PowerPoint プレゼンテーション

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "PowerPoint プレゼンテーション"

Transcription

1 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w 2 k ) システム雑音と観測雑音の項も非線形関数に含めるのが一般的. y k = h x k,w k 1

2 非線形カルマンフィルタ ~a. 問題設定 ~ 非線形カルマンフィルタ 確率分布を非線形変換すると, その分布の3 次以上の高次モーメントが最初の二つのモーメントを変化させてしまう. 非線形フィルタリングでは, 平均値と共分散行列という二つのモーメントだけを用いて正確な状態推定を行うことができなくなる. 非線形カルマンフィルタにおける中心的な課題 1. 正規分布に従う確率変数が, 曲線である非線形システムによってどのような分布に変換されるか 2. その分布からどのようにして状態推定値を計算するか f x f x x k + 1 x k + 1 x k 線形システムによる分布の変換 ( スカラシステム ) x k 非線形システムによる分布の変換 2

3 非線形カルマンフィルタ ~a. 問題設定 ~ 代表的な近似法 線形化 (EKF) 非線形関数のテイラー級数展開を偏微分 ( ヤコビアン ) を用いて計算し級数を 1 次で打ち切る方法 統計的サンプリング法 (UKF) 平均値 x と共分散行列 P の非線形変換 g を近似するために, 1. 元の空間でサンプルΞ i を選び, 2. それらをgで非線形変換して, g Ξ i を得て, 3. そのg Ξ i に基づいて変換先での平均値と共分散行列を推定 3

4 非線形カルマンフィルタ ~a. 問題設定 ~ 方法 状態方程式 確率分布 線形カルマンフィルタ 線形 正規性 EKF( 拡張カルマンフィルタ ) 非線形 正規性 UKF( シグマポイントカルマンフィルタ ) 非線形 正規性 パーティクルフィルタ 非線形 非正規性 x k + 1 f x x k + 1 f x x k + 1 f x x k x k x k EKF の考え方 UKF の考え方 モンテカルロ法の考え方 接線による曲線の直線化 小数個のサンプル点を用いて分布を近似 多数のサンプル点を用いて分布を近似 4

5 非線形カルマンフィルタ ~b. 拡張カルマンフィルタ ~ 拡張カルマンフィルタは, 1. 非線形システムを各時刻において線形化し, 2. それぞれの時刻において時変カルマンフィルタを適用するという考えに基づく ( 次の 4 段階 ). 1 時刻 k,k + 1 において, それぞれ事前状態推定値 x k が利用可能であるという仮定のもとで, x k + 1 = f x k y k = h x k + w k + bv k これらの非線形関数をテイラー級数展開を用いて線形近似すると, 2 f x k = f x k + A k x k x k h x k = h x k + c T k x k x k が得られる. ただし, A k = f(x) x x= x k c T k = h(x) x x= x k 5

6 拡張カルマンフィルタ ~a. 特長と注意点 ~ 3 x k + 1 = A k x k + bv k + f x k A k x k y k = c T k x k + w k + h x k c T k x k u k f x k A k x k z k y k h x k + c T k x k 4 x k + 1 = A k x k + bv k + u k z k = c T k x k + w k 非線形システムを線形化したものは, 制御入力 u k を含んだ線形システムと同じ形式であることがわかる. ( ただし, 係数行列 A と係数ベクトル c はともに時変 ) 6

7 非線形カルマンフィルタ ~b. 拡張カルマンフィルタ~ 初期設定 1 状態推定値の初期値 x(0) は N 0, Σ 0 に従う正規性確率ベクトルとする. x 0 = E x 0 = x 0 P 0 = E x 0 E x(0) x 0 E x(0) T = Σ 0 2 システム雑音の分散 σ v 2 と観測雑音の分散 σ w 2 を設定する. 時間更新 1 予測ステップ 事前状態推定値 : 線形近似 : x k = f x k 1 A k 1 = f(x) x x= x k 1 c T k 1 = h(x) x x= x k 1 事前誤差共分散行列 : P k = A k 1 P k 1 A T k 1 + σ v 2 k 1 bb T 2 フィルタリングステップ カルマンゲイン : 状態推定値 : 事後誤差共分散行列 : P k c k g k = c T k P k c k + σ 2 w x k = x k + g k y k h x k P k = I g k c T k P k 7

8 第 8 回 確率システム制御特論 拡張カルマンフィルタ 例題 7.1 スカラの非線形状態方程式に対する EKF を構成せよ. x k + 1 = x k + 3 cos x(k) 10 + v(k) y k = x 3 k + w(k) v(k)~n 0,1 w(k) ~N 0,100 x 0 = 10 x 0 = 11 p 0 = 1

9 第 8 回 確率システム制御特論 7.2 拡張カルマンフィルタ f x x + 3 cos x 10 h x x 3 これらを x(k) について偏微分すると f x x = sin x 10 h x x = 3x 2 これらを非線形カルマンフィルタのアルゴリズムに代入すると,

10 第 8 回 確率システム制御特論 7.2 拡張カルマンフィルタ 時間更新 1 予測ステップ 事前状態推定値 : 線形近似 : 事前誤差共分散行列 : 2 フィルタリングステップ カルマンゲイン : 状態推定値 : 事後誤差共分散行列 : x k = x k cos a k 1 = sin x k 10 x k 1 10 p k = a 2 k 1 p k p k c k g k = c 2 k p k x k = x k + g k y k x k 3 p k = 1 g k c k p k c k = 3 x k 2 10

11 非線形カルマンフィルタ ~c. アンセンテッド ( 無香 ) カルマンフィルタ ~ UKF の特徴 非線形カルマンフィルタの一種 線形化を行わない (EKF の問題点の一つを解決できる ) x k + 1 f x 基本的な考え方 x k 非線形システムの各時刻における線形近似ではなく, 確率密度関数を正規分布で近似する. 標準偏差に対応するシグマポイント (σ 点 ) と呼ばれる少数個のサンプル点を選び, 集合平均的に確率分布を近似する統計的サンプリング法の一種. 11

12 非線形カルマンフィルタ ~c. アンセンテッド ( 無香 ) カルマンフィルタ ~ 確率変数ベクトル x R n を, ある非線形関数 f: R n R n によって, 確率ベクトル y R n に変換する問題を考える. y = f(x) この変換 ( 状態推移 ) で 2 次モーメント ( 分散 ) までの統計量を, 計算量を抑えて精度良く保存するにはどうすればよいか? y = f(x) y = f( x) P k = I g k c T k P k Y i k = h χ i (k) n 次元確率密度関数の形状を少数個のサンプル点で近似 P k U 変換の利用によるシグマポイントの算出 12

13 非線形カルマンフィルタ ~c. アンセンテッド ( 無香 ) カルマンフィルタ ~ シグマポイント (sigma point) を用いて平均値 x に関して対称にサンプリングを行う χ i は平均値と標準偏差に対応する 2n 個の点 ( 合計 2n + 1 個 ) のサンプルのこと シグマポイント χ i, i = 0,1,2,, 2n の選び方 χ 0 = x χ i = x + n + κ P x i, i = 1,2,, n χ n+i = x n + κ P x i, i = 1,2,, n κ P x i スケーリングパラメータ ( デフォルトは 0) 共分散行列 P x の平方根行列の i 番目の列 シグマポイントの重み w 0 = κ n + κ w i = 1 2 n + κ, i = 1,2,, 2n ただし 2n i=0 w i = 1 13

14 非線形カルマンフィルタ ~c. アンセンテッド ( 無香 ) カルマンフィルタ ~ コレスキー分解 ( 平方根行列を求める ) n n 正定値対称行列 A は, A = SS T for i = 1,, n S ii = A ii i 1 2 S ij j=1 のように分解することができ, これをコレスキー分解という 行列 A が与えられたとき, 右のアルゴリズムによって, 平方根行列 S を求めることができる. next i for j = 1,, n S ji = next j 1 S ii 0, j < i i 1 A ji S jk S ik, j i k=1 コレスキー分解の他に, UD 分解 (UD factorization) 特異値分解 (SVD: Singular Value Decomposition) などがある これらの行列分解を共分散行列に適用することによって, カルマンフィルタの 数値的安定性を向上させることができる 14

15 非線形カルマンフィルタ ~c. アンセンテッド ( 無香 ) カルマンフィルタ ~ 初期設定 状態推定値の初期値 x 0 は,N x 0, Σ 0 に従う正規性確率ベクトルとすると, 時間更新 x 0 = E x(0) = x 0 P 0 = E x 0 E x(0) x 0 E x(0) T = Σ 0 1 シグマポイントの計算 時刻前に得られた状態推定値 x k 1 と共分散行列 P k 1 を用いて, 2n 1 個のシグマポイントを計算 χ 0 (k 1) = x (k 1) χ i (k 1) = x(k 1) + n + κ P(k 1) i, i = 1,2,, n χ n+i (k 1) = x n + κ P(k 1) i, i = 1,2,, n 1-2 また, 重みを次のように計算する. w 0 = κ n + κ w i = 1 2 n + κ, i = 1,2,, 2n ただし 2n i=0 w i = 1 15

16 非線形カルマンフィルタ ~c. アンセンテッド ( 無香 ) カルマンフィルタ~ 時間更新 2 予測ステップ シグマポイントの更新 : χ i k = f χ i k 1, i = 1,2,, n 事前状態推定値 : 2n x k = w i χ i k i=0 事前誤差共分散行列 : P k = 2n i=0 w i χ i k x k χ i k x k T + σ v 2 bb T 16

17 UKF ~ サンプリング ~ 時間更新 2-4 シグマポイントの再計算 : χ 0 (k) = x (k) χ i (k) = x k + n + κ P k i, i = 1,2,, n χ n+i (k) = x k n + κ P k, i = 1,2,, n i 2-5 出力のシグマポイントの計算 : Y i k = h χ i (k), i = 1,2,, n 事前出力値の計算 : 2n y k = w i Y i i=0 事前出力誤差共分散行列 : 2n P yy (k) = w i Y i k y (k) 2 i=0 17

18 非線形カルマンフィルタ ~c. アンセンテッド ( 無香 ) カルマンフィルタ ~ 時間更新 事前状態 出力誤差共分散行列 : P xy (k) = 2n カルマンゲイン g k = i=0 w i χ i (k) x (k) P xy (k) P yy k + σ2 w Y i k y (k) 3 フィルタリングステップ 3-1 状態推定値 : x k = x k + g(k) y k y (k) 3-2 事後誤差共分散行列 : P k = P k g(k) P xy (k) T 18

19 非線形カルマンフィルタ ~c. SPKF の亜種 ~ Central Difference KF (CDKF) M. Norgaard, N. Poulsen, and O. Ravn, New Developments in State Estimation for Nonlinear Systems, Automatica, vol. 36, pp , November Square-Root UKF (SRUKF) R. van der Merwe and E. Wan, Efficient Derivative-Free Kalman Filters for Online Learning, in Proceedings of the 9 th European Symposium on Artificial Neural Networks (ESANN), (Bruges, Belgium), pp , Apr Square-Root CDKF (SRCDKF) R. van der Merwe and E. Wan, The Square-Root Unscented Kalman Filter for State- and Parameter-Estimation, in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 6, (Salt Lake City, UT), pp , May

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 担当教員名 単位数西田健 2 単位 教室 時間 4-1A 教室火曜 4 限 目的不確定性を有する対象の制御に有効な確率システム制御理論について解説する また 確率的要因を考慮した状態推定のために 宇宙ロケットや自律ロボットなどの幅広い分野で利用されているカルマンフィルタやパーティクルフィルタについて解説し それらを用いる制御系の構成手法を教授する 授業計画 (1) ガイダンスと導入 (2) 線形動的システムの時系列モデリング

More information

PowerPoint Presentation

PowerPoint Presentation . カーネル法への招待 正定値カーネルによるデータ解析 - カーネル法の基礎と展開 - 福水健次統計数理研究所 / 総合研究大学院大学 統計数理研究所公開講座 0 年 月 34 日 概要 カーネル法の基本 線形データ解析と非線形データ解析 カーネル法の原理 カーネル法の つの例 カーネル主成分分析 : PCA の非線形拡張 リッジ回帰とそのカーネル化 概要 カーネル法の基本 線形データ解析と非線形データ解析

More information

解析センターを知っていただく キャンペーン

解析センターを知っていただく キャンペーン 005..5 SAS 問題設定 目的 PKパラメータ (AUC,Cmax,Tmaxなど) の推定 PKパラメータの群間比較 PKパラメータのバラツキの評価! データの特徴 非反復測定値 個体につき 個の測定値しか得られない plasma concentration 非反復測定値のイメージ図 測定時点間で個体の対応がない 着目する状況 plasma concentration 経時反復測定値のイメージ図

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる

More information

Excelにおける回帰分析(最小二乗法)の手順と出力

Excelにおける回帰分析(最小二乗法)の手順と出力 Microsoft Excel Excel 1 1 x y x y y = a + bx a b a x 1 3 x 0 1 30 31 y b log x α x α x β 4 version.01 008 3 30 Website:http://keijisaito.info, E-mail:master@keijisaito.info 1 Excel Excel.1 Excel Excel

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計 8. 自由曲線 曲面. 概論. ベジエ曲線 曲面. ベジエ曲線 曲面の数学. OeGLによる実行. URS. スプライン関数. スプライン曲線 曲面. URS 曲線 曲面 4. OeGLによる実行 8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性

More information

カメラレディ原稿

カメラレディ原稿 IS2-A2 カメラを回転させた時の特徴点軌跡を用いた魚眼カメラの内部パラメータ推定 - モデルと評価関数の変更による改良 - 田中祐輝, 増山岳人, 梅田和昇 Yuki TANAKA, Gakuto MASUYAMA, Kazunori UMEDA : 中央大学大学院理工学研究科,y.tanaka@sensor.mech.chuo-u.ac.jp 中央大学理工学部,{masuyama, umeda}@mech.chuo-u.ac.jp

More information

Microsoft PowerPoint - 10.pptx

Microsoft PowerPoint - 10.pptx 0. 固有値とその応用 固有値と固有ベクトル 2 行列による写像から固有ベクトルへ m n A : m n n m 行列によって線形写像 f R R A が表せることを見てきた ここでは 2 次元平面の行列による写像を調べる 2 = 2 A 2 2 とし 写像 まず 単位ベクトルの像を求める u 2 x = v 2 y f : R A R を考える u 2 2 u, 2 2 0 = = v 2 0

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

AHPを用いた大相撲の新しい番付編成

AHPを用いた大相撲の新しい番付編成 5304050 2008/2/15 1 2008/2/15 2 42 2008/2/15 3 2008/2/15 4 195 2008/2/15 5 2008/2/15 6 i j ij >1 ij ij1/>1 i j i 1 ji 1/ j ij 2008/2/15 7 1 =2.01/=0.5 =1.51/=0.67 2008/2/15 8 1 2008/2/15 9 () u ) i i i

More information

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3) (MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

1. はじめにこれまで 我々は社会システム分析ソフトウェア College Analysis において 統計分析 数学 経営科学 意思決定手法などを中心にプログラムを作成してきたが 今回は シミュレーションや統計的な母数推定に利用される乱数の生成と検定の問題について考える 乱数は一様分布を元にして

1. はじめにこれまで 我々は社会システム分析ソフトウェア College Analysis において 統計分析 数学 経営科学 意思決定手法などを中心にプログラムを作成してきたが 今回は シミュレーションや統計的な母数推定に利用される乱数の生成と検定の問題について考える 乱数は一様分布を元にして 社会システム分析のための統合化プログラム 21 - 乱数生成と検定 - 福井正康 * 孟紅燕 * 呉夢 * 崔永杰 福山平成大学経営学部経営学科 * 福山平成大学大学院経営学研究科経営情報学専攻 概要 我々は教育分野での利用を目的に社会システム分析に用いられる様々な手法を統合化したプログラム College Analysis を作成してきた 今回は 様々なシミュレーションや統計的な母数推定などに用いられる乱数生成とその検定についてプログラムを作成した

More information

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ

まず y t を定数項だけに回帰する > levelmod = lm(topixrate~1) 次にこの出力を使って先ほどのレジームスイッチングモデルを推定する 以下のように入力する > levelswmod = msmfit(levelmod,k=,p=0,sw=c(t,t)) ここで k はレジ マルコフレジームスイッチングモデルの推定 1. マルコフレジームスイッチング (MS) モデルを推定する 1.1 パッケージ MSwM インスツールする MS モデルを推定するために R のパッケージ MSwM をインスツールする パッケージとは通常の R には含まれていない 追加的な R のコマンドの集まりのようなものである R には追加的に 600 以上のパッケージが用意されており それぞれ分析の目的に応じて標準の

More information

システム工学実験 パラメータ推定手順

システム工学実験 パラメータ推定手順 システム工学実験パラメータ推定手順 大木健太郎 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 1 アウトライン 1. 線形システムと周波数情報 2. パラメータ推定 3. 実際の手順 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 2 線形時不変システムと伝達関数 入力と出力の関係が線形な定係数微分方程式で与えられるとき, この方程式を線形時不変システムという

More information

Microsoft Word - regression.doc

Microsoft Word - regression.doc 007, OGAWA, Hrosh Santa 回帰分析とソルバー つの変量を散布図に描いた場合 変量の間に関係が深いと点の散らばりが狭い範囲に集中する 狭い範囲に散らばったデータ点を特定の関数で表現して縮約することを回帰とよぶ 線形関数への回帰は 結果を人間が理解しやすいため比較的よく使われる 関数への回帰を求める方法は一つではないが Excel 自体は最小 乗法だけをサポートしている ソルバーと呼ばれる

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

書式に示すように表示したい文字列をダブルクォーテーション (") の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf(" 情報処理基礎 "); printf("c 言語の練習 "); printf

書式に示すように表示したい文字列をダブルクォーテーション () の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf( 情報処理基礎 ); printf(c 言語の練習 ); printf 情報処理基礎 C 言語についてプログラミング言語は 1950 年以前の機械語 アセンブリ言語 ( アセンブラ ) の開発を始めとして 現在までに非常に多くの言語が開発 発表された 情報処理基礎で習う C 言語は 1972 年にアメリカの AT&T ベル研究所でオペレーションシステムである UNIX を作成するために開発された C 言語は現在使われている多数のプログラミング言語に大きな影響を与えている

More information

2

2 2013 Vol.18 No.2 3 24 25 8 22 2 23 26 9 15 20 2 3 4 5 6 7 8 point1 point 2 point3 point4 10 11 point1 point 2 point 3 point 4 12 13 14 15 16 17 18 19 20 http://www.taishukan.co.jp/kateika/ 21 22 23 24

More information

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション 313 第 10 章 Excel を用いた統計処理 10.1 Excel の統計処理レポートや卒業研究などでは 大量のデータを処理 分析し 報告しなければならない場面が数多く登場する このような場合 手計算では多くの時間を要するため現在では計算機を用いて一括処理することが一般的である これにより 時間短縮だけでなく手軽に詳細な分析を行うことができる Excel ではこのような大量のデータに対する分析を容易に行えるよう

More information

Microsoft PowerPoint - …Z…O…†…fi…g…‡…f…‰‡É‡æ‡é™ñ‘oflÅ

Microsoft PowerPoint - …Z…O…†…fi…g…‡…f…‰‡É‡æ‡é™ñ‘oflÅ セグメントモデルによる音声認識 NTTコミュニケーション科学基礎研究所南泰浩 セグメントモデルとは? HMM の欠点 継続時間モデルが導入されていない 状態内の観測系列の時間依存性を反映できない 改良 セグメントモデル HMM とセグメントモデルの違い y t y 1 y 2 y 3 y T P s (y t ) P a,t (y 1,y 2,y 3 y T ) s HMM a P(T a) セグメントモデル

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

<4D F736F F F696E74202D C668DDA C6F89DF944E909492B28DB D838A815B94C E B93C782DD8EE682E890EA97705D>

<4D F736F F F696E74202D C668DDA C6F89DF944E909492B28DB D838A815B94C E B93C782DD8EE682E890EA97705D> 平成 26 年度 使用済家電 4 品目の経過年数等調査 ( 概要版 ) 215 年 3 月みずほ情報総研株式会社 概要 2 1. エアコン 冷蔵庫 冷凍庫及び洗濯機 衣類乾燥機については 経過年数の推移に 過去と比較して特に変化は見られない ワイブル平均が最も大きい品目は冷蔵庫 冷凍庫 (15.9 年 ) 最も小さい品目は洗濯機 衣類乾燥機 (11.2 年 ) で 両者の差は 4.7 年となった その結果

More information

OpRisk VaR3.2 Presentation

OpRisk VaR3.2 Presentation オペレーショナル リスク VaR 計量の実施例 2009 年 5 月 SAS Institute Japan 株式会社 RI ビジネス開発部羽柴利明 オペレーショナル リスク計量の枠組み SAS OpRisk VaR の例 損失情報スケーリング計量単位の設定分布推定各種調整 VaR 計量 内部損失データ スケーリング 頻度分布 規模分布 分布の補正相関調整外部データによる分布の補正 損失シナリオ 分布の統合モンテカルロシミュレーション

More information

Microsoft PowerPoint - Ⅱ(リスク計量化入門).ppt

Microsoft PowerPoint - Ⅱ(リスク計量化入門).ppt Ⅱ. 統計 確率の基礎知識 リスク計量化の前提となる統計 確率の基礎知識について整理 復習します 図解中心の説明ですので 統計 確率は苦手だと感じている方も理解度アップに繋がります 1 目 次 1. 基本統計量 (1 変量 ) 2. 基本統計量 (2 変量 ) 3. 確率変数と確率分布 4. 推定と検定 2 1. 基本統計量 (1 変量 ) (1) 平均 (2) 分散 (3) 標準偏差 (4) パーセント点

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Partner logo サイエンス右揃え上部に配置 XLfit のご紹介 マーケティング部 15 年 3 月 23 日 概要 1. XLfit 機能の確認 - 特徴 3 Step Wizard - 主なツールについて - 主なグラフの表現 2. 実用例 % Inhibition 9 7 6 5 3 1-1 Comparison 1 Concentration 2 1. 基本編 1 特徴 (3 Step

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

竹田式数学 鉄則集

竹田式数学  鉄則集 合格への鉄則集 数学 ⅡB 竹鉄 ⅡB-01~23 竹鉄 ⅡB-1 式と証明 (1) 方程式の決定 方程式の決定問題 a+bi が解なら,a-bi も解 解と係数の関係を活用する 例題 クリアー 140 a,b は実数とする 3 次方程式 x 3 +ax 2 +bx+10=0 が 1+2i を解にもつとき, 定数 a,b の値を求めよ また, 他の解を求めよ 鉄則集 21 竹鉄 ⅡB-2 式と証明

More information

Microsoft PowerPoint - A1.ppt [互換モード]

Microsoft PowerPoint - A1.ppt [互換モード] 011/4/13 付録 A1( 推測統計学の基礎 ) 付録 A1 推測統計学の基礎 1. 統計学. カイ 乗検定 3. 分散分析 4. 相関係数 5. 多変量解析 1. 統計学 3 統計ソフト 4 記述統計学 推測統計学 検定 ノンパラメトリック検定名義 / 分類尺度順序 / 順位尺度パラメトリック検定間隔 / 距離尺度比例 / 比率尺度 SAS SPSS R R-Tps (http://cse.aro.affrc.go.jp/takezawa/r-tps/r.html)

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

MATLAB®製品紹介セミナー

MATLAB®製品紹介セミナー MATLAB における分類 パターン認識 - 入門編 - MathWorks Japan アプリケーションエンジニアリング部 ( テクニカルコンピューティング部 ) アプリケーションエンジニア大開孝文 2012 The MathWorks, Inc. 1 アジェンダ 回帰モデルと分類モデルについて 分類手法を使ったワインの品質モデリング まとめ 2 分類手法を使ったワインの品質モデリング アプローチ

More information

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self-

TC1-31st Fuzzy System Symposium (Chofu, September -, 15) cremental Neural Networ (SOINN) [5] Enhanced SOINN (ESOINN) [] ESOINN GNG Deng Evolving Self- TC1-31st Fuzzy System Symposium (Chofu, September -, 15) Proposing a Growing Self-Organizing Map Based on a Learning Theory of a Gaussian Mixture Model Kazuhiro Tounaga National Fisheries University Abstract:

More information

第9回 配列(array)型の変数

第9回 配列(array)型の変数 第 12 回 配列型の変数 情報処理演習 ( テキスト : 第 4 章, 第 8 章 ) 今日の内容 1. 配列の必要性 2. 配列の宣言 3. 配列変数のイメージ 4. 配列変数を使用した例 5. 範囲を超えた添字を使うと? 6. 多次元配列変数 7. 多次元配列変数を使用した例 8. データのソーティング 9. 今日の練習問題 多数のデータ処理 1. 配列の必要性 ( テキスト 31 ページ )

More information

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った 連続講座 断層映像法の基礎第 34 回 : 篠原広行 他 篠原 広行 桑山 潤 小川 亙 中世古 和真 断層映像法の基礎第 34 回スパイラルスキャン CT 1) 軽部修平 2) 橋本雄幸 1) 小島慎也 1) 藤堂幸宏 1) 3) 首都大学東京人間健康科学研究科放射線科学域 2) 東邦大学医療センター大橋病院 3) 横浜創英短期大学情報学科 1) はじめに第 33 回では検出確率 C ij の関係を行列とベクトルの計算式に置き換えて解を求める最小二乗法を利用した方法について解説した

More information

Processingをはじめよう

Processingをはじめよう Processing をはじめよう 第 7 章 動きその 2 目次 フレームレート スピードと方向 移動 回転 拡大 縮小 2 点間の移動 乱数 タイマー 円運動 今回はここまで 2 2 点間の移動 Example 7-6 (EX_08_06) 始点 (startx, starty) から終点 (stopx, stopy) まで移動する 座標更新の計算方法は後述 始点と終点を変更しても動作する 変更して確認

More information

MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った.

MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った. MT UNDP HDI Langville and Meyer., pp. -, Gowers, Barrow-Green, and Leader., pp. -. なおこれら 参 考 文 献 の 参 考 ページ 数 は 翻 訳 書 の 該 当 ページ 数 に 拠 った. http://hdr.undp.org/en/-report. HDI MT Mahalanobis- Taguchi Method

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学 マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG マルチメディア工学 : 講義計画 イントロダクション コンピュータグラフィックス (Computer Graphics: CG) マルチメディアデータの解析 佐藤嘉伸 大阪大学大学院医学系研究科放射線統合医学講座 yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka

More information

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG 佐藤嘉伸 マルチメディア工学 : 講義計画 マルチメディアデータの解析 基礎数理 代表的解析手法 データ圧縮 : 離散コサイン変換 JPEG データ表現 : 形状の主成分分析 奈良先端科学技術大学院大学情報科学研究科生体医用画像研究室 yoshi@is.naist.jp http://icb lab.naist.jp/members/yoshi/

More information

第4回

第4回 Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値

More information

スペクトルの用語 1 スペクトル図表は フーリエ変換の終着駅です スペクトル 正確には パワースペクトル ですね この図表は 非常に重要な情報を提供してくれます この内容をきちんと解明しなければいけません まず 用語を検討してみましょう 用語では パワー と スペクトル に分けましょう 次に その意

スペクトルの用語 1 スペクトル図表は フーリエ変換の終着駅です スペクトル 正確には パワースペクトル ですね この図表は 非常に重要な情報を提供してくれます この内容をきちんと解明しなければいけません まず 用語を検討してみましょう 用語では パワー と スペクトル に分けましょう 次に その意 ピクトの独り言 フーリエ変換の話し _ その 4 株式会社アイネット スペクトルの用語 1 スペクトル図表は フーリエ変換の終着駅です スペクトル 正確には パワースペクトル ですね この図表は 非常に重要な情報を提供してくれます この内容をきちんと解明しなければいけません まず 用語を検討してみましょう 用語では パワー と スペクトル に分けましょう 次に その意味なり特徴なりを解明しましょう

More information

31 33

31 33 17 3 31 33 36 38 42 45 47 50 52 54 57 60 74 80 82 88 89 92 98 101 104 106 94 1 252 37 1 2 2 1 252 38 1 15 3 16 6 24 17 2 10 252 29 15 21 20 15 4 15 467,555 14 11 25 15 1 6 15 5 ( ) 41 2 634 640 1 5 252

More information

yy yy ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ; ; ; ;; ;; ;; ;;; ;;; ;;; ;; ;; ;; ;; ;; ; ; ; ; ; ; ;

More information

DVIOUT-mem

DVIOUT-mem 統計学講義メモ (1): 記述統計 高木真吾, 北海道大学 目次 1 データの全体像を見る 1 1.1 全体像を把握する : ヒストグラム.................................. 1 1. 分布状態を比較する : ローレンツ曲線................................ 3 データを要約する 8.1 データを代表する尺度 : 代表値...................................

More information

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか

今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか 時系列データ解析でよく見る あぶない モデリング 久保拓弥 (北海道大 環境科学) 1/56 今日の要点 あぶない 時系列データ解析は やめましょう! 統計モデル のあてはめ (危 1) 時系列データの GLM あてはめ (危 2) 時系列Yt 時系列 Xt 各時刻の個体数 気温 とか (危 1) 時系列データを GLM で (危 2) 時系列Yt 時系列 Xt 相関は因果関係ではない 問題の一部

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

EndoPaper.pdf

EndoPaper.pdf Research on Nonlinear Oscillation in the Field of Electrical, Electronics, and Communication Engineering Tetsuro ENDO.,.,, (NLP), 1. 3. (1973 ),. (, ),..., 191, 1970,. 191 1967,,, 196 1967,,. 1967 1. 1988

More information

SICE東北支部研究集会資料(2013年)

SICE東北支部研究集会資料(2013年) 280 (2013.5.29) 280-4 SURF A Study of SURF Algorithm using Edge Image and Color Information Yoshihiro Sasaki, Syunichi Konno, Yoshitaka Tsunekawa * *Iwate University : SURF (Speeded Up Robust Features)

More information

要約 鍋谷 (2007) では2001 年 ~2005 年の高校野球 プロ野球における各プレーの貢献度を 得点 勝敗を被説明変数 各プレーを説明変数とした重回帰モデル 2 項ロジットモデル 2 項プロビットモデルを用いて分析し 犠打 ( 犠牲バント 犠牲フライ ) は得点に対しては有意ではないが勝敗

要約 鍋谷 (2007) では2001 年 ~2005 年の高校野球 プロ野球における各プレーの貢献度を 得点 勝敗を被説明変数 各プレーを説明変数とした重回帰モデル 2 項ロジットモデル 2 項プロビットモデルを用いて分析し 犠打 ( 犠牲バント 犠牲フライ ) は得点に対しては有意ではないが勝敗 平成 26 年度卒業論文 高校野球における各プレーの貢献度 所属ゼミ 村澤ゼミ 学籍番号 1110402082 氏 名 野村剛志 大阪府立大学経済学部 要約 鍋谷 (2007) では2001 年 ~2005 年の高校野球 プロ野球における各プレーの貢献度を 得点 勝敗を被説明変数 各プレーを説明変数とした重回帰モデル 2 項ロジットモデル 2 項プロビットモデルを用いて分析し 犠打 ( 犠牲バント

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

1 目次 1 目次 はじめに Tips セットアップ 事前準備 事前準備 セットアップ セットアップ ( その他 ) Tips 概要 概要 処理フ

1 目次 1 目次 はじめに Tips セットアップ 事前準備 事前準備 セットアップ セットアップ ( その他 ) Tips 概要 概要 処理フ TALON Tips < 明細にある数量項目の合計額を表示する > 株式会社 HOIPOI 第 1.0 版 p. 1 1 目次 1 目次... 2 2 はじめに... 3 3 Tips セットアップ... 4 3.1 事前準備... 4 3.2 事前準備 2... 4 3.3 セットアップ... 4 3.4 セットアップ ( その他 )... 5 4 Tips 概要... 6 4.1 概要... 6

More information

Microsoft PowerPoint - DA2_2017.pptx

Microsoft PowerPoint - DA2_2017.pptx // データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (II)/ 全点対最短路 トポロジカル ソート順による緩和 トポロジカル ソート順に緩和 閉路のない有向グラフ限定 閉路がないならトポロジカル ソート順に緩和するのがベルマン フォードより速い Θ(V + E) 方針 グラフをトポロジカル ソートして頂点に線形順序を与える ソート順に頂点を選び, その頂点の出辺を緩和する 各頂点は一回だけ選択される

More information

英語                                    英-1

英語                                    英-1 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

win版8日目

win版8日目 8 日目 : 項目のチェック (2) 1 日 30 分くらい,30 日で何とか R をそこそこ使えるようになるための練習帳 :Win 版 昨日は, 平均値などの基礎統計量を計算する試行錯誤へご招待しましたが (?), 今日は簡 単にやってみます そのためには,psych というパッケージが必要となりますが, パッケー ジのインストール & 読み込みの詳しい方法は, 後で説明します 以下の説明は,psych

More information

文章のトピック 文章には様々なトピックが存在する Cuomo to Push for Broader Ban on Assault Weapons 2012 Was Hottest Year in U.S. History 2

文章のトピック 文章には様々なトピックが存在する Cuomo to Push for Broader Ban on Assault Weapons 2012 Was Hottest Year in U.S. History 2 自然言語処理プログラミング勉強会 7 - トピックモデル Graham Neubig 奈良先端科学技術大学院大学 (NAIST) 1 文章のトピック 文章には様々なトピックが存在する Cuomo to Push for Broader Ban on Assault Weapons 2012 Was Hottest Year in U.S. History 2 文章のトピック 文章には様々なトピックが存在する

More information

本資料では Flat imlator Vr.5.. の下記改良成果についてご報告します iss iscolastic modl を利用した Film castig simlatio 機能の実装 iss iscolastic modl を利用した Matrial charactrizatio 機能の実

本資料では Flat imlator Vr.5.. の下記改良成果についてご報告します iss iscolastic modl を利用した Film castig simlatio 機能の実装 iss iscolastic modl を利用した Matrial charactrizatio 機能の実 Flat imlatorvr.5.. 改良成果資料 発表用ダイジェスト版 5//5 株式会社 HAL Copright Hpr Adacd imlatio Laborator Co. Ltd. All Rights Rsrd 本資料では Flat imlator Vr.5.. の下記改良成果についてご報告します iss iscolastic modl を利用した Film castig simlatio

More information

ープのロープ長以下であれば実現可能である ケース 3: 3 本のロープの杭の位置を点 P 1 = (x 1, y 1, 0), 点 P 2 = (x 2, y 2, 0), 点 P 3 = (x 3, y 3, 0) とする 点 P 1 = (x 1, y 1, 0), 点 P 2 = (x 2,

ープのロープ長以下であれば実現可能である ケース 3: 3 本のロープの杭の位置を点 P 1 = (x 1, y 1, 0), 点 P 2 = (x 2, y 2, 0), 点 P 3 = (x 3, y 3, 0) とする 点 P 1 = (x 1, y 1, 0), 点 P 2 = (x 2, ACM ICPC2013 国内予選問題 E つながれた風船 風船が最も高くあがるケースとして 1. 一本のロープが垂直に延びて他の2 本は緩んでいる 2. 二本のロープがピンと張っており残りの1 本は緩んでいる 3. 三本のロープともピンとはっているの三つのケースが考えられる ロープの本数は高々 10 本なので ケース1 は高々 10 9C2=360 通り ケース2も高々 10C2 8=360 通り

More information

色の類似性に基づいた形状特徴量CS-HOGの提案

色の類似性に基づいた形状特徴量CS-HOGの提案 IS3-04 第 18 回 画 像 センシングシンポジウム, 横 浜, 2012 年 6 月 CS-HOG CS-HOG : Color Similarity-based HOG feature Yuhi Goto, Yuji Yamauchi, Hironobu Fujiyoshi Chubu University E-mail: yuhi@vision.cs.chubu.ac.jp Abstract

More information

6 6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分

More information

DVIOUT-n_baika

DVIOUT-n_baika 1 三角関数の n 倍角の公式とその応用について述べます. なお Voyage 200 の操作の詳細は http://sci-tech.ksc.kwansei.ac.jp/~yamane にある はじめての数式処理電卓 Voyage 200 をご覧下さい. 2 倍角の公式 cos 2x =2cos 2 x 1=1 2sin 2 x sin 2x =2sinxcos x はよく知られています.3 倍角の公式

More information

For Employee 5,000 20, UT Communication Vol.6

For Employee 5,000 20, UT Communication Vol.6 Communication Vol.6 Contents 01 03 07 09 11 13 For Employee 5,000 20,000 2 1 1 UT Communication Vol.6 For Client 100 50 300 70 UT Communication Vol.6 2 3 UT Communication Vol.6 1 750 90 21,000 2016/3 340

More information

図 共面条件 図 地上写真ステレオ計測 図 に示す地上座標系 UVW における点 O 1, O 2, p 1, p 2 を含む空間上の平面方程式を構成し その不定方程 式から次に示す平面の条件が得られる U o1 V o1 W o1 1 U o2 V

図 共面条件 図 地上写真ステレオ計測 図 に示す地上座標系 UVW における点 O 1, O 2, p 1, p 2 を含む空間上の平面方程式を構成し その不定方程 式から次に示す平面の条件が得られる U o1 V o1 W o1 1 U o2 V 第 4 章ステレオ写真測量 stereo photogrammetry 4.1 ステレオ写真測量とは写真測量による計測は 対象物が平面の場合には単写真で計測することができるが 対象物が立体の場合にはその対象物を 2 か所以上から左右の画像が 60% 以上の重複度で重なるように撮影して行うステレオ写真測量の原理を利用する 計測対象物によっては 2 枚一組以上のステレオ画像を用いて三次元計測を行う 被写体の三次元座標は

More information

広報さっぽろ 2016年8月号 厚別区

広報さっぽろ 2016年8月号 厚別区 8/119/10 P 2016 8 11 12 P4 P6 P6 P7 13 P4 14 15 P8 16 P6 17 18 19 20 P4 21 P4 22 P7 23 P6 P7 24 25 26 P4 P4 P6 27 P4 P7 28 P6 29 30 P4 P5 31 P5 P6 2016 9 1 2 3 P4 4 P4 5 P5 6 7 8 P4 9 10 P4 1 b 2 b 3 b

More information

aisatu.pdf

aisatu.pdf 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

Microsoft PowerPoint - DigitalMedia2_2.pptx

Microsoft PowerPoint - DigitalMedia2_2.pptx デジタルメディア処理 担当 : 井尻敬 デジタルメディア処理 7( 前期 ) /3 デジタル画像とは : イントロダクション / フィルタ処理 : 画素ごとの濃淡変換 線形フィルタ, 線形フィルタ /7 フィルタ処理 : フーリエ変換, ローパスフィルタ, ハイパスフィルタ 5/ 画像の幾何変換 : アファイン変換 5/8 画像の幾何変換 : 画像の補間, イメージモザイキング 5/5 画像領域分割

More information

2 技 術 内 容 の 概 略 : 状 態 推 定 ( 最 適 フィルタ) 1. 状 態 空 間 モデルと 状 態 推 定 ( 最 適 フィルタ) カルマンフィルタをはじめとする 状 態 推 定 技 術 の 発 展 形 パーティクルフィルタ: 非 線 形 非 ガウスモデル 向 け, 柔 軟 性 あり

2 技 術 内 容 の 概 略 : 状 態 推 定 ( 最 適 フィルタ) 1. 状 態 空 間 モデルと 状 態 推 定 ( 最 適 フィルタ) カルマンフィルタをはじめとする 状 態 推 定 技 術 の 発 展 形 パーティクルフィルタ: 非 線 形 非 ガウスモデル 向 け, 柔 軟 性 あり 1 パーティクルフィルタによる 複 数 対 象 同 時 推 定 とあいまい 測 度 による 異 種 情 報 の 融 合 九 州 工 業 大 学 大 学 院 工 学 研 究 院 電 気 電 子 工 学 研 究 系 准 教 授 生 駒 哲 一 2 技 術 内 容 の 概 略 : 状 態 推 定 ( 最 適 フィルタ) 1. 状 態 空 間 モデルと 状 態 推 定 ( 最 適 フィルタ) カルマンフィルタをはじめとする

More information

Microsoft PowerPoint - 06.pptx

Microsoft PowerPoint - 06.pptx アルゴリズムとデータ構造第 6 回 : 探索問題に対応するデータ構造 (2) 担当 : 上原隆平 (uehara) 2015/04/22 内容 スタック (stack): 最後に追加されたデータが最初に取り出される 待ち行列 / キュー (queue): 最初に追加されたデータが最初に取り出される ヒープ (heap): 蓄えられたデータのうち小さいものから順に取り出される 配列による実装 連結リストによる実装

More information

正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 220

正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 正常 220 5. 判別分析 5. 判別分析の原理 判別分析は後ろ向き研究から得られたデータに適用する手法 () 判別分析 医学分野では病気の診断を必要とする場面が多い ある検査項目を用いて被験者が疾患かどうかを判断したいまたはある検査項目が疾患の診断に寄与するかどうかを検討したい 判別分析は多種類のデータに基いて被験者を特定の群に判別したり 判別に強い影響を及ぼ すデータを探索したりするための手法 後ろ向き研究から得られたデータに適用する

More information