパラメータ (m,,γ) が推定できる 1.5 ワイブル分布の数式目次に戻る 参考までに付記しておく (2) 式より, λ()=f()/r() (2) λ()= f() 1-F() (2)' または, λ()= f() f()d (2)'' ここで, R()= f()d F()=1-R()= 0f()d (2)' 式より d d 1-F() λ()=- 1-F() 両辺を0よりTまで積分すると, - T 0λ()d=ln 1-F() F()=1-e - T 0λ()d R()=e - T 0λ()d (7) f()= d d F() = d d 1-e - T 0λ()d - T 0λ()d =λ()e (8)

7 P.24 (2)'',(7),(8) は寿命分布と故障率の関係を示す重要な式である バスタブカーブに対応する故障密度関数, 信頼度 ( 不信頼度 ) を図 7 に示す 図 7. λ() f() R()(F()) の関係 初期故障期間 磨耗故障期間 λ() 偶発故障期間 故障率 λ()= =- f() R() 1 dr() R() d 故障密度関数 f() f() =- dr() d R() F() R() 信頼度関数 R()=1-F() - =e λ()d 不信頼度関数 F()=1-R()

8 第 2 章 -2 ワイブル確率紙 P 正規確率紙目次に戻る 図 7 に示したように製品の不信頼度関数をグラフに示すと曲線になる ワイブル分布に入る前になじみやすい正規分布を使って説明しておこう 度数 f 図 8-A 図 8-B 図 8-C 寸法 累積度数 Σf 寸法 図 8-A ヒストグラム 図 8-B 累積度数グラフ ( 累積分布関数 ) 図 8-C 正規確率紙のプロット ( 標準正規分布の累積分布関数 ) 占有率 % 正規確率紙 x0 x1 寸法 84% 50% 図 8-C で縦軸の 50% から横軸に交わるところが (x0) 平均値 μ である 一方, 縦軸約 84 % に相当する横軸の位置 x1 とすると x1-x0= 標準偏差 σ である 2.2 ワイブル確率紙の原理目次に戻る ワイブル不信頼度 (F()) 関数をグラフに描くと図 9-Bに示す通り, 曲線になる この曲線が直線になるように工夫 ( 縦軸, 横軸の数値変換 ) したグラフ用紙がワイブル確率紙である -γ F()=1- e-( (1) 式 今,γ=0( 位置のパラメータがないとして ) F()=1- e-( (9) 両辺の自然対数をとると, ln 1-F() =-( -ln 1-F() =( 1 ln =( 1-F() もう一度自然対数をとると, 1 lnln =m ln( ) 1-F()

9 P.26 lnln 1 = m ln - m ln 1-F() Y X C Y = mx + C (10) ただし, 1 Y=lnln 1-F() X=ln C=-m ln f() 図 9-A 図 9-B 図 9-C F()(%) F() % 図 9-A 図 9-B 図 9-C 各時間における故障数累積故障率ワイブル確率紙にプロット 時間 とそれに対応する F() を図 9-C のように打点するとデータがワイブル分布の時はほぼ一直線上にならぶ ワイブル確率紙には, 日本規格協会発行のものと日科技連の発行するワイブル型累積ハザード紙 : 図 10 参照 ) の 2 種がある

10 第 2 章 -3 ワイブル確率紙の使い方 P ワイブル確率紙の作成手順目次に戻る サンプルが全部故障したデータを実例で説明する 手順 1. 故障データを故障時間の早い方から順にならべかえる A 製品の信頼性データ サンプル 故障時間 ( 100H) サンプル 故障時間 ( 100H) 手順 2. 不信頼度の計算をする 1 単純計算 F=r/n r: 累積故障数 2 平均ランク F=r/(n+1) 3 メジアンランク F=(r-0.3)/(n+0.4) n: サンプル数 4 モードランク F=(r-1)/(n-1) サンフ ル累積 故障 単純計算 平均ランクメジアンランクモードランク 故障数時間 % 手順 3. ワイブル確率紙にプロットする ( メジアンランクでプロットした例を示す ) 図 10 ワイブル型累積ハザード紙 ( 日科技連 ) ハザード紙は F() の目盛が左側に打ってあるので注意

11 図 10 P.28 手順 8 μ= 手順 9 M M' m=1.6 手順 6 手順 3 手順 5 手順 10 手順 7 = 手順 4. 直線であてはめられるかチェックする 手順 5. 直線があてはめられるようであったら直線をひく 30~80% の点に注目する 手順 6. m( 形状パラメータ ) の推定 1 あてはめた直線を平行移動して,M 点 ( 印,ln=1,lnH()=0) に合せる 2 平行移動した線と ln=0 の線の交点 (M') より直線を右に引いてゆく 3 Y 軸の読みに (-1) を乗じたものが m である 4 例題では m=1.6 M 点 (ln=1,lnh()=0) M' 点 (ln=0,y) M-M'=1(X=1) m=(-1)y/x=-(0+y)/1 =-Y 手順 7. ( 尺度のパラメータ ) の推定 1 直線が U 軸と交わった点を直下に引いてくる 2 軸と交わるところが である 3 例題では =21.5( 100H) 手順 8. 平均寿命 μ の推定 1 右側の補助尺の μ/ を使う 2 m を求めるために引いた線を μ/ の補助尺まで伸ばす 3 交わったところが μ/ の値 A 例題では A=0.898

12 4 μ/=a μ=a (μ は手順 7 で求めた ) P.29 例題では μ= =19.3( 100H) 手順 9. 任務時間 0 における信頼度の推定 1 求めたい任務時間 :0 を 軸にとり, これより線を上に伸ばし, あてはめた直線に交わらせる 0=10( 100H) 2 この交点より左に伸ばし F() を読む =F(0) F(0)=26.0% 3 求める信頼度 R(0) は, R(0)=1-F(0) 手順 10. セーフライフの推定 1 例えば B10 ライフ (B テンライフ 不信頼度 F() が 10% となる の値 ) の推定 2 F()=10% より右に伸ばしあてはめた直線にあてる 3 直線より 軸に直線を伸ばし 軸の値を読む これが B10 ライフである B10 ライフ =5.1 (100H) 3.2 ワイブル関数に位置パラメータ (γ: ガンマ ) が存在する場合目次に戻る (1) 位置のパラメータ (γ) が存在する場合の故障率関数 γについては既に1.3(3) 項で述べた (3) 式より m λ()= m-1 m γが存在するのだから, m λ()= m (-γ-1 図 6を再出すると, 次の通りである γ=-1 γ=0 γ=1 0.6 f()

13 P.30 図 11. γ が存在する場合の故障密度関数 γ=1,m=0.5, m =1 0.5 λ()= 1 (-1) =0.5 (-1) -0.5 λ() 1 #### (2) ワイブル確率紙上での形状 γ がある場合 図 12-A γ>0 の場合 図 12-B γ<0 の場合 F() m' ' 元のデータ m γ γ 元のデータ m γ m'' '' 1 図 12-A の様に上に凸の曲線になる場合は正の γ が存在する 2 図 12-B の様に下に凸の曲線になる場合は負の γ が存在する カットアンドトライで, 1' 元のデータから適当な値 (γ) を引き直線に回帰し,m',' を求める 2' 元のデータに適当な値 (γ) を加え直線に回帰し,m'','' を求める 回帰直線のワイブルパラメータを m','(m'','') とすると m=m' ='+γ μ=μ'+γ となる

14 表 4-A (γ>0) 表 4-B (γ<0) P.31 元のデータ元のデータより -2.4 元のデータ 元のデータより +1 (x) (x-2.4) (x) (x+1) 図 13-A (γ>0 の場合 ) 図 13-B (γ<0 の場合 )

15 (3) 折れ曲がった 2 本の直線になる場合 P.32 Y A B ワイブル確率紙にプロットした後で直線をあてはめようとしても, 図のようにうまくあてはまらない時がある 左図のように直線があてはまらない場合,A と B は明らかにちがう故障である 考えられることは, 1) 初期故障, 偶発故障, 磨耗故障の 3 つがが混在している 2) モードのちがう故障, 例えばオープンモード, ショートモードの混在 3) 試験条件の設定ミス などが上げられよう 故障解析をやって, もう一度検討し直すことを進めたい 3.3 ワイブル解析の応用目次に戻る (1) スクリーニングの可否の検討 図 14-A 図 14-B 図 14-C λ() m<1 m=1 m>1 形状のパラメータ m によって λ() の様子は違うことは図 14 に示す通りである 1 m<1 は λ() は時間 ( 回数 ) と共に収束する方向にあるから, スクリーニングが可能である 2 m=1 は λ() が時間に関係なく一定であるから効果がない 3 m>1 は λ() が時間と共に増加するから逆効果でスクリーニングは絶対に不可である (2) 加速係数を求める 図 15 F() (63%) Ⅰ Ⅱ Ⅲ

16 P.33 試験条件 Ⅰ 80 90%RH Ⅱ 60 90%RH Ⅲ 40 90%RH 1 試験条件を図 15 のように 3 水準にとってテストして, ワイブル紙上のプロットする 2 m が同一である場合は下記によって加速係数を求めることができる (m が違う時はモードが異なるので注意が必要 ) 加速係数 AL AL= μⅢ μⅠ 80 90%RH が 40 90%RH に対して何倍の加速になっているか

17 第 2 章 -4 ワイブル型累積ハザード紙の使い方 P ワイブル型累積ハザード紙の原理目次に戻る (1) ハザードの考え方 図 18 故障率 ( ハザード ) の考え方 製品がこわれることを表現するのに, 1 元の台数に対し, 今までに何台こわれ期間 :i~i+δにたか? おける故障数ということも大切だが, 2 元の台数もさることながら, 今, 現に市場 で使われている台数に対し, 今日 ( 今月, 今年 ) 何台 ( 何 %) こわれるか? という表現の仕方も大切である iの直前のおける未故障 ( 残存 ) 数 ( 今年 70 才の人が, 何 % 死亡するかという表現がある ) 今, ある製品の故障が図 18になっていたとする で描いたところは単位期間 Δにおける故障台数である 図 18 では初期の故障数は少なく, 徐々に増加 i i+δ し, 再び台数は減る Δ 上記 2の表現の仕方に従い, 時点 iにお ける故障率 :λ() 期間 (i,i+δ) における故障数 λ(i) Δ= (10) iの直前における未故障 ( 残存 ) の台数 という表現を使おうというものである これは, 要するに i から (i+δ) までの Δ の期間にこわれた台数を i で働いていた台数で割った値である この λ(i) を時点 i における { ハザード ( 故障率 ) 関数 } という 式 (10) で Δ を 0 に近づけてゆけば瞬間, 瞬間のハザードになり, これを加え合わせれば, 当然 { 累積ハザード (H)} になる つまり, H()= 0λ()d となる 1.5 節の式 (6)~(8) を利用すると次のようになる まず, 式 (10) は f() iにおける故障数 λ()= ( 2 ) (11) R() iにおける残存数 R()+F()=1 より F()=1-R() これの両辺を で微分すると d d F() =- d d R() d 一方, F()=f() d これを式 (11) に代入すれば ( または, 0f()d=F()) であるから λ()= - d d R() R() (12)

18 式 (12) の両辺を について積分すれば, P.35 0λ()d=- 0 d R() d R() d =-lnr() R()=e - 0λ() d これは式 (7) に示したものである ここで 0λ()d=H() (13) この H() を { 累積ハザード関数 } という (2) H() と F() の関係式 (13) を式 (7) に代入すれば R()=e -H() (14) 一方,R()=1-F() を式 (14) に代入すると 1-F()=e -H() F()=1-e -H() (15) e -H() =1-F() (15)' 式 (15) の, 左辺 ;F() は累積故障率 ( ワイブル紙に利用 ) 右辺 ;1-e -H() の H() は前記累積ハザードであって, ハザード紙に使用する 式 (15)' の両辺を自然対数をとると, H()=-ln 1-F() (16) 表 5. F() とH() F() H() 10%(0.1) 0.105(10.5%) 20%(0.2) 0.223(22.3%) 30%(0.3) 0.357(35.7%) 0.329(32.9%) 40%(0.4) 0.393(39.3%) 50%(0.5) 0.632(63.2%) 100%(1.0) 0.865(86.5%) 200%(2.0) 要するにある時点 での H() が与えられれば (15) 式より F() が, 逆に F() が分かっていると (16) 式より H() が求められる (H() と F() は同じもの 1:1 の関係があるという ) つまりワイブル紙とハザード紙は縦軸の目盛りこそ違え機能的には全く同じものであることが分かる

19 P.36 (3) ハザード紙の原理 (1) 式より, -( F()=1-e γ=0とすれば, F()=1-e -γ -( 一方 (15) 式より, F()=1-e -H() この2つより, -( e =e -H() (17) H() = ( (18) 両辺の自然対数をとると, とすると, lnh()=mln( Y ) = mln -mln X C lnh()=y ln=x -mln=c Y=mX+C (19) (19) 式は (10) 式と全く同じである (4) ハザード紙とワイブル紙の対比 1 縦軸 ハザード : lnh() ワイブル : 1 lnln 1-F() 2 横軸 ln で同じ ハザード紙は log-log つまり両対数のグラフ用紙そのものである 注 ) 表 5. 参照, 例えば,F()=0.632(63.2%) のところは H()= %) である

20 P ワイブル型累積ハザード紙の作成手順目次に戻る 手順 1. データを時間の早い方から並べる サンプル 故障時間 ( 100H) サンプル 故障時間 ( 100H) ( 紛失 ) ( 紛失 ) ,9は1.5( 100H) で紛失 7は故障しなかった 手順 2. ハザード値の計算 fi hi= (%) Ri 1 1は0.2( 100H) で故障故障する直前の残存数 R1=10 個 2 3は1.0( 100H) で故障故障する直前の残存数 R2=9 個 3 6は2.7( 100H) で故障故障する直前の残存数 R3=6 個 4 以下同じ サン 故障 残存 ハザー累積ハ プル 時間 数 ド値 (hi) ザード値 (h) (Ri) fi/ri Δ (Hi)Σhi h1=1/10=10.0% h2=1/9=11.1% h3=1/6=16.7% (k) 手順 3. 累積ハザード値の計算 Hi=Σhi 1 3 H2=h1+h2= =21.1(%) 2 6 H3=h1+h2+h3=H2+h3= =37.8(%) 3 以下同じ

21 手順 4. ワイブル型累積ハザード紙にプロットする P.38 図 16. 手順 5. 形状パラメータ (m) の推定 3.1 節ワイブル確率紙の作成手順 6 と同じ 手順 6. 尺度のパラメータ () の推定上記手順 7 に同じ 手順 7. 平均寿命 (μ) の推定上記手順 8 に同じ 4.3 ハザード解析の応用目次に戻る (1) モードが2つある時の解析 4.2 節ではサンプルが紛失した例で説明したが, 1 オープンモード 2 ショートモード と層別して,4.2 節と同様に行えば良い 図 17. 故障モードが 2 つの場合 F() オープンモード ショートモード (ms) オープンモード (mo) ショートモード

22 オープンモードによる mo, o, μo ショートモードによる ms, s, μs をそれぞれ算出して対策をとるのである P.39 (2) 新工法検討のためのワイブル型ハザード解析 検討事項 工法が3つの場合 ある電子部品の品質向上を目的に新工法を検討した 新工法の案にはⅠ,Ⅱが上 り, 早速サンプルが作られた 従来工法との対比をするため約 100 倍の加速テストを 行い ( 各サンプル共 n=100 個 ), 下記のデータを得た 故障モードには,A,B,Cの3つ があるが, 今回は特に故障 Aにだけ着目したい 各サンプル共 n=100 サンフ ル時間 ( 100H) モード A 現 故障数 B 行 C 計 新 モード A 工 故障数 B 法 C Ⅰ 計 新 モード A 工 故障数 B 法 C Ⅱ 計 手順 1. ハザード値の計算 hi= A モードの故障数各時間におけるサンプル数 現行の1( 100H) では現行の2( 100H) では現行の5( 100H) では新工法 Ⅰの1( 100H) では新工法 Ⅰの2( 100H) では新工法 Ⅰの5( 100H) では新工法 Ⅰの10( 100H) では新工法 Ⅱの5( 100H) では新工法 Ⅱの10( 100H) では新工法 Ⅱの25( 100H) では h1=28/100=28% h2=15/60=25% h5=14/26=53.8% hⅠ1=0/100=0 hⅠ2=11/98=11.2% hⅠ5=12/55=21.8% hⅠ10=6/20=30% hⅡ5=5/79=6.3% hⅡ10=5/35=14.2% hⅡ25=1/10=10% 手順 2. 累積ハザードの計算 H=Σhi 現行 Ⅰ Ⅱ hi H #### hi H hi H

23 手順 3. ワイブル型累積ハザード紙にプロットする とHの目盛り ( 内側 ) を使う 図 18. を参照 P.40 手順 4. mを求める 1.3 節の手順 6. に従う 工法 現行 Ⅰ Ⅱ m 手順 5. を求める 1.3 節の手順 7,8に従う 工法 現行 Ⅰ Ⅱ 手順 6. μの算出 補助尺よりμ/を求める m=0.5~2.5は上の補助尺を使うとよい μ=(μ/) より算出する μ/ μ=(μ/) 現行 Ⅰ Ⅱ 手順 7. σの算出補助尺よりμ/を求める σ=(σ/) より算出する σ/ σ=(σ/) 現行 Ⅰ Ⅱ 手順 8. 結果の検討 μ のおいて新工法 Ⅰ は約 3 倍, 新工法 Ⅱ は約 9 倍, 改善されると判断する ただし, 他の故障モードとの兼ね合いはここでは別とした 図 18.

データ解析

データ解析 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第

More information

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て

森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て . 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など

More information

ワイブル解析による市場故障予測方法の検証

ワイブル解析による市場故障予測方法の検証 ワイブル解析による市場故障予測方法の検証ミヤチテクノス 渡壁利夫. はじめに市場で同一故障が多発した場合 この先故障が どの程度発生するかが今後の対応において必要な情報となる このため ワイブル型累積ハザード紙で分析し予測している 予測時点でデータの性質や背景を考慮せず推定したワイブル分布からの予測とその後 故障発生が収束した時点での結果が大きく乖離する場合があった そこで その原因を検証し予測をする上での留意すべき点を以下に報告する.

More information

Weibull分析を用いた信頼性寿命予測への提案 | 清水 貴宏氏(パナソニック株式会社 セミコンダクター社)

Weibull分析を用いた信頼性寿命予測への提案 | 清水 貴宏氏(パナソニック株式会社 セミコンダクター社) Webull 分析を用いた信頼性寿命予測への提案 ~ サンプルサイズの影響が小さい高精度予測方法 ~ パナソニック株式会社 生産本部 セミコンダクター社 グローバル生産統括センター 技能教育研修所 清水貴宏 ~ 目次 ~. はじめに 2. これまでの経緯第 9 回研究発表会関西支部 ( 品質管理学会 ) 2-. 現在のワイブル分析による寿命予測 2-2. サンプルサイズによる寿命予測への影響 2-3.

More information

スライド 1

スライド 1 データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える

More information

Microsoft PowerPoint - 基礎・経済統計6.ppt

Microsoft PowerPoint - 基礎・経済統計6.ppt . 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別

More information

様々なミクロ計量モデル†

様々なミクロ計量モデル† 担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル

More information

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A

NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, A NLMIXED プロシジャを用いた生存時間解析 伊藤要二アストラゼネカ株式会社臨床統計 プログラミング グループグルプ Survival analysis using PROC NLMIXED Yohji Itoh Clinical Statistics & Programming Group, AstraZeneca KK 要旨 : NLMIXEDプロシジャの最尤推定の機能を用いて 指数分布 Weibull

More information

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均

第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差

More information

モジュール1のまとめ

モジュール1のまとめ 数理統計学 第 0 回 復習 標本分散と ( 標本 ) 不偏分散両方とも 分散 というのが実情 二乗偏差計標本分散 = データ数 (0ページ) ( 標本 ) 不偏分散 = (03 ページ ) 二乗偏差計 データ数 - 分析ではこちらをとることが多い 復習 ここまで 実験結果 ( 万回 ) 平均 50Kg 標準偏差 0Kg 0 人 全体に小さすぎる > mea(jkke) [] 89.4373 標準偏差

More information

スライド 1

スライド 1 データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小

More information

喨微勃挹稉弑

喨微勃挹稉弑 == 全微分方程式 == 全微分とは 変数の関数 z=f(, ) について,, の増分を Δ, Δ とするとき, z の増分 Δz は Δz z Δ+ z Δ で表されます. この式において, Δ 0, Δ 0 となる極限を形式的に dz= z d+ z d (1) で表し, dz を z の全微分といいます. z は z の に関する偏導関数で, を定数と見なし て, で微分したものを表し, 方向の傾きに対応します.

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (

切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない

More information

Microsoft Word - 1B2011.doc

Microsoft Word - 1B2011.doc 第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を

More information

Microsoft Word - 補論3.2

Microsoft Word - 補論3.2 補論 3. 多変量 GARC モデル 07//6 新谷元嗣 藪友良 対数尤度関数 3 章 7 節では 変量の対数尤度を求めた ここでは多変量の場合 とくに 変量について対数尤度を求める 誤差項 は平均 0 で 次元の正規分布に従うとする 単純化のため 分散と共分散は時間を通じて一定としよう ( この仮定は後で変更される ) したがって ij から添え字 を除くことができる このとき と の尤度関数は

More information

講義「○○○○」

講義「○○○○」 講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数

More information

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る

確率分布 - 確率と計算 1 6 回に 1 回の割合で 1 の目が出るさいころがある. このさいころを 6 回投げたとき,1 度も 1 の目が出ない確率を求めよ. 5 6 /6 6 =15625/46656= (5/6) 6 = ある市の気象観測所での記録では, 毎年雨の降る 確率分布 - 確率と計算 6 回に 回の割合で の目が出るさいころがある. このさいころを 6 回投げたとき 度も の目が出ない確率を求めよ. 5 6 /6 6 =565/46656=.48 (5/6) 6 =.48 ある市の気象観測所での記録では 毎年雨の降る日と降らない日の割合は概ね :9 で一定している. 前日に発表される予報の精度は 8% で 残りの % は実際とは逆の天気を予報している.

More information

複素数平面への誘い

複素数平面への誘い いざな複素数平面への誘い GRS による複素数平面の表現 複素数平面への第一歩 - 複素数モード - 点と複素数 -3 複素数の四則演算 -4 絶対値と偏角, 共役複素数 -5 絶対値と偏角による複素数の表現 複素数平面の変換 4 - 回転移動と相似拡大 - 直線 に関する対称変換 -3 単位円に関する反転変換 -4 複素数平面の変換と曲線 3 入試問題に挑戦 6 3- 陰関数を利用した図形の表示

More information

Microsoft Word - t30_西_修正__ doc

Microsoft Word - t30_西_修正__ doc 反応速度と化学平衡 金沢工業大学基礎教育部西誠 ねらい 化学反応とは分子を構成している原子が組み換り 新しい分子構造を持つことといえます この化学反応がどのように起こるのか どのような速さでどの程度の分子が組み換るのかは 反応の種類や 濃度 温度などの条件で決まってきます そして このような反応の進行方向や速度を正確に予測するために いろいろな数学 物理的な考え方を取り入れて化学反応の理論体系が作られています

More information

Microsoft Word - Stattext07.doc

Microsoft Word - Stattext07.doc 7 章正規分布 正規分布 (ormal dstrbuto) は 偶発的なデータのゆらぎによって生じる統計学で最も基本的な確率分布です この章では正規分布についてその性質を詳しく見て行きましょう 7. 一般の正規分布正規分布は 平均と分散の つの量によって完全に特徴付けられています 平均 μ 分散 の正規分布は N ( μ, ) 分布とも書かれます ここに N は ormal の頭文字を 表わしています

More information

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル

ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル 時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル

More information

DVIOUT-SS_Ma

DVIOUT-SS_Ma 第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり

More information

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生

0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生 0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,

More information

If(A) Vx(V) 1 最小 2 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M2) y = f ( x ) の関係から, 任意の x のときの y が求まるので,

If(A) Vx(V) 1 最小 2 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M2) y = f ( x ) の関係から, 任意の x のときの y が求まるので, If(A) Vx(V) 1 最小 乗法で実験式のパラメータが導出できる測定で得られたデータをよく近似する式を実験式という. その利点は (M1) 多量のデータの特徴を一つの式で簡潔に表現できること. また (M) y = f ( x ) の関係から, 任意の x のときの y が求まるので, 未測定点の予測ができること. また (M3) 現象が比較的単純であれば, 現象を支配 する原理の式が分かることである.

More information

統計学的画像再構成法である

統計学的画像再構成法である OSEM アルゴリズムの基礎論 第 1 章 確率 統計の基礎 1.13 最尤推定 やっと本命の最尤推定という言葉が出てきました. お待たせしました. この節はいままでの中で最も長く, 少し難しい内容も出てきます. がんばってください. これが終わるといよいよ本命の MLEM,OSEM の章です. ところで 尤 なる字はあまり見かけませんね. ゆう と読みます. いぬ ではありません!! この意味は

More information

スライド 1

スライド 1 計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)

More information

パソコンシミュレータの現状

パソコンシミュレータの現状 第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に

More information

経営統計学

経営統計学 5 章基本統計量 3.5 節で量的データの集計方法について簡単に触れ 前章でデータの分布について学びましたが データの特徴をつの数値で示すこともよく行なわれます これは統計量と呼ばれ 主に分布の中心や拡がりなどを表わします この章ではよく利用される分布の統計量を特徴で分類して説明します 数式表示を統一的に行なうために データの個数を 個とし それらを,,, と表わすことにします ここで学ぶ統計量は統計分析の基礎となっており

More information

Probit , Mixed logit

Probit , Mixed logit Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,

More information

Microsoft Word - å“Ÿåłžå¸°173.docx

Microsoft Word - å“Ÿåłžå¸°173.docx 回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw

More information

構造力学Ⅰ第12回

構造力学Ⅰ第12回 第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB

More information

Microsoft Word - Chap17

Microsoft Word - Chap17 第 7 章化学反応に対する磁場効果における三重項機構 その 7.. 節の訂正 年 7 月 日. 節 章の9ページ の赤枠に記載した説明は間違いであった事に気付いた 以下に訂正する しかし.. 式は 結果的には正しいので安心して下さい 磁場 の存在下でのT 状態のハミルトニアン は ゼーマン項 と時間に依存するスピン-スピン相互作用の項 との和となる..=7.. g S = g S z = S z g

More information

概要 2 1. エアコン 冷蔵庫 冷凍庫及び洗濯機 衣類乾燥機については 経過年数の推移に 過去と比較して特に変化は見られない ワイブル平均が最も大きい品目は冷蔵庫 冷凍庫 (15.8 年 ) 最も小さい品目は洗濯機 衣類乾燥機 (11.7 年 ) で 両者の差は 4.1 年となった ワイブル平均の

概要 2 1. エアコン 冷蔵庫 冷凍庫及び洗濯機 衣類乾燥機については 経過年数の推移に 過去と比較して特に変化は見られない ワイブル平均が最も大きい品目は冷蔵庫 冷凍庫 (15.8 年 ) 最も小さい品目は洗濯機 衣類乾燥機 (11.7 年 ) で 両者の差は 4.1 年となった ワイブル平均の 度 使用済家電 4 品目の経過年数等調査 216 年 5 月 みずほ情報総研株式会社 概要 2 1. エアコン 冷蔵庫 冷凍庫及び洗濯機 衣類乾燥機については 経過年数の推移に 過去と比較して特に変化は見られない ワイブル平均が最も大きい品目は冷蔵庫 冷凍庫 (15.8 年 ) 最も小さい品目は洗濯機 衣類乾燥機 (11.7 年 ) で 両者の差は 4.1 年となった ワイブル平均の大きさは 冷蔵庫

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

下水処理場プラント機器の信頼性解析事例

下水処理場プラント機器の信頼性解析事例 下水処理場プラント機器の信頼性解析事例 - 機器の累積ハザード解析 - 中日本建設コンサルタント ( 株 ) 水工技術本部副本部長中根進. はじめに平成 6 年度末で下水道普及率が68.% に達し, 設備の改築時期にきている処理場が多くなっている 設備改築修繕計画では, 原則的に標準的耐用年数に達し, 機能が低下した設備を対象に劣化診断を行い, 財政規模などを勘案して優先順位を決め, 事業費を平準化した上で事業計画を立案する

More information

Microsoft Word - NumericalComputation.docx

Microsoft Word - NumericalComputation.docx 数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.

More information

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典

多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め

More information

Problem P5

Problem P5 問題 P5 メンシュトキン反応 三級アミンとハロゲン化アルキルの間の求核置換反応はメンシュトキン反応として知られている この実験では DABCO(1,4 ジアザビシクロ [2.2.2] オクタン というアミンと臭化ベンジルの間の反応速度式を調べる N N Ph Br N N Br DABCO Ph DABCO 分子に含まれるもう片方の窒素も さらに他の臭化ベンジルと反応する可能性がある しかし この実験では

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

日心TWS

日心TWS 2017.09.22 (15:40~17:10) 日本心理学会第 81 回大会 TWS ベイジアンデータ解析入門 回帰分析を例に ベイジアンデータ解析 を体験してみる 広島大学大学院教育学研究科平川真 ベイジアン分析のステップ (p.24) 1) データの特定 2) モデルの定義 ( 解釈可能な ) モデルの作成 3) パラメタの事前分布の設定 4) ベイズ推論を用いて パラメタの値に確信度を再配分ベイズ推定

More information

0415

0415 今回の授業の狙い 基本的な統計量を求め 活用できること 章統計量と確率分布のと確率分布の活用 part 統計解析で用いる代表的な確率分布の特徴を 把握すること 統計解析の全体像 統計解析での注意点 ()( サンプリング サンプル 測定 母集団 何らかの意味で同質性が期待できるものの集団 e 日本人男性同じ条件で作った製品 母集団 推定 アクション 事実に基づく判断 データからモノをいう データ解析

More information

Microsoft PowerPoint - 測量学.ppt [互換モード]

Microsoft PowerPoint - 測量学.ppt [互換モード] 8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,

More information

Hara-statistics

Hara-statistics 全学共通授業科目 物理学実験平成 3 年度前期測定値の扱い方と誤差論 講義 神戸大学大学院理学研究科物理学専攻原俊雄 測定値を他人に提示するとき なぜ 誤差を考えなければならないのか? なぜ 誤差を測定値に付けなければならないのか? そもそも 誤差とは何か? 人間は 測定により真の値を知ることができるか? 人間は 真の値を知ることはできない 人間は 工夫することによって 限りなく真の値に近づくことができる

More information

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手

14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手 14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を

More information

EBNと疫学

EBNと疫学 推定と検定 57 ( 復習 ) 記述統計と推測統計 統計解析は大きく 2 つに分けられる 記述統計 推測統計 記述統計 観察集団の特性を示すもの 代表値 ( 平均値や中央値 ) や ばらつきの指標 ( 標準偏差など ) 図表を効果的に使う 推測統計 観察集団のデータから母集団の特性を 推定 する 平均 / 分散 / 係数値などの推定 ( 点推定 ) 点推定値のばらつきを調べる ( 区間推定 ) 検定統計量を用いた検定

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :

統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : 統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数 1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( )

4STEP 数学 Ⅲ( 新課程 ) を解いてみた関数   1 微分法 1 微分係数と導関数微分法 2 導関数の計算 272 ポイント微分法の公式を利用 (1) ( )( )( ) { } ( ) ( )( ) ( )( ) ( ) ( )( ) 微分法 微分係数と導関数微分法 導関数の計算 7 ポイント微分法の公式を利用 () 7 8 別解 [ ] [ ] [ ] 7 8 など () 6 6 など 7 ポイント微分法の公式を利用 () 6 6 6 など () 9 など () þ î ì など () þ î ì þ î ì þ î ì など 7 () () 左辺を で微分すると, 右辺を で微分すると, ( ) ( ) ( ) よって, (

More information

平均値 () 次のデータは, ある高校生 7 人が ヵ月にカレーライスを食べた回数 x を調べたものである 0,8,4,6,9,5,7 ( 回 ) このデータの平均値 x を求めよ () 右の表から, テレビをみた時間 x の平均値を求めよ 階級 ( 分 ) 階級値度数 x( 分 ) f( 人 )

平均値 () 次のデータは, ある高校生 7 人が ヵ月にカレーライスを食べた回数 x を調べたものである 0,8,4,6,9,5,7 ( 回 ) このデータの平均値 x を求めよ () 右の表から, テレビをみた時間 x の平均値を求めよ 階級 ( 分 ) 階級値度数 x( 分 ) f( 人 ) データの分析 データの整理右の度数分布表は,A 高校の 0 人について, 日にみたテレビの時間を記入したものである 次の問いに答えよ () テレビをみた時間が 85 分未満の生徒は何人いるか () テレビをみた時間が 95 分以上の生徒は全体の何 % であるか (3) 右の度数分布表をもとにして, ヒストグラムをかけ 階級 ( 分 ) 階級値度数相対 ( 分 ) ( 人 ) 度数 55 以上 ~65

More information

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード]

Microsoft PowerPoint - データ解析基礎4.ppt [互換モード] データ解析基礎. 正規分布と相関係数 keyword 正規分布 正規分布の性質 偏差値 変数間の関係を表す統計量 共分散 相関係数 散布図 正規分布 世の中の多くの現象は, 標本数を大きくしていくと, 正規分布に近づいていくことが知られている. 正規分布 データ解析の基礎となる重要な分布 平均と分散によって特徴づけることができる. 平均値 : 分布の中心を表す値 分散 : 分布のばらつきを表す値 正規分布

More information

不偏推定量

不偏推定量 不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)

More information

テレコンバージョンレンズの原理 ( リアコンバーター ) レンズの焦点距離を伸ばす方法として テレコンバージョンレンズ ( テレコンバーター ; 略して テレコン ) を入れる方法があります これには二つのタイプがあって 一つはレンズとカメラ本体の間に入れるタイプ ( リアコンバーター ) もう一つ

テレコンバージョンレンズの原理 ( リアコンバーター ) レンズの焦点距離を伸ばす方法として テレコンバージョンレンズ ( テレコンバーター ; 略して テレコン ) を入れる方法があります これには二つのタイプがあって 一つはレンズとカメラ本体の間に入れるタイプ ( リアコンバーター ) もう一つ テレコンバージョンレンズの原理 ( リアコンバーター ) レンズの焦点距離を伸ばす方法として テレコンバージョンレンズ ( テレコンバーター ; 略して テレコン ) を入れる方法があります これには二つのタイプがあって 一つはレンズとカメラ本体の間に入れるタイプ ( リアコンバーター ) もう一つはレンズの前に取り付けるタイプ ( フロントコンバーター ) です 以前 フロントコンバーターについて書いたことがありました

More information

<4D F736F F F696E74202D C668DDA C6F89DF944E909492B28DB D838A815B94C E B93C782DD8EE682E890EA97705D>

<4D F736F F F696E74202D C668DDA C6F89DF944E909492B28DB D838A815B94C E B93C782DD8EE682E890EA97705D> 平成 26 年度 使用済家電 4 品目の経過年数等調査 ( 概要版 ) 215 年 3 月みずほ情報総研株式会社 概要 2 1. エアコン 冷蔵庫 冷凍庫及び洗濯機 衣類乾燥機については 経過年数の推移に 過去と比較して特に変化は見られない ワイブル平均が最も大きい品目は冷蔵庫 冷凍庫 (15.9 年 ) 最も小さい品目は洗濯機 衣類乾燥機 (11.2 年 ) で 両者の差は 4.7 年となった その結果

More information

基礎統計

基礎統計 基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t

More information

第4章 関数と平面図形 PC(EXCEL)を使った演習(p

第4章 関数と平面図形 PC(EXCEL)を使った演習(p 第 4 章関数と平面図形 PC(EXCEL) を使った演習 (p.30) EXCEL を使ってつぎの関数のグラフを描け. () y 3x x 9, z 3x x 4 ( x 5,0.5 刻み ) () x y 4 ( x, y,0. 刻み ) () の解答 (a) x の値を入力する.- から 5 まで +0.5 刻みにするために,- の下に-0.5 を打つ. (b) (a) の黒い四角の右端を下に伸ばすと,+0.5

More information

青焼 1章[15-52].indd

青焼 1章[15-52].indd 1 第 1 章統計の基礎知識 1 1 なぜ統計解析が必要なのか? 人間は自分自身の経験にもとづいて 感覚的にものごとを判断しがちである 例えばある疾患に対する標準治療薬の有効率が 50% であったとする そこに新薬が登場し ある医師がその新薬を 5 人の患者に使ったところ 4 人が有効と判定されたとしたら 多くの医師はこれまでの標準治療薬よりも新薬のほうが有効性が高そうだと感じることだろう しかし

More information

Microsoft Word - Stattext11.doc

Microsoft Word - Stattext11.doc 章母集団と指定値との量的データの検定. 検定手順 前章で質的データの検定手法について説明しましたので ここからは量的データの検定について話します 量的データの検定は少し分量が多くなりますので 母集団と指定値との検定 対応のない 群間の検定 対応のある 群間の検定 と 3つに章を分けて話を進めることにします ここでは 母集団と指定値との検定について説明します 例えば全国平均が分かっている場合で ある地域の標本と全国平均を比較するような場合や

More information

FdData中間期末数学2年

FdData中間期末数学2年 中学中間 期末試験問題集( 過去問 ): 数学 年 方程式とグラフ [ 二元一次方程式 ax + by = c のグラフ ] [ 問題 ]( 後期中間 ) 二元一次方程式 x + y = 4 のグラフをかけ http://www.fdtext.com/dat/ [ 解答 ] 方程式の解を座標とする点の全体を, その方程式のグラフという 二元一次方程式 x + y = 4 の解は無数にあるが, 例えば,

More information

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378>

<4D F736F F D208D A778D5A8A778F4B8E7793B CC A7795D2816A2E646F6378> 高等学校学習指導要領解説数学統計関係部分抜粋 第 部数学第 2 章各科目第 節数学 Ⅰ 3 内容と内容の取扱い (4) データの分析 (4) データの分析統計の基本的な考えを理解するとともに, それを用いてデータを整理 分析し傾向を把握できるようにする アデータの散らばり四分位偏差, 分散及び標準偏差などの意味について理解し, それらを用いてデータの傾向を把握し, 説明すること イデータの相関散布図や相関係数の意味を理解し,

More information

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx)

(Microsoft Word - 10ta320a_\220U\223\256\212w\223\301\230__6\217\315\221O\224\274\203\214\203W\203\201.docx) 6 章スペクトルの平滑化 スペクトルの平滑化とはフーリエスペクトルやパワ スペクトルのギザギザを取り除き 滑らかにする操作のことをいう ただし 波のもっている本質的なものをゆがめてはいけない 図 6-7 パワ スペクトルの平滑化 6. 合積のフーリエ変換スペクトルの平滑化を学ぶ前に 合積とそのフーリエ変換について説明する 6. データ ウィンドウデータ ウィンドウの定義と特徴について説明する 6.3

More information

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷

Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている

More information

布に従う しかし サイコロが均質でなく偏っていて の出る確率がひとつひとつ異なっているならば 二項分布でなくなる そこで このような場合に の出る確率が同じであるサイコロをもっている対象者をひとつのグループにまとめてしまえば このグループの中では回数分布は二項分布になる 全グループの合計の分布を求め

布に従う しかし サイコロが均質でなく偏っていて の出る確率がひとつひとつ異なっているならば 二項分布でなくなる そこで このような場合に の出る確率が同じであるサイコロをもっている対象者をひとつのグループにまとめてしまえば このグループの中では回数分布は二項分布になる 全グループの合計の分布を求め < 解説 > 広告媒体の到達率推定モデル 株式会社ビデオリサーチ常務取締役木戸茂 広告媒体計画の評価指標として広告業界では 有効リーチ あるいは 有効フリークエンシー の概念が一般に用いられている 広告の到達回数分布 Frequency Distribution の推定が重視される背景としては Krugan97977 の3ヒット セオリー Threeexosuretheory を根拠とした 3リーチ

More information

カイ二乗フィット検定、パラメータの誤差

カイ二乗フィット検定、パラメータの誤差 統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,

More information

関数の定義域を制限する 関数のコマンドを入力バーに打つことにより 関数の定義域を制限することが出来ます Function[ < 関数 >, <x の開始値 >, <x の終了値 > ] 例えば f(x) = x 2 2x + 1 ( 1 < x < 4) のグラフを描くには Function[ x^

関数の定義域を制限する 関数のコマンドを入力バーに打つことにより 関数の定義域を制限することが出来ます Function[ < 関数 >, <x の開始値 >, <x の終了値 > ] 例えば f(x) = x 2 2x + 1 ( 1 < x < 4) のグラフを描くには Function[ x^ この節では GeoGebra を用いて関数のグラフを描画する基本事項を扱います 画面下部にある入力バーから式を入力し 後から書式設定により色や名前を整えることが出来ます グラフィックスビューによる作図は 後の章で扱います 1.1 グラフの挿入関数のグラフは 関数 y = f(x) を満たす (x, y) を座標とする全ての点を描くことです 入力バーを用いれば 関数を直接入力することが出来 その関数のグラフを作図することが出来ます

More information

1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)

1 対 1 対応の演習例題を解いてみた   微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h) 微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,

More information

講義「○○○○」

講義「○○○○」 講義 システムの信頼性 内容. 直列システムの信頼性. 並列システムの信頼性 3. 直列 並列の複合システムの信頼性 4. 信頼性向上のための手法 担当 : 倉敷哲生 ビジネスエンジニアリング専攻 システムの構成 種々の機械や構造物, システムを分割していけば. 個々の要素 サブシステム となる. サブシステムの組み合わせ方式 直列系 並列系 m/ 冗長系 待機冗長系 3 直列システムの信頼性 直列系

More information

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>

<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63> 第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(

More information

ムーアの法則に関するレポート

ムーアの法則に関するレポート 情報理工学実験レポート 実験テーマ名 : ムーアの法則に関する調査 職員番号 4570 氏名蚊野浩 提出日 2019 年 4 月 9 日 要約 大規模集積回路のトランジスタ数が 18 ヶ月で2 倍になる というムーアの法則を検証した その結果 Intel 社のマイクロプロセッサに関して 1971 年から 2016 年の平均で 26.4 ヶ月に2 倍 というペースであった このことからムーアの法則のペースが遅くなっていることがわかった

More information

Microsoft Word - ミクロ経済学02-01費用関数.doc

Microsoft Word - ミクロ経済学02-01費用関数.doc ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)

More information

3章 度数分布とヒストグラム

3章 度数分布とヒストグラム 3 章度数分布とヒストグラム データの中の分析 ( 記述統計 ) であれ データの外への推論 ( 推測統計 ) であれ まず データの持つ基本的特性を把握することが重要である 1 分析の流れ データの分布 ( 散らばり ) を 度数分布表にまとめ グラフ化する 3 章 グラフに 平均値や分散など 分布の特徴を示す客観的な数値を加える 4 5 6 章 データが母集団からのランダムサンプルならば 母集団についての推測を行う

More information

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫

振動学特論火曜 1 限 TA332J 藤井康介 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫 6 章スペクトルの平滑化 スペクトルの平滑化とはギザギザした地震波のフーリエ スペクトルやパワ スペクトルでは正確にスペクトルの山がどこにあるかはよく分からない このようなスペクトルから不純なものを取り去って 本当の性質を浮き彫りにするために スペクトルを滑らかにする操作のことをいう 6.1 合積のフーリエ変換スペクトルの平滑化を行う際に必要な 合積とそのフーリエ変換について説明する 6.2 データ

More information

このデータは ダイアモンドの価格 ( 価格 ) に対する 評価の影響を調べるために収集されたものです 影響と考えられるものは カラット重量 カラー クラリティー 深さ テーブル径 カット 鑑定機関 の 7 つになります 特に カラット重量 カラー クラリティー カット は 4C と呼ばれ ダイヤモン

このデータは ダイアモンドの価格 ( 価格 ) に対する 評価の影響を調べるために収集されたものです 影響と考えられるものは カラット重量 カラー クラリティー 深さ テーブル径 カット 鑑定機関 の 7 つになります 特に カラット重量 カラー クラリティー カット は 4C と呼ばれ ダイヤモン JMP 10 のグラフビルダーで作成できるグラフ SAS Institute Japan 株式会社 JMP ジャパン事業部 2012 年 9 月作成 1. はじめに グラフビルダーは グラフを対話的に作成するツールです グラフビルダーでは グラフの種類を選択することにより 散布図 折れ線グラフ 棒グラフなどさまざまなグラフを作成することができます さらに グループ変数を用いて グラフを縦や横に分割することができ

More information

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt

Microsoft PowerPoint - 統計科学研究所_R_重回帰分析_変数選択_2.ppt 重回帰分析 残差分析 変数選択 1 内容 重回帰分析 残差分析 歯の咬耗度データの分析 R で変数選択 ~ step 関数 ~ 2 重回帰分析と単回帰分析 体重を予測する問題 分析 1 身長 のみから体重を予測 分析 2 身長 と ウエスト の両方を用いて体重を予測 分析 1 と比べて大きな改善 体重 に関する推測では 身長 だけでは不十分 重回帰分析における問題 ~ モデルの構築 ~ 適切なモデルで分析しているか?

More information

Phys1_03.key

Phys1_03.key 物理学1/物理学A 第3回 速度と加速度 速度 加速度 関数の話 やりたいこと : 物体の運動を調べる 物体の位置と速度を調べる これらを時間の関数として表したい 関数とは? ある された変数に対して, 出 の値が決まる対応関係のこと inpu 関数 ( 函数 ) oupu 例 : y(x)=x 2 x=2 を inpu すると y=4 が得られる 時々刻々と変化していく物体の位置 をその時刻とともに記録する

More information

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 =

1/30 平成 29 年 3 月 24 日 ( 金 ) 午前 11 時 25 分第三章フェルミ量子場 : スピノール場 ( 次元あり ) 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (2.18) より ˆ dp 1 1 = / 平成 9 年 月 日 ( 金 午前 時 5 分第三章フェルミ量子場 : スピノール場 ( 次元あり 第三章フェルミ量子場 : スピノール場 フェルミ型 ボーズ量子場のエネルギーは 第二章ボーズ量子場 : スカラー場 の (.8 より ˆ ( ( ( q -, ( ( c ( H c c ë é ù û - Ü + c ( ( - に限る (. である 一方 フェルミ型は 成分をもち その成分を,,,,

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション - = 4 = 4 = - y = x y = x y = x + 4 y = x 比例は y = ax の形であらわすことができる 4 - 秒後 y = 5 y = 0 (m) 5 秒後 y = 5 5 y = 5 (m) 5 0 = 05 (m) 05 5 = 5 (m/ 秒 ) 4 4 秒後 y = 5 4 y = 80 (m) 5-80 5 4 = 45 (m/ 秒 ) 5 v = 0 5

More information

1.民営化

1.民営化 参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方

More information

Microsoft PowerPoint - ce07-04e.ppt

Microsoft PowerPoint - ce07-04e.ppt 制御工学 4 5. ボード線図 キーワード : ボード線図, ゲイン曲線, 曲線 周波数 に対し 5. ボード線図 j の変化を表すゲイン曲線 j の変化を表す曲線 5.4 ボード線図の性質 キーワード : ボード線図の利点 6 横軸 : 周波数 を対数目盛り 縦軸 : ゲイン曲線 lg j 曲線 ( 度 ( デカード (dec デシベル値 ( 絶対値 j. デシベル値 6 4 7 積分系 j j

More information

と 測定を繰り返した時のばらつき の和が 全体のばらつき () に対して どれくらいの割合となるかがわかり 測定システムを評価することができる MSA 第 4 版スタディガイド ジャパン プレクサス (010)p.104 では % GRR の値が10% 未満であれば 一般に受容れられる測定システムと

と 測定を繰り返した時のばらつき の和が 全体のばらつき () に対して どれくらいの割合となるかがわかり 測定システムを評価することができる MSA 第 4 版スタディガイド ジャパン プレクサス (010)p.104 では % GRR の値が10% 未満であれば 一般に受容れられる測定システムと .5 Gage R&R による解析.5.1 Gage R&Rとは Gage R&R(Gage Repeatability and Reproducibility ) とは 測定システム分析 (MSA: Measurement System Analysis) ともいわれ 測定プロセスを管理または審査するための手法である MSAでは ばらつきの大きさを 変動 という尺度で表し 測定システムのどこに原因があるのか

More information

Microsoft PowerPoint - sc7.ppt [互換モード]

Microsoft PowerPoint - sc7.ppt [互換モード] / 社会調査論 本章の概要 本章では クロス集計表を用いた独立性の検定を中心に方法を学ぶ 1) 立命館大学経済学部 寺脇 拓 2 11 1.1 比率の推定 ベルヌーイ分布 (Bernoulli distribution) 浄水器の所有率を推定したいとする 浄水器の所有の有無を表す変数をxで表し 浄水器をもっている を 1 浄水器をもっていない を 0 で表す 母集団の浄水器を持っている人の割合をpで表すとすると

More information

微分方程式による現象記述と解きかた

微分方程式による現象記述と解きかた 微分方程式による現象記述と解きかた 土木工学 : 公共諸施設 構造物の有用目的にむけた合理的な実現をはかる方法 ( 技術 ) に関する学 橋梁 トンネル ダム 道路 港湾 治水利水施設 安全化 利便化 快適化 合法則的 経済的 自然および人口素材によって作られた 質量保存則 構造物の自然的な性質 作用 ( 外力による応答 ) エネルギー則 の解明 社会的諸現象のうち マスとしての移動 流通 運動量則

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

Microsoft PowerPoint - 資料04 重回帰分析.ppt

Microsoft PowerPoint - 資料04 重回帰分析.ppt 04. 重回帰分析 京都大学 加納学 Division of Process Control & Process Sstems Engineering Department of Chemical Engineering, Koto Universit manabu@cheme.koto-u.ac.jp http://www-pse.cheme.koto-u.ac.jp/~kano/ Outline

More information

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 による立体の断面積を とする 図 1の から までの斜線部分の立体 の体積を とすると, 図 2のように は 底面積 高さ の角柱の体積とみなせる よって 図 2 と表せる ただし とすると,

More information

( 表紙 )

( 表紙 ) ( 表紙 ) 1 次の各問いに答えなさい. 解答用紙には答えのみ記入すること. ( 48 点 ) (1) U108 -U8 %5U6 + 7 U を計算しなさい. () 15a 7 b 8 &0-5a b 1& - 8 9 ab を計算しなさい. () + y - -5y 6 を計算しなさい. (4) 1 4 5 の 5 枚のカードから 枚を選び, 横に並べて 桁の数を作 るとき, それが の倍数になる確率を求めなさい.

More information

【FdData中間期末過去問題】中学数学1年(比例と反比例の応用/点の移動/速さ)

【FdData中間期末過去問題】中学数学1年(比例と反比例の応用/点の移動/速さ) FdDt 中間期末過去問題 中学数学 1 年 ( 比例と反比例の応用 / 点の移動 / 速さ ) http://www.fdtet.com/dt/ 水そうの問題 [ 問題 ](2 学期期末 ) 水が 200 l 入る水そうに, 毎分 8 l の割合で水を入れていく 水を入れはじめてから 分後の水の量を y l とするとき, 次の各問いに答えよ (1), y の関係を式に表せ (2) の変域を求めよ

More information

消費 統計学基礎実習資料 2017/11/27 < 回帰分析 > 1. 準備 今回の実習では あらかじめ河田が作成した所得と消費のファイルを用いる 課題 19 統計学基礎の講義用 HP から 所得と消費のファイルをダウンロードしてみよう 手順 1 検索エンジンで 河田研究室 と入力し検索すると 河田

消費 統計学基礎実習資料 2017/11/27 < 回帰分析 > 1. 準備 今回の実習では あらかじめ河田が作成した所得と消費のファイルを用いる 課題 19 統計学基礎の講義用 HP から 所得と消費のファイルをダウンロードしてみよう 手順 1 検索エンジンで 河田研究室 と入力し検索すると 河田 消費 統計学基礎実習資料 07//7 < 回帰分析 >. 準備 今回の実習では あらかじめ河田が作成した所得と消費のファイルを用いる 課題 9 統計学基礎の講義用 HP から 所得と消費のファイルをダウンロードしてみよう 検索エンジンで 河田研究室 と入力し検索すると 河田研究室 のページにジャンプする ( ここまでの手順は http://www.tokuyama-u.ac.jp/kawada とアドレスを直接入力してもよい

More information

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション 313 第 10 章 Excel を用いた統計処理 10.1 Excel の統計処理レポートや卒業研究などでは 大量のデータを処理 分析し 報告しなければならない場面が数多く登場する このような場合 手計算では多くの時間を要するため現在では計算機を用いて一括処理することが一般的である これにより 時間短縮だけでなく手軽に詳細な分析を行うことができる Excel ではこのような大量のデータに対する分析を容易に行えるよう

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

電子デバイスの技術進展による製品戦略の変化

電子デバイスの技術進展による製品戦略の変化 経営工学編 : 技術に携わる者であれば 必須の工学 信頼性工学 Reliabiliy Engineering 2014 年 12 月 31 日版 工学博士中小企業診断士 芳賀知 Saoru Haga, Ph.D. No par of his maerial may be reproduced, in any form or by any means, wihou permission. 1. 信頼性とは

More information

_KyoukaNaiyou_No.4

_KyoukaNaiyou_No.4 理科教科内容指導論 I : 物理分野 物理現象の定量的把握第 4 回 ( 実験 ) データの眺め ~ 統計学の基礎続き 統計のはなし 基礎 応 娯楽 (Best selected business books) 村平 科技連出版社 1836 円 前回の復習と今回以降の 標 東京 学 善 郎 Web サイトより データ ヒストグラム 代表値 ( 平均値 最頻値 中間値 ) 分布の散らばり 集団の分布

More information

Microsoft Word - 中村工大連携教材(最終 ).doc

Microsoft Word - 中村工大連携教材(最終 ).doc 音速について考えてみよう! 金沢工業大学 中村晃 ねらい 私たちの身の回りにはいろいろな種類の波が存在する. 体感できる波もあれば, できない波もある. その中で音は体感できる最も身近な波である. 遠くで雷が光ってから雷鳴が届くまで数秒間時間がかかることにより, 音の方が光より伝わるのに時間がかかることも経験していると思う. 高校の物理の授業で音の伝わる速さ ( 音速 ) は約 m/s で, 詳しく述べると

More information

Microsoft Word - K-ピタゴラス数.doc

Microsoft Word - K-ピタゴラス数.doc - ピタゴラス数の代数と幾何学 津山工業高等専門学校 菅原孝慈 ( 情報工学科 年 ) 野山由貴 ( 情報工学科 年 ) 草地弘幸 ( 電子制御工学科 年 ) もくじ * 第 章ピタゴラス数の幾何学 * 第 章ピタゴラス数の代数学 * 第 3 章代数的極小元の幾何学の考察 * 第 章ピタゴラス数の幾何学的研究の動機 交点に注目すると, つの曲線が直交しているようにみえる. これらは本当に直交しているのだろうか.

More information

横浜市環境科学研究所

横浜市環境科学研究所 周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.

More information

2011年度 大阪大・理系数学

2011年度 大阪大・理系数学 0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ

More information

二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま

二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま 二次関数 二次関数とは ともなって変化する つの数 ( 変数 ) x, y があります y 0 9 6 5 つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また, つの変数を式に表すと, x となります < 二次関数の例 > x y 0 7 8 75 x ( 表の上の数 ) を 乗して 倍すると, y ( 表の下の数 ) になります x y 0 - -8-8 -

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 1/X Chapter 9: Linear correlation Cohen, B. H. (2007). In B. H. Cohen (Ed.), Explaining Psychological Statistics (3rd ed.) (pp. 255-285). NJ: Wiley. 概要 2/X 相関係数とは何か 相関係数の数式 検定 注意点 フィッシャーのZ 変換 信頼区間 相関係数の差の検定

More information