Size: px
Start display at page:

Download ""

Transcription

1 K 20

2

3 1 e, e K JLab e, e K + Λ K + 2 K + Missing Mass E/E 10 4 JLab 1 e, e K + Λ K, π π +, K + Λ Λ Σ 0 Mass Mass 2000 E e, e K + 12 Λ B 750 kev FWHM Missing Mass e, e K + background K MeV/C FWHM 2005 E background tilt K + K + HKS background 2009 e, e K + Λ E A 6 A 50 1 background HES HES tilt S/N HES Splitter K + π + proton background E π + /K + Aerogel Cherenkov AC K + /p Water Cherenkov WC AC Aerogel 1.05 WC wavelength shifter Amino-G salt 50 mg/l : 1.33 WC 1 40 K + /p proton rejection WC 2 layer 95 layer 98 proton rejection 2 layer proton survival ratio JLab 60 Co γ Amino-G salt radiation damage Amino-G salt WC Cherenkov UVT

4 2 UV-PMT WC electron beam number of photoelectron : NPE 75 simulation WC K+/p layer 98 proton rejection K + over kill ratio 2.7 WC WC layer 98 proton rejection K + over kill ratio 1 layer layer 5.6

5 i Λ e, e K + Λ e, e K e, e K e,e K CEBAF E E E E E HES tilt HES HKS K K + HKS HKS Drift Chamber (HDC) TOF Time of Flight counter HTOF Aerogel Cherenkov AC Water Cherenkov WC Lucite Cherenkov LC K background singles rate singles rate Kaon Particle ID E Water Cherenkov

6 ii 5 K + /p Water Cherenkov Cherenkov Cherenkov PMT Water Cherenkov PMT WC Hyper Cherenkov Simulator HYCS electron beam E Water Cherenkov WC E simulation WC K + /p Water Cherenkov A 63 A A.2 PMT A B WC (Water Cherenkov counter) 67 B.1 Number of Photoelectron B B

7 iii C p e, e K + Λ p γ, K + Λ E γ C e,e K + 12 Λ B Λ K virtual photon flux CEBAF E C e, e K + 12 Λ B E setup E C e, e K + 12 Λ B E setup virtual photon EHODO HKS WC AC π + K + proton Cherenkov number of photoelectron Cherenkov WC WC1 WC2 run number [11] Amino-G salt E WC Cherenkov PMT

8 iv 5.8 Water Cherenkov O µ electron Pure Water n = 1.33 NPE NPE NPE NPE NPE + + UV-PMT UV-PMT electron beam NPE Geant simulation WC NPE threshold cut K + proton survival ratio simulation WC 2 segment segment K + survival rario A A.2 PMT A.3 PMT A.4 PMT A A A B.1 Water Cherenkov Counter

9 v 2.1 CEBAF E E tilt Enge HES HES EQ1 EQ2 ED Splitter EDC EHOD HKS HKS KQ1 KQ2 KD HKS Cherenkov E target sigles rate NPE K + /p Water Cherenkov Water Cherenkov HYCS simulation NPE NPE NPE ϵ det K + proton NPE simulation K + NPE peak 1 layer K + kill ratio B B.2 NPE

10 vi

11 Λ u, d [uud] [udd] s s 1 Λ[uds] Σ [dds] Σ 0 [uds] Σ + [uus] 2 Ξ [dss] Ξ 0 [uss] s Λ 1.2 Λ BNL Λ 1970 BNL CERN K K, π Λ p Λ 1.1 K π +, K Λ π +, K + K, π K π + Li Ca Λ MeV FWHM 1990 K + SKS KEK KEK-PS K6 SKS π +,K +

12 : 12 C Li B C O V Y Pb 1.3 e, e K + Λ e, e K + γ + p K + + Λ Λ K K + e, e K nb/sr Λ e K JLab e, e K beam 2 π +, K + K, π MeV/c 3. Λ π +, K + K, π Λ e, e K + Λ

13 π +, K + K, π 4. Λ Λ Σ 0 Mass (e, e K + ) 1.4 e, e K + JLab 2000 E e, e K + K + HKS tilt E K + Water Cherenkov WC wavelenth shifter Amino-G salt radiation damage E E Λ HES E WC Amino-G salt WC number of photoelectron : NPE K + /p e, e K + 2 E Water Cherenkov 4

14

15 5 2 e, e K + 2 e, e K + e, e K + E e, e K + e, e K e + p e + Λ + K + (2.1) electro-production d 3 { σ dσt = Γ + ϵ dσ L dσ P + ϵ L cos 2ϕ K + 2ϵ L (1 + ϵ) dσ } I cos ϕ K de e dω e dω K dω K dω K dω K dω K E γ (2.2) α E e Γ = 2π 2 Q 2 (α : ) (2.3) 1 ϵ E e ϵ = {1 + q 2 Q 2 tan2 ( θ } 1 e 2 ) (2.4) ϵ L = ω + Q2 ω 2 ϵ (2.5) E γ = ω + q2 2m p (2.6) q = p e p e ω = E e E e (2.7) q = (q, ω) Q 2 = q 2 > 0 [2][3] 2.1 Ω e Ω K + K + Γ virtual photon flux ϵ ϵ L virtual photon ω T ω L ω P ω I ϕ K + Λ K + m p 2.3 E γ proton-photon virtual photon p γ,k + Λ E γ 2.2 E γ 1.5 GeV/c Baryon Mass = 1.92 GeV E e = 2.5 GeV/c E γ = 1.5 GeV/c DWIA 12 C e,e K + 12 Λ B Λ K+ 2.3 virtual photon flux 2.4 virtual photon K +

16 6 2 e, e K + 2.1: p e, e K + Λ γ γ p, K + Λ 2.2: p γ, K + Λ E γ Baryon Mass, W GeV [7] ω = 1.5 GeV W = 1.92 GeV

17 2.1. e, e K + 7 (e,e K + ) kaon angular distribution, harm. osci, DWIA Ground state of 12 ΛB Hypernuclei Total ( ) E e =2.5 GeV E e =1.0 GeV θ e =3.5 deg. Spin-flip (2 - ) Spin-nonflip (1 - ) 2.3: 12 C e,e K + 12 Λ B Λ K+ [15] 2.4: virtual photon flux [15] virtual photon flux virtual photon

18 8 2 e, e K e,e K + e, e K E E JLab JLab Continuos Electron Beam Accelerator Facility CEBAF CEBAF e,e K + Λ e,e K nb/sr K,π 10 mb/sr π +,K + 10 µb/sr µa e,e K + K + duty factor 100 beam size 100 µm FWHM beam energy E/E 10 4 JLab CEBAF CEBAF GeV 5 6 GeV A B C MHz 499 MHz 2 ns GeV linac (20 cryomodules) 1497 MHz 67 MeV injector (2 1/4 cryomodules) 1497 MHz RF separators 499 MHz A B C 2.5: CEBAF E JLab Hall C e, e K + Λ [5][6] E Λ K + Hall C Shrot Orbit Spectrometer SOS Enge Split-Pole Spectrometer Enge

19 2.2. e,e K + 9 Maximum Beam Energy Maximum Beam Intensity Beam Size Beam Energy Spread Beam Bunch 6 GeV 200 µa / Hall 100 µm FWHM E / E ns 499 MHz 2.1: CEBAF 2.6: E C e, e K + 12 Λ B [5]

20 10 2 e, e K + 12 Λ B 2.6 Λ S 1/2 750 kev FWHM [5] e, e K + SOS K + p/p background - Mϕller E E [11] K + HKS tilt : E setup

21 2.2. e,e K + 11 Beam Energy 1.8 GeV Virtual Photon Energy 1.5 GeV e Momentum Acceptance 0.35 ± 0.15 GeV/c e Solid Angle 5 msr Enge Momentum Resolution p/p K + Momentum Acceptance 1.2 ± 0.15 GeV/c K + Solid Angle 16 msr HKS Momentum Resolution p/p : E tilt background E Λ B 2.8 Λ S 1/2 490 kev FWHM E kev FWHM [11] E HKS K + JLab Hall C Enge 2.8: E C e, e K + 12 Λ B [11]

22

23 13 3 E E setup K E e, e K + 12 C 28 Si 6 Li 7 Li 10 B 11 B 40 Ca 52 Cr 89 Y Λ Core + Λ beyond p - shell ΛN - ls splitting 28 Si 40 Ca 52 Cr 89 Y 3.2 E E Splitter target HES K + HKS Beam Energy 2.5 GeV Virtual Photon Energy 1.5 GeV e Momentum Acceptance 1.0 ± 0.15 GeV/c e Solid Angle 10 msr HES Momentum Resolution p/p K + Momentum Acceptance 1.2 ± 0.15 GeV/c K + Solid Angle 8 msr HKS Momentum Resolution p/p : E05-115

24 14 3 E : E setup HES tilt HES Virtual Photon Mϕller background tilt tilt 3.2 Virtual Photon Mϕller background tilt Splitter K + background Enge 7.75 background 250 background 1/ tilt HES tilt tilt method Beam current target thicness rate E without 0.6 µa 22 mg/cm MHz E with 30 µa 100 mg/cm 2 1 MHz 3.2: tilt tilt 250 1/200 tilt

25 3.2. E HES tilt tilt background virtual photon Mϕller background S/N HES [15] 3.3 Enge HES 3.2 x, y z virtual photon Mϕller tilt Enge HES background HES central momentum Enge 0.35 GeV/c HES 1.0 GeV/c beam energy 1.8 GeV 2.5 GeV 3.2 background ϕller virtual photon 3.3 beam energy 3.2 HES Enge tilt HES 8 [15] 3.2: x, y virtual photon Mϕller Enge HES [15] tilt background

26 16 3 E : virtual photon [15] beam energy = 2.5 GeV central momentum = 1.0 GeV/c beam energy = 1.8 GeV central momentum = 0.35 GeV/c 3.2 background Mϕller Enge HES Configuration Split Pole Q-Q-D and horizontal 50 deg bend e momentum Acceptance 0.35 ± 0.15 GeV/c 1.0 ± 0.15 GeV/c e Solid Angle 5 msr 10 msr Momentum Resolution p/p : Enge HES EQ1 Pole length EQ1 Maximum Field Gradient EQ1 Bore Diameter EQ2 Pole length EQ2 Maximum Field Gradient EQ2 Bore Diameter Maximum Field Strength Gap Bending Angle Total Weight 60 cm 7.8 T/m 10 cm 50 cm 5.0 T/m 12.5 cm 1.64 T 19.4 cm 50 deg 38.5 t 3.4: HES EQ1 EQ2 ED

27 3.2. E Maximum Field Strength 1.65 T Gap 19 cm 1.0 GeV/c e Bending Angle deg Total Weight 31.7 t 3.5: Splitter Splitter Splitter K + HKS HES 3.5 HES HKS [15] HES HES 2 EDC1 EDC2 EHODO HES EDC1 EDC2 3.6 EDC1 E EDC2 E HDC1 HKS Drift Chamber HES Hodoscope EHODO EHODO PMT layer 29 segment segment PMT

28 18 3 E EDC1 Sensitive area Layer Distance between Layers Cell size Resolution 100 cm 12 cm 30 cm xx, uu 30 deg, xx, vv -30 deg, xx 7.5 cm 1.0 cm Position Resolution horizontal ; x σ = 86 µm Position Resolution vertical ; y σ = 210 µm Position Resolution horizontal ; x σ = 0.7 mrad Angle Resolution vertical ; y σ = 2.8 mrad EDC2 Sensitive area Layer Resolution 120 cm 30 cm 14 cm xx, uu 30 deg, xx, vv -30 deg, xx 5mm drift distance, σ = 150 µm Position Resolution horizontal ; x σ = 162 µm Position Resolution vertical ; y σ = 163 µm Angle Resolution horizontal ; x σ = 0.33 mrad Angle Resolution vertical ; y σ = 0.33 mrad 3.6: EDC name sensitive area [cm] construction EHOD W cm 29 segments PMT : HAMAMATSU H6612 EHOD W cm 29 segments PMT : HAMAMATSU H : EHODO

29 3.3. HKS K : EHODO size cm 5 cm 1 cm 29 segment 3.3 HKS K K + HKS HKS E E background HKS Q-Q-D 3.8 HKS 3.9 Configuration K + Momentum Acceptance K + Solid Angle Momentum Resolution K + Path length Q-Q-D 1.2 ± 0.15 GeV/c 8 msr m 3.8: HKS HKS 3.5 E setup HDC1 HDC2 TOF Time Of Flight HTOF 1X 1Y e + π + rejection Aerogel Cherenkov AC TOF HTOF 2X proton rejection Water Cherenkov WC proton rejection TOF Lucite Cherenkov LC

30 20 3 E KQ1 Pole length KQ1 Maximum Field Gradient KQ1 Bore Diameter KQ2 Pole length KQ2 Maximum Field Gradient KQ2 Bore Diameter Maximum Field Strength Gap Bending Angle Radius 84 cm -5.8 T/m 13 cm 60 cm 3.4 T/m 12 cm 1.53 T 20 cm 70 deg 325 cm 3.9: HKS KQ1 KQ2 KD 3.10 HKS 3.5: HKS beam HDC 1, 2 HTOF 1 AC 1, 2, 3 HTOF 2 WC 1, 2 LC HKS Drift Chamber (HDC) K + HDC 1 2 HDC 2 HDC

31 3.3. HKS K + 21 name sensitive area [cm] construction Drift Chamber HDC xx, uu +30 deg, vv -30 deg 5mm drift distance, σ = 150 µm HDC xx, uu +30 deg, vv -30 deg 5mm drift distance, σ = 150 µm TOF counter HTOF1X W 17 segments PMT ; HAMAMATSU H inch HTOF1Y W 9 segments PMT ; HAMAMATSU H inch HTOF2X W 18 segments PMT ; HAMAMATSU H inch Aerogel Cherenkov n = 1.05 Silica Aerogel AC W 7 segments PMT ; photonics 14 5 tube AC W 7 segments PMT ; photonics 14 5 tube AC W 7 segments PMT ; photonics 14 5 tube Water Cherenkov n = 1.33 Water WC W 12 segments PMT ; HAMAMATSU H7195 or H7195UV 2 inch WC W 12 segments PMT ; HAMAMATSU H7195 or H7195 UV 2 inch Lucite Cherenkov n = 1.45 Lucite LC W 13 segments PMT ; photonics 3 tube 3.10: HKS

32 22 3 E TOF Time of Flight counter HTOF HTOF HKS π + K + proton Particle ID Identification HTOF off line Particle ID 1X 2X 1.5 m KEK-PS T1 HTOF 77 ps HTOF 170 ps JLab Hall C Aerogel Cherenkov AC HKS background π + reject Cherenkov c/n 1.2 GeV/c π + K + n = 1.05 Silica Aerogel π π + rejection Water Cherenkov WC AC proton refection 1.2 GeV/c proton K n 1.28 n = 1.33 E K proton rejection Lucite Cherenkov LC WC proton rejection TOF Hampton Univ. WC TOF TOF path length WC on line off line Particle ID

33 23 4 K + K + Particle ID Water Cherenkov WC E : WC AC π + K + proton Cherenkov number of photoelectron HKS GeV/c PMT Water n = 1.33 Aerogel n = 1.05 π + K + proton Cherenkov number of photoelectron PMT π + /K + AC HKS momentum acceptance 1.2 ± 0.15 GeV/c π + K + Cherenkov Particle ID K + /p WC HKS momentum acceptance K + proton Cherenkov 6 Particle ID Particle ID 1

34 24 4 K + index π + K + p AC Aerogel n = 1.05 WC Water n = : Cherenkov Particle ID 4.1 grouping grouping segment group group groupe K + [12] Cherenkov D dispersion group threshold n group e K + coincidence HKS K + HES coincidence e, e K + ( 6 HTOF1X n HTOF2X n AC n WC n ) (EHOD1 EHOD2) (4.1) n K + HKS single arm trig. HKS K + e, K + 6 HTOF1X n HTOF2X n AC n WC n (4.2) n p/π + /K + HKS Unbiased trig. HKS TOF proton K + π + proton π + singles rate HT OF1X HT OF2X (4.3) NIM Tohoku Universal Logic Module TUL TUL E [12] 4.2 background singles rate E singles rate background proton π + cut K + Particle ID

35 singles rate E HKS singles rate 4.2 target π + K + proton single rate [8] 10 khz K + π + proton rate 1 2 Cherenkov on line Particle ID π + proton cut target Beam Intensity π + [khz] K + [khz] proton [khz] 7 Li 15 µa B 30 µa C 50 µa Ca 30 µa Cr 30 µa : E sigles rate target 100 mg/cm 2 [8] Kaon Particle ID K + Particle ID WC proton rejection WC proton AC π + on line cut K + off line WC AC TOF K + WC AC K ± 0.15 GeV/c Cherenkov 4.2 Cherenkov Aerogel n = GeV/c π + K + π + /K + K + /p n = 1.15 n = 1.33 Water proton K + Cherenkov β 5.3 proton K K + /p WC PMT number of photoelectron : NPE on line Particle ID WC K + /p K + /p WC K + NPE run number 1 40 KEK

36 26 4 K + 4.2: Cherenkov Aerogel n = GeV/c K + π + /K + K + /p n = 1.15 n = 1.33 Water proton K + 4.3: WC ϵ col = 10 PMT ϵ det = 25 PMT : nm GeV/c proton K + /p

37 proton 99 K + over kill ratio 5 K + over kill ratio proton reject proton rejection 2 layer proton K + 2 proton 5 K + S/N WC 4.4: WC1 WC2 run number [11] Amino-G salt 50 mg/l Amino-G salt Amino-G salt : 7-Amino-1. 3 naphthalenedisulfonic - acid. monopotassium salt hydrate : C 10 H 9 NO 6 S nm nm [10] Cherenkov PMT nm Amino-G salt wavelength shifter PMT Cherenkov 4.5 Amino-G salt

38 28 4 K + 4.5: Amino-G salt JLab Hall C Amino-G salt radiation damage [16] 4.6: E WC [13] Co γ Amino-G salt radiation 4.7 wavelength shifter Amino-G salt radiation damage JLab Hall C WC 1 MHz 1 mgy/h 3 2 Gy beam dump radiation Gy

39 4.4. E Water Cherenkov Gy 40 radiation damage 4.7: NPE 0 Gy NPE NPE [16] radiation damage Water Cherenkov 4.4 E Water Cherenkov 4.2 E singles rate Cherenkov CEBAF beam current 100 µa proton 250 khz 100 Hz proton rejection WC proton survival rato rayer 98 proton rejection 6 HKS central momentum 1.2 GeV/c K + 50 NPE

40

41 31 5 K + /p Water Cherenkov Water Cherenkov WC proton rejection WC wavelength shifter Amino-G salt JLab Hall C radiation damage wavelength shifter radiation damage Water Cerenkov 5.1 Cherenkov Cherenkov Cherenkov WC Cherenkov Cherenkov c/n n : β 1/n Cherenkov 5.1 Cherenkov Cherenkov θ c cos θ c = ct/n βct = 1 nβ Cherenkov λ 1 λ 2 Cherenkov dn/dl dn dl = 2πα sin 2 θ c λ2 λ 1 dλ dn λ 2 dl (5.1) = 2πα(1 1 λ2 n 2 β 2 ) dλ λ 1 λ 2 (5.2) PMT ϵ col ϵ det dn dl = 2πα(1 1 λ2 n 2 β 2 ) dλ λ 1 λ 2 ϵ det(λ)ϵ col (λ) (5.3) number of photoelectron : NPE [9]

42 32 5 K + /p Water Cherenkov 5.1: Cherenkov 5.2 Cherenkov WC wavelength shifter Gy radiation damage wavelength shifter electron beam 5.1 NPE electron beam 1.0 GeV/c electron beam 1.2 GeV/c K + NPE 50 6 Water Cherenkov Cherenkov /λ 2 wavelength shifter wavelength shifter PMT

43 5.2. Cherenkov : 5.3:

44 34 5 K + /p Water Cherenkov particle β cosmic ray electron beam : NPE β cosmic ray 0.6 GeV/c electron beam 1.0 GeV/c SHIMAZU UV-2500PC 400 nm PMT 5.6 UV-2500 PC 3 mm UVT UVT 300 nm WC PMT PMT UV-PMT HAMAMATSU H inch H7195UV 5.7 UV-PMT UV [17] UV-PMT PMT PMT PMT PMT

45 5.2. Cherenkov : 0.1 mm 150 mm 100 m 35 H 15.6 W 8 T cm PMT UVT UVT PMT HAMAMASTU : H7195 H7195 H7195 UV Amino-G salt 5.2: K + /p Water Cherenkov

46 36 5 K + /p Water Cherenkov 5.5: seal tape : UVT UVT 280 nm

47 5.2. Cherenkov : PMT [17] PMT UV-PMT 300 nm

48 38 5 K + /p Water Cherenkov 5.3 Water Cherenkov Cherenkov : Water Cherenkov A PMT PMT UVT O - PMT O cm 60 cm A

49 5.3. Water Cherenkov 39 PMT PMT Cherenkov 37.6 H 15.2 W 8.1 T cm 34.6 H 15.6 W 8.7 T cm 3 mm HAMAMASTU : H7195 UV pure water n = 1.33 ; 18.2 MΩcm 5.3: Water Cherenkov 5.9:

50 40 5 K + /p Water Cherenkov 5.10: O - 60 cm 5.4 WC NPE simulation 5.11 µ electron NPE Hyper Cherenkov Simulator HYCS Hyper Cherenkov Simulator HYCS simulation HYCS Cherenkov simulation Cherenkov NPE PMT 5.5 PMT /3 mm 5.4 [20] 96 /m 5.5 wavelength nm tranceparency m transmission rate /m : [20]

51 5.4. WC : µ electron Pure Water n = 1.33 NPE 10 PMT 300nm 650nm 25 particle cosmic ray electron β = 0.97 β = 1.0 PMT Normal UV-PMT Normal UV-PMT : HYCS simulation NPE

52 42 5 K + /p Water Cherenkov GeV/c K + NPE 50 K + /p 5.5 Water Cherenkov WC 18.2 MΩcm Water Cherenkov coinsidense UVT PMT Normal PMT UV-PMT 5.12: NPE PMT ADC Analog to Dedital Converter : LECROY RESARCH SYSTEMS 2249W

53 ch ADC one photoelectron peak gaussian NPE peak gaussian NPE NPE UV-PMT NPE Cherenkov 5.17 NPE 1.7 NPE NPE PMT Normal Normal UV-PMT UV-PMT Window UVT Acryl Quatz Glass UVT Acryl Quatz Glass : NPE NPE 2 wavelength shifter NPE [13] 5.13: NPE wavelength shifter NPE [13]

54 44 5 K + /p Water Cherenkov 5.14: NPE UVT + Normal PMT UVT + UV-PMT + Normal PMT + UV-PMT PMT 1 NPE 2 NPE

55 : NPE UVT + Normal PMT UVT + UV-PMT + Normal PMT + UV-PMT PMT 1 NPE 2 NPE

56 46 5 K + /p Water Cherenkov 5.16: NPE + + UV-PMT : + + UV-PMT 5.15

57 5.6. electron beam electron beam STB electron beam 1.0 GeV/c WC B beam NPE 5.18 NPE = 0.7 NPE : NPE NPE 114 electron beam GeV/c β 0.97 electron beam 1 GeV/c β electron beam Cherenkov NPE 1 electron beam 1/cosθ Cherenkov HYCS simulation nm HYCS PMT UVT 1 NPE PMT Normal PMT UV-PMT

58 48 5 K + /p Water Cherenkov 5.18: electron beam NPE NPE 97 NPE NPE = 0.7

59 UV-PMT HYCS simulation 1 NPE UV-PMT HYCS 5.7 wavelength shifter Amino-G salt radiation damage K + /p Water Cherenkov Cherenkov UV-PMT PMT 2 5 NPE UVT UVT 1 2 HAMAMATSU H7195 H7195 UV 5 NPE 5.6 simulation

60

61 51 6 E WC Geant 4 [18] Geant 4 CERN HKS TOSCA [19] target proton K + HKS momentam acceptance GeV/c 6.1: Geant 4 Splitter HKS Q-Q-D D Vaccum Extention HDC 1 HDC 2 TOF AC WC LC EDC 1 EDC 2 HKS 1.2 GeV/c Focal plane ) 6.1 Water Cherenkov electron beam 100 NPE E WC NPE 5.3 Cherenkov N NPE = N(λ)ϵ col ϵ det (λ) (6.1) ϵ col ϵ det (λ) PMT 5.1 N(λ) 5.7 ϵ det (λ) NPE ϵ col 6.1

62 52 6 E GeV/c electron beam simulation electron beam MeV/c β 1.0 β N(λ)ϵ det (λ) NPE ϵ col cosmic ray β ± electron beam β ± N(λ)ϵ det (λ) NPE ϵ col cosmic ray 07/ ± cosmic ray 07/ ± electron beam ± N(λ)ϵ det (λ) NPE ϵ col cosmic ray Normal PMT ± 3 20 comic ray UV PMT ± 3 *13 electron beam UV PMT ± : ϵ det * PMT ϵ col Normal PMT : nm UV-PMT : nm [17] 6.2 WC E HKS momentum acceptance 1.2 ± 0.15 GeV/c K + proton NPE 6.2 NPE K + proton β momentum : GeV/c ϵ col = ϵ col = ϵ col = : K + proton NPE simulation WC K + /p WC K + /p simulation 6.2 simulation NPE layer 1 segment

63 6.2. WC 53 Geant4 Cherenkov ϵ col = 10.3 ϵ det = 0.25 NPE K + peak HKS centeral momentum 1.2 GeV/c K + NPE : simulation WC K + proton layer 1 segment NPE threshold cut K + proton survival ratio 6.3 K + /p layer 98 proton rejection K + kill ratio 1 layer 2.8 K + NPE peak K + kill ratio 6.3 K + NPE peak 50 K + kill ratio 2.8 segment K + survival ratio 6.4 segment 2 K + proton NPE K + NPE segment proton NPE high momentum high momentum K + /p segment high momentum 7 segment proton 98 cut 1 layer K + survival ratio NPE segment HKS high momentum K + over kill ratio momentum segment No. 01 K+ over kill ratio 1 layer segment No. 06 NPE 30 K + over kill ratio 2.2 NPE 32 No.06 low momentum proton rejection

64 54 6 E : NPE cut WC K + proton survival ratio layer segment proton 98 cut K + over kill ratio 2.8 K + NPE peak K + kill ratio : Geant4 simulation K + NPE peak 1 layer K + kill ratio NPE 50 K + kill ratio

65 6.2. WC : simulation WC count 2 segment segment segment high momentum K + segment high momentum segment proton high momentum K + /p

66 56 6 E Water Cherenkov 1 layer 98 proton rejection segment high momentum 5 NPE K + /p low momentum NPE 30 K + /p WC high momentum 5 segment 2 Layer 10 low momentum 98 proton rejection K + kill ratio high momentum low momentum segment K + 1 layer 2.9 K + over kill ratio 2 layer proton rejection 6.5: segment proton 98 cut K + survival rario segment HKS high momentum high momentum K + /p HKS momentum acceptance GeV/c K +

67 e,e K + Λ E HKS tilt 12 Al Λ B 28 Λ E Ca Cr - background HES E HKS proton rejection WC 60 Co γ wavelength shifter Amino-G salt radiation damage 7.1 Water Cherenkov Amino-G salt WC Cherenkov PMT UVT PMT UV-PMT NPE 114 electron beam NPE 98 PMT UVT 1 UV-PMT PMT PMT Cherenkov Cherenkov 1/λ nm 400 nm 280 nm UVT Normal PMT NPE electron beam Cherenkov

68 : PMT Cherenkov

69 /λ nm nm Cherenkov nm 200 nm UV-PMT UV-PMT 1 UV-PMT 5 Cherenkov nm 1800 UV-PMT Nϵ det (λ = ) NPE 10 1/ nm 200 nm nm 100 m [20] 99 /m 200 nm Cherenkov 280 nm 650nm 400 nm 280 nm NPE 2 UVT 5 UV-PMT E HKS central momentum 1.2 GeV/c K + NPE 76 K + /p 1 layer 98 proton rejection K + kill rario 2.8 segment K + /p high momentum 5 K + /p low momentum NPE 30 K + /p WC high momentum 5 segment 2 Layer 10 low momentum layer segment 98 proton rejection K + over kill ratio low momentum high momentum K + 1 layer 2.9

70 60 7 K + over kill ratio 2 layer 5.6 proton proton rejection 7.3 PMT wavelength shifter Amino-G salt Co 60 Co 320 MBq : 500 MBq 1 10 mgy Amono-G salt JLab Hall C Amino-G salt

71 61 TA Water Cherenkov 1

72

73 63 A 5 PMT A.1 A.1 A.1: A.2 PMT PMT UVT PMT O - A.2 O - 1 mm

74 64 A A.2: PMT mm O - 1 mm A.3 A.4 A.3 A.5 A.6 A.7

75 A A.3: PMT A.4: PMT A.5:

76 66 A A.6: A.7:

77 67 B WC (Water Cherenkov counter) B.1 Number of Photoelectron B.1: Water Cherenkov Counter B Water Cherenkov counter WC Amino-G salt 200 mg/l 100 mg/l 50 mg/l 10 mg/l Pure Water Pure Water Number of Photoelectron NPE B.1 - PMT Photon 8.1 cm 15.6 cm Photon

78 68 B WC (Water Cherenkov counter) NPE Old Pure Pure 10mg 50mg 100mg 200mg 8.1 cm cm B.1: Number of Photoelectron B B.2 box NPE B.2: NPE 3 12

79 69 [1] O.Hashimoto, H.Tamura, Progress in Particle and Nuclear Physics Volume 57, Issue 2, October 2006, Pages [2] C.E.Hyde - Wright et al., Proc CEBAF Summer Workshop [3] M. Sotona, S. Furullani, Progr. Theoret. Phys. Suppl. 117 (1994) 151. [4] T.Miyoshi, M.Sarsour, T.Yuan, X.Zhu, A.Ahmidouch, P.Ambrozewicz, D.Androic, T.Angelescn, R.Asaturyan, S.Avery, et al. High Resolution Spectroscopy of the Λ C 12 B Hypernucleus Produced by (e,e K + ) Reaction. Phsical Review Letters, Vol.90, No.23, p , [5] L.Yan et al. Hypernucler spectroscopy using the (e,e K + ) reaction. Phys.Rev.C 73, (2006) [6] L.Yuan, M.Saraour, T.Miyoshi, X.Zhu, A.Ahmidouch, D.Androic, T.Angelescu, R.Asaturyan, S.Avery, O.Baker, et al. Hypernuclear spectroscopy using the (e,e K + ) reaction. PHysical Review C,Vol.64, No.4, p.44302, 2001 [7] R.Bradford et al. Differential Cross Sections for γ + p K + + Y for Λ and Σ 0 Hyperons. Physical Review C, Vol.73, p , 2006 [8] O.Hasimoto, L.Tange, J.Reinhold, S.N.Nakamura, et al. JLab PAC-33 proposal, January 16, 2008 [9] R., ( ) [10], ( ) [11] Spectroscopic study of light Lambda hypernuclei via the e,e K + reaction 2008 [12] e,e K + Λ K 2003 [13] e,e K + Λ K 2004 [14] p/π + K [15] 2007

80 70 B WC (Water Cherenkov counter) [16] e,e K + K 2007 [17], [18] [19] [20], [21]

Canvas-tr01(title).cv3

Canvas-tr01(title).cv3 Working Group DaiMaJin DaiRittaikaku Multiparticle Jiki-Bunnsekiki Samurai7 Superconducting Analyser for Multi particles from RadioIsotope Beams with 7Tm of bending power (γ,n) softgdr, GDR non resonant

More information

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3

Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 19 Λ (Λ ) Λ (Ge) Hyperball γ ΛN J-PARC Λ dead time J-PARC flash ADC 1 dead time ( ) 1 µsec 3 1 1 1.1 γ ΛN................. 1 1.2 KEK J-PARC................................ 2 1.2.1 J-PARC....................................

More information

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary

BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Measurements of Galactic and Atmospheric Cosmic-Ray Absolute Fluxes BESS Introduction Detector BESS (BESS-TeVspectrometer) Experimetns Data analysis (1) (2) Results Summary Introduction 90% 9% 100~10 6

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

main.dvi

main.dvi MICE Sci-Fi 2 15 3 7 1 1 5 1.1 MICE(Muon Ionization Cooling Experiment)............. 5 1.1.1........................... 5 1.1.2............................... 7 1.1.3 MICE.......................... 10

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

[ ] [ ] [ ] [ ] [ ] [ ] ADC

[ ] [ ] [ ] [ ] [ ] [ ] ADC [ ] [ ] [ ] [ ] [ ] [ ] ADC BS1 m1 PMT m2 BS2 PMT1 PMT ADC PMT2 α PMT α α = n ω n n Pn TMath::Poisson(x,[0]) 0.35 0.3 0.25 0.2 0.15 λ 1.5 ω n 2 = ( α 2 ) n n! e α 2 α 2 = λ = λn n! e λ Poisson Pn 0.1

More information

untitled

untitled MPPC 18 2 16 MPPC(Multi Pixel Photon Counter), MPPC T2K MPPC T2K (HPK) CPTA, MPPC T2K p,π T2K > 5 10 5 < 1MHz > 15% 200p.e. MIP 5p.e. p/π MPPC HPK MPPC 2 1 MPPC 5 1.1...................................

More information

LEPS

LEPS LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch

More information

untitled

untitled masato@icrr.u-tokyo.ac.jp 996 Start 997 998 999 000 00 00 003 004 005 006 007 008 SK-I Accident Partial Reconstruction SK-II Full reconstruction ( SK-III ( ),46 (40%) 5,8 (9%),9 (40%) 5MeV 7MeV 4MeV(plan)

More information

untitled

untitled BELLE TOP 12 1 3 2 BELLE 4 2.1 BELLE........................... 4 2.1.1......................... 4 2.1.2 B B........................ 7 2.1.3 B CP............... 8 2.2 BELLE...................... 9 2.3

More information

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge

W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge 22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................

More information

rcnp01may-2

rcnp01may-2 E22 RCP Ring-Cyclotron 97 953 K beam K-atom HF X K, +,K + e,e K + -spectroscopy OK U U I= First-order -exchange - coupling I= U LS U LS Meson-exchange model /5/ I= Symmetric LS Anti-symmetric LS ( σ Λ

More information

Electron Ion Collider と ILC-N 宮地義之 山形大学

Electron Ion Collider と ILC-N 宮地義之 山形大学 Electron Ion Collider と ILC-N 宮地義之 山形大学 ILC-N ILC-N Ee Ee == 250, 250, 500 500 GeV GeV Fixed Fixed target: target: p, p, d, d, A A 33-34 cm-2 LL ~~ 10 1033-34 cm-2 ss-1-1 s s == 22, 22, 32 32 GeV GeV

More information

Drift Chamber

Drift Chamber Quench Gas Drift Chamber 23 25 1 2 5 2.1 Drift Chamber.............................................. 5 2.2.............................................. 6 2.2.1..............................................

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

3 H(e, e K + )X K + Method and performance of K + meson identification in the 3 H(e, e K + )X experiment 30

3 H(e, e K + )X K + Method and performance of K + meson identification in the 3 H(e, e K + )X experiment 30 3 H(e, e K + )X K + Method and performance of K + meson identification in the 3 H(e, e K + )X experiment 30 i (uud,udd) s - - s (JLab) 3 H(e, e K + )nnλ nnλ 2018 10-11 JLab Hall A 3 H(e, e K + )nnλ (e

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

2005 4 18 3 31 1 1 8 1.1.................................. 8 1.2............................... 8 1.3.......................... 8 1.4.............................. 9 1.5.............................. 9

More information

Donald Carl J. Choi, β ( )

Donald Carl J. Choi, β ( ) :: α β γ 200612296 20 10 17 1 3 2 α 3 2.1................................... 3 2.2................................... 4 2.3....................................... 6 2.4.......................................

More information

25 3 4

25 3 4 25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W

More information

Microsoft PowerPoint - 島田美帆.ppt

Microsoft PowerPoint - 島田美帆.ppt コンパクト ERL におけるバンチ圧縮の可能性に関して 分子科学研究所,UVSOR 島田美帆日本原子力研究開発機構,JAEA 羽島良一 Outline Beam dynamics studies for the 5 GeV ERL 規格化エミッタンス 0.1 mm mrad を維持する周回部の設計 Towards user experiment at the compact ERL Short bunch

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete

J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay E15 dete J-PARC E15 (TGEM-TPC) TGEM M1 ( ) J-PARC E15 TPC TGEM TGEM J-PARC E15 K K-pp Missing mass Invariant mass K - 3 He Formation K - pp cluster neutron Mode to decay charged particles p Λ π - Decay p Decay

More information

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation. Parameter Value Unit Initial emittance 10 mm.mrad SuperKEKB EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC Y. Seimiya, M. Satoh, T. Suwada, T. Higo, Y. Enomoto, F. Miyahara, K. Furukawa High Energy Accelerator Research Organization

More information

Undulator.dvi

Undulator.dvi X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B

More information

加速器の基本概念 V : 高周波加速の基礎

加速器の基本概念  V : 高周波加速の基礎 .... V : KEK koji.takata@kek.jp http://research.kek.jp/people/takata/home.html 2015 2015 4 16 1 2 (1) 3 (2) 4 5 6 ERL: Energy Recovery Linac LCLS: Linac Coherent Light Source LC : µ-µ Koji Takata (KEK)

More information

OHO.dvi

OHO.dvi 1 Coil D-shaped electrodes ( [1] ) Vacuum chamber Ion source Oscillator 1.1 m e v B F = evb (1) r m v2 = evb r v = erb (2) m r T = 2πr v = 2πm (3) eb v

More information

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100

positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100 positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc

More information

nenmatsu5c19_web.key

nenmatsu5c19_web.key KL π ± e νe + e - (Ke3ee) Ke3ee ν e + e - Ke3 K 0 γ e + π - Ke3 KL ; 40.67(%) Ke3ee K 0 ν γ e + π - Ke3 KL ; 40.67(%) Me + e - 10 4 10 3 10 2 : MC Ke3γ : data K L real γ e detector matter e e 10 1 0 0.02

More information

J-PARC October 14-15, 2005 KEK

J-PARC October 14-15, 2005 KEK J-PARC October 14-15, 2005 KEK 目次 ミューオン 電子転換過程の紹介 MECO実験 PRISM/PRIME実験 @J-PARC まとめ GIM-like mixing! µ! e W e 3 SUSY-GUT Large top Yukawa couplings result in sizable off-diagonal components in a slepton

More information

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency

STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency STB-Ring Tagging Efficiency Study GEANT4 2010 3 STB-Ring(Stretcher-Booster Ring) 1.2 GeV Tagging System Tagging System Efficiency rate rate rate Efficiency 1 STB-Ring 2 rate Efficiency 3 Efficiency ( )

More information

Muon Muon Muon lif

Muon Muon Muon lif 2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................

More information

From Evans Application Notes

From Evans Application Notes 3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2

More information

24 10 10 1 2 1.1............................ 2 2 3 3 8 3.1............................ 8 3.2............................ 8 3.3.............................. 11 3.4........................ 12 3.5.........................

More information

1 Visible spectroscopy for student Spectrometer and optical spectrum phys/ishikawa/class/index.html

1 Visible spectroscopy for student Spectrometer and optical spectrum   phys/ishikawa/class/index.html 1 Visible spectroscopy for student Spectrometer and optical spectrum http://www.sci.u-hyogo.ac.jp/material/photo phys/ishikawa/class/index.html 1 2 2 2 2.1................................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) ( August 26, 2005 1 1 1.1...................................... 1 1.2......................... 4 1.3....................... 5 1.4.............. 7 1.5.................... 8 1.6 GIM..........................

More information

[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F

More information

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors

ELECTRONIC IMAGING IN ASTRONOMY  Detectors and Instrumentation   5 Instrumentation and detectors ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors 4 2017/5/10 Contents 5.4 Interferometers 5.4.1 The Fourier Transform Spectrometer (FTS) 5.4.2 The Fabry-Perot

More information

スーパーカミオカンデにおける 高エネルギーニュートリノ研究

スーパーカミオカンデにおける 高エネルギーニュートリノ研究 2009 11 20 Cosmic Ray PD D M P4 ? CR M f M PD MOA M1 ν ν p+p+p+p 4 He +2e - +2ν e MeV e - + p n+ ν e γ e + + e - ν x + ν x p + p, γ + p π + X π µ + ν µ e + ν µ + ν e TeV p + p π + X π µ + ν µ e + ν µ +

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

吸収分光.PDF

吸収分光.PDF 3 Rb 1 1 4 1.1 4 1. 4 5.1 5. 5 3 8 3.1 8 4 1 4.1 External Cavity Laser Diode: ECLD 1 4. 1 4.3 Polarization Beam Splitter: PBS 13 4.4 Photo Diode: PD 13 4.5 13 4.6 13 5 Rb 14 6 15 6.1 ECLD 15 6. 15 6.3

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

thesis.dvi

thesis.dvi 3 17 03SA210A 2005 3 1 introduction 1 1.1 Positronium............ 1 1.2 Positronium....................... 4 1.2.1 moderation....................... 5 1.2.2..................... 6 1.2.3...................

More information

空気の屈折率変調を光学的に検出する超指向性マイクロホン

空気の屈折率変調を光学的に検出する超指向性マイクロホン 23 2 1M36268 2 2 4 5 6 7 8 13 15 2 21 2 23 2 2 3 32 34 38 38 54 57 62 63 1-1 ( 1) ( 2) 1-1 a ( sinθ ) 2J D ( θ ) = 1 (1-1) kaka sinθ ( 3) 1-2 1 Back face hole Amplifier Diaphragm Equiphase wave surface

More information

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10

1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 1 2 1 a(=,incident particle A(target nucleus) b (projectile B( product nucleus, residual nucleus, ) ; a + A B + b a A B b 1: A(a,b)B A=B,a=b 2 1. ( 10 14 m) ( 10 10 m) 2., 3 1 =reaction-text20181101b.tex

More information

untitled

untitled N0 N8 N0 N8 N0 * 49MeV/nuceon β 0.3c γ Hgh Z Target Pb Equvaent Photon Method 0 d σ dωde σ π γ γ π E 3 γ [!! ] dnπ σ dω π γ Eγ c h C.A.Bertuan and G.Baur Phys.Rep.63,99 988. J.D. Jackson Cassca Eectrodynamcs

More information

放射線化学, 97, 29 (2014)

放射線化学, 97, 29 (2014) 20 5 Absorption spectra of biomolecules over wide energy range are very important to study their radiation effects in terms of the optical approximation proposed by Platzman. Using synchrotron radiation

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

X線散乱と放射光科学

X線散乱と放射光科学 8 X II 305 8.1..................................... 305 8.1.1................. 305 8.1.2.................................... 307................................... 307............................ 308.........................

More information

2 1 7 - TALK ABOUT 21 μ TALK ABOUT 21 Ag As Se 2. 2. 2. Ag As Se 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 Sb Ga Te 2. Sb 2. Ga 2. Te 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4

More information

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) n n (n) (n) (n) (n) n n ( n) n n n n n en1, en ( n) nen1 + nen nen1, nen ( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( ) ( n) Τ n n n ( n) n + n ( n) (n) n + n n n n n n n n

More information

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( )

1 1 (proton, p) (neutron, n) (uud), (udd) u ( ) d ( ) u d ( ) 1: 2: /2 1 0 ( ) ( 2) 0 (γ) 0 (g) ( fm) W Z 0 0 β( ) ( ) TA 2234 oda@phys.kyushu-u.ac.jp TA (M1) 2161 sumi@epp.phys.kyushu-u.ac.jp TA (M1) 2161 takada@epp.phys.kyushu-u.ac.jp TA (M1) 2254 tanaka@epp.phys.kyushu-u.ac.jp µ ( ) 1 2 1.1...............................................

More information

N=Z E α =400 MeV α

N=Z E α =400 MeV α N=Z E α =400 MeV α 203 29 2 α + 2 C 0 + (RCNP) 2 C 6 O 24 Mg 28 Si 40 Ca E α = 400 MeV α folding model DWBA 3 Contents Chapter Introduction 5 Chapter 2 Experimental setup 9 2. Beam line...................................

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

untitled

untitled TOF ENMA JAEA-RMS) TOF Pre-scission JAERI-RMS (m-state 16 O + 27 Al 150MeV d TOF Nucl. Phys. A444, 349-364 (1985). l = m d Pre-scission Scission 10-19 (Post_scission) (Pre-scission) Proton_fission Alpha_fission

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

news

news ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:tsuchida@etl.go.jp A new technique has been

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

PowerPoint Presentation

PowerPoint Presentation / 2008/04/04 Ferran Salleras 1 2 40Gb/s 40Gb/s PC QD PC: QD: e.g. PCQD PC/QD 3 CP-ON SP T CP-OFF PC/QD-SMZ T ~ps, 40Gb/s ~100fJ T CP-ON CP-OFF 500µm500µm Photonic Crystal SMZ K. Tajima, JJAP, 1993. Control

More information

km_atami09.ppt

km_atami09.ppt Belle 2009 Feb. 28th Homework discussion (2008 12 6 7 ) Home Works for Theorists So far works are done mainly for interpreting the observed phenomena. But, we need more predictions. prediction qq( ) qqq(

More information

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not

Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not Multi Pixel Photon Counter T. Nakadaira KEK Introduction MPPC is new semiconductor photon sensor Technology is very similar to SiPM. Under development by Hamamatsu Photonics (HPK) MPPC have not been listed

More information

7

7 01111() 7.1 (ii) 7. (iii) 7.1 poit defect d hkl d * hkl ε Δd hkl d hkl ~ Δd * hkl * d hkl (7.1) f ( ε ) 1 πσ e ε σ (7.) σ relative strai root ea square d * siθ λ (7.) Δd * cosθ Δθ λ (7.4) ε Δθ ( Δθ ) Δd

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) * * 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *1 2004 1 1 ( ) ( ) 1.1 140 MeV 1.2 ( ) ( ) 1.3 2.6 10 8 s 7.6 10 17 s? Λ 2.5 10 10 s 6 10 24 s 1.4 ( m

More information

main.dvi

main.dvi A 1/4 1 1/ 1/1 1 9 6 (Vergence) (Convergence) (Divergence) ( ) ( ) 97 1) S. Fukushima, M. Takahashi, and H. Yoshikawa: A STUDY ON VR-BASED MUTUAL ADAPTIVE CAI SYSTEM FOR NUCLEAR POWER PLANT, Proc. of FIFTH

More information

修士論文

修士論文 SAW 14 2 M3622 i 1 1 1-1 1 1-2 2 1-3 2 2 3 2-1 3 2-2 5 2-3 7 2-3-1 7 2-3-2 2-3-3 SAW 12 3 13 3-1 13 3-2 14 4 SAW 19 4-1 19 4-2 21 4-2-1 21 4-2-2 22 4-3 24 4-4 35 5 SAW 36 5-1 Wedge 36 5-1-1 SAW 36 5-1-2

More information

150518_shin_gakujutsu

150518_shin_gakujutsu γ ( ) 3 B2 215 5 18 @ 1 KamLAND ( ) Double Chooz ( / ) CANDLES ( ) ~ Double Chooz: (θ13 ) (νe + p e + + n) BG BG CANDLES: (5-1MeV) (n,γ) 2 (n,γ) CANDLES (n,γ) Geant4 (n,γ) 3 (n,γ) : γ n + A ZX ( A+1 ZX)*

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

Microsoft PowerPoint - okamura.ppt[読み取り専用]

Microsoft PowerPoint - okamura.ppt[読み取り専用] TKK の物理的可能性 an extension of the TK neutrino oscillation experiment with a far detector in Korea 岡村直利 ( 京大 基研 ) 関西セミナーハウス (007/03/7( 007/03/7) based on hep-ph/050406 [Phys.Lett.B637,66 (006)] hep-ph/060755

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e +

MEG μ + e + γ ( ) ( MEGA) = (BSM) MEG μ + e + γ ( : a few ) 180 γ μ + e + MEG ( ) 2011 9 10 MEG μ + e + γ ( ) (1.2 10-11 MEGA) = (BSM) MEG μ + e + γ ( : a few 10-13 ) 180 γ μ + e + μ eγ @MEG DC μ + (590MeV 1.3MW @ ) γ: e + : MEG (900L) (VUV) 846 PMT : PMT : PMT PMT (DRS4) particle

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

main.dvi

main.dvi CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...

More information

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef 4 213 5 8 4.1.1 () f A exp( E/k B ) f E = A [ k B exp E ] = f k B k B = f (2 E /3n). 1 k B /2 σ = e 2 τ(e)d(e) 2E 3nf 3m 2 E de = ne2 τ E m (4.1) E E τ E = τe E = / τ(e)e 3/2 f de E 3/2 f de (4.2) f (3.2)

More information

FPWS2018講義千代

FPWS2018講義千代 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 3つの究極の 宗教や神話 哲学や科学が行き着く人間にとって究極の問い 宇宙 世界 はどのように始まり どのように終わるのか 全てをつかさどる究極原理は何か 今日はこれを考えます 人類はどういう存在なのか Wikipediaより 4 /72 千代勝実(山形大学) 素粒子物理学入門@FPWS2018 電子レンジ 可視光では中が透け

More information

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R II Karel Švadlenka 2018 5 26 * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* 5 23 1 u = au + bv v = cu + dv v u a, b, c, d R 1.3 14 14 60% 1.4 5 23 a, b R a 2 4b < 0 λ 2 + aλ + b = 0 λ =

More information

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive

AC Modeling and Control of AC Motors Seiji Kondo, Member 1. q q (1) PM (a) N d q Dept. of E&E, Nagaoka Unive AC Moeling an Control of AC Motors Seiji Kono, Member 1. (1) PM 33 54 64. 1 11 1(a) N 94 188 163 1 Dept. of E&E, Nagaoka University of Technology 163 1, Kamitomioka-cho, Nagaoka, Niigata 94 188 (a) 巻数

More information

untitled

untitled 1.0 1. Display Format 8*2 Character 2. Power Supply 3.3V 3. Overall Module Size 30.0mm(W) x 19.5mm(H) x max 5.5mm(D) 4. Viewing Aera(W*H) 27.0mm(W) x 10.5mm(H) 5. Dot Size (W*H) 0.45mm(W) x 0.50mm(H) 6.

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information