0 17 l l Grothendieck Weil Grothendieck SGA (Séminaire de Géométrie Algébrique du Bois-Marie) [Del2], [Del3] Grothendieck Weil Ramanujan Deligne [Del1

Size: px
Start display at page:

Download "0 17 l l Grothendieck Weil Grothendieck SGA (Séminaire de Géométrie Algébrique du Bois-Marie) [Del2], [Del3] Grothendieck Weil Ramanujan Deligne [Del1"

Transcription

1 l Tate Galois Galois Galois Weil-Deligne Rψ

2 0 17 l l Grothendieck Weil Grothendieck SGA (Séminaire de Géométrie Algébrique du Bois-Marie) [Del2], [Del3] Grothendieck Weil Ramanujan Deligne [Del1] Deligne 2 l l Weil q Eichler Deligne Langlands Galois GL n Langlands F GL n (A F ) Gal(F /F ) n l Π l Galois ρ(π) Galois Sato-Tate Galois Galois [DS] [DS] Galois Galois Galois Chevalley Deligne-Lusztig Kazhdan-Lusztig 2

3 SGA ([SGA4], [SGA5], [SGA7], [SGA4 1 2 ]) [SGA4 1 2, Arcata] 70 Galois Galois Galois SGA Galois 3.3 SGA 1 6 SGA, [Del3], [BBD] [KW] k F K F, K O F, O K k k Galois Gal(k/k) G k G k l Q l Q l V ρ: G k GL(V ) V l G k l Z l Z l Λ ρ: G k Aut(Λ) Z l Q l Z l G X x X Stab G (x) := {g G gx = x} G G Spec A X A B X Spec A Spec B X A B X B 3

4 1 1.1 Tate Tate k 1.1 E k n 1 E[n] = {x E(k) nx = 0} l T l E = lim n E[l n ], V l E = T l E Zl Q l T l E E l Tate V l E E l Tate l k T l E 2 Z l [Sil] V l E 2 Q l l k T l E, V l E l k T l E, V l E Galois G k ρ G k 2 l G k Aut Ql (V l E) l G k Aut Zl (T l E) l E 1.2 ρ E E L = (End k E) Z Q Q k 0 (End k E) Z Q Q E L V l E ι: L End Ql V l E L G k ρ: G k Aut Ql (V l E) Im ι {g Aut Ql (V l E) gι(a)g 1 = ι(a) ( a L)} (L Q Q l ) Aut Ql (V l E) E Im ρ E V l E k G k l k E Im ρ Aut Ql (V l E) Zariski ([Ser1]) 4

5 1.3 k p > 0 E k E[p] = 0 D = (End k E) Z Q Q V l E D p Im ρ Aut Ql (V l E) 1.4 k = K ρ E 1.5 i) E ρ ii) E ρ I K σ I K ρ(σ) 1 Tate 1 C E C Z Λ E(C) = C/Λ ([Sil]) H 1 ( E(C), Z ) = Λ, H 1 ( E(C), Q ) = Λ Z Q, Tl E = lim n Λ/l n Λ = Λ Z Z l, V l E = Λ Z Q l T l E V l E E(C) 1 l V l E i 0 k G k l ; X H i (X k, Q l ) i l k = C H i (X k, Q l ) X(C) Betti H i (X(C), Q) l H i (X(C), Q) Q Q l k C H i (X k, Q l ) Betti k Galois H i (X k, Q l ) X 5

6 H i k E l H 0 (E k, Q l ) = Q l, H 1 (E k, Q l ) = (V l E), H 2 (E k, Q l ) = Q l ( 1), H i (E k, Q l ) = 0 (i 3) k C C Betti X X Shv X 3 X Γ(X, ): Shv X Ab Ab X F 0 F I 0 I 1 0 Γ(X, I 0 ) Γ(X, I 1 ) i X F i H i (X, F) F Z Q H i (X, Z) Q H i (X, Q) X X H i (X, Z) H i (X, Q) Betti Betti Zariski X X X Z 1 k A 1 k P1 k 1 H i (E, O E) [KS] [Ive] 3 6

7 A 1 C P1 C Betti Zariski X Open X X V, U X V U V U V U X Open X Ab U Open X (U i U) i I Open X U i U (U i ) i I U 0 F(U) i I F(U i ) ( ) i,j I F(U i U j ) ( ) (x i ) i I (x i Ui U j x j Ui U j ) i,j I U i U j Open X U i U U j (U i ) i I U Open X (U i U) i I LIsom X 1.6 f : Y X y Y y V, f(y) X U f V U LIsom X f : Y X Y f : Y X f : Y X g : Y Y f g = f LIsom X (g i : Y i Y ) i I Y, Y i LIsom X Y = i I g(y i) (site) 4 4 (pretopology) 7

8 LIsom X 1.7 LIsom X F : LIsom X Ab LIsom X (Y i Y ) i I 0 F(Y ) i I F(Y i ) ( ) i,j I F(Y i Y Y j ) pr 1 : Y i Y Y j Y i p i,j : F(Y i ) F(Y i Y Y j ) pr 2 : Y i Y Y j Y j q i,j : F(Y j ) F(Y i Y Y j ) ( ) (x i ) i I (p i,j (x i ) q i,j (x j )) i,j I Y i Y Y j LIsom X LIsom X F LIsom X Y F(Y ) Γ(Y, F) LIsom X Shv LIsom X Shv X Shv LIsom X 1.8 X F LIsom X ε F Γ(Y f X, ε F) = Γ(Y, f F) LIsom X G X ε G Γ(U, ε G) = Γ(U X, G) ε ε Shv X Shv LIsom X X F ε F LIsom X LIsom X g i (Y i Y )i I x i Γ(Y i, ε F) = Γ(Y i, gi (F Y )) (i I) p i,j (x i ) = q i,j (x j ) Y X F F Y g i Y i (U iλ ) λ Λi g i g iλ: U iλ Y i Y xiλ = x i Uiλ Γ(g iλ (U iλ ), F Y ) = Γ(U iλ, g iλ (F Y )) x iλ Γ(g iλ (U iλ ), F Y ) y iλ i, j I λ Λ i, λ Λ j y iλ y jλ g iλ (U iλ ) g jλ (U jλ ) y Γ(Y, F Y ) Γ(Y, F Y ) Γ(U iλ, g iλ (F Y )) x iλ (U iλ ) λ Λi Y i y Γ(Y, F Y ) Γ(Y i, g i (F Y )) x i y ε F LIsom X [SGA4] 8

9 G ε G X ε ε X F ε ε F = F LIsom X G ε ε G = G ε ε G G f : Y X Y V Γ(V f X, G) Y G Y X U Γ(U, ε G) = Γ(U X, G) Γ ( f 1 (U) f X, G ) = Γ(U, f G Y ) X ε G f G Y Y f ε G G Y Γ(Y, ) Γ(Y f X, ε ε G) = Γ(Y, f ε G) Γ(Y, G Y ) = Γ(Y f X, G) LIsom X ε ε G G LIsom X Y Γ(Y, ) Y Y X Shv LIsom X Γ(X, ): Shv LIsom X Ab Open X LIsom X LIsom X f : Y X i) y Y f (unramified/neat) m Y,y, m X,f(y) O Y,y, O X,f(y) m Y,y = m X,f(y) O Y,y O Y,y /m Y,y O X,f(y) /m X,f(y) Ω 1 Y/X 0 ii) f (étale) 9

10 1.10 f : Y X y Y f(y) U = Spec A f 1 (U) y V = Spec B f B A B = A[T 1,..., T n ]/(f 1,..., f n ), ( fi ) det T A[T 1,..., T n ]/(f 1,..., f n ) j i,j 1.11 A n A a A Spec A[T ]/(T n a) Spec A T n a T nt n 1 A[T ]/(T n a) (na) 1 T k k X Spec k k k X Spec A A k A Artin A = p Spec A A p k k [EGA4] 1.13 i) ii) iii) f : Y X X X X X f f : Y X X X iv) f : Y X, g : Z Y f g f g v) 1.6 LIsom X 10

11 1.14 X X Et X Et X Y X f : Y X f : Y X g : Y Y f = f g 1.13 iv) g Y Et X X Et X (g i : Y i Y ) i I Y, Y i Et X Y = i I g i(y i ) Et X X (étale site) 1.15 Et X X F : Et X Ab Et X (Y i Y ) i I 0 F(Y ) i I F(Y i ) ( ) i,j I F(Y i Y Y j ) pr 1 : Y i Y Y j Y i p i,j : F(Y i ) F(Y i Y Y j ) pr 2 : Y i Y Y j Y j q i,j : F(Y j ) F(Y i Y Y j ) ( ) (x i ) i I (p i,j (x i ) q i,j (x j )) i,j I 1.13 ii), iii) Y i Y Y j Et X X F Et X Y F(Y ) Γ(Y, F) X Shvét X 1.16 k Spec k F 1.12 F k k L F L := F(Spec L) L k L Galois Spec L Spec L F L F L σ Gal(L /L) Spec L σ : Spec L Spec L Gal(L /L) F L F L F L F Gal(L /L) L Spec L Spec L F L L L = σ Gal(L /L) L ; a b (aσ(b)) σ 11

12 0 F L F L ( ) σ Gal(L /L) F L ( ) x (x σ(x)) σ F L = F Gal(L /L) L M F = lim L F L L k k Galois G k Gal(L/k) F L M F G k k k L = F L M Gal(k/L) F G k M k k L F M (Spec L) = M Gal(k/L) Spec k F M F M F M Shvét Spec k G k k Shvét Spec k Spec k F Γ(Spec k, F) (geometric point) X x x x X x 1.17 X Z X X Y F(Y ) := Hom X (Y, Z) Y Z X F : Et X Ab X Z X Z F : Et X Set 12

13 Et X (Y i Y ) i I F(Y ) { = (x i ) i I } F(Y i ) p i,j (x i ) = q i,j (x j ) ( i, j I) i I X, Y, Y i Y I Y = i I Y i (Y i Y ) i I (Y Y ) X = Spec A, Y = Spec B, Y = Spec B, Z = Spec C Alg A A Hom AlgA (C, B) = { φ Hom AlgA (C, B ) φ(c) 1 = 1 φ(c) B B B ( c C) } Y Y B B B d: B ( ) B B B d(b ) b 1 1 b 0 B B d B B B B B, B B, B B B B s: B B B B b B d(b ) = 0 b 1 1 b = 0 s id: B B B B b = s(b ) B 1.18 X n 1 i) G a : Y Γ(Y, O Y ) G a,x = Spec O X [T ] X ii) G m : Y Γ(Y, O Y ) G m,x = Spec O X [T, T 1 ] X n iii) µ n = Ker(G m G m ) µ n,x = Spec O X [T ]/(T n 1) X µ n Z/nZ(1) iv) Z/nZ X X n Z/nZ X Z/nZ f : X X X F f f F (f F)(Y ) = F(Y X X) f : Shvét X Shvét X f : Shvét X Shvét X f X 13

14 i: x X F i i F 1.16 F x F x (stalk) F x = lim F(U) x / U i X Γ: Shvét X Ab, f : Shvét X Shvét X 1.19 X Shvét X Γ 1.20 X F X F 0 F I 0 I 1 0 Γ(X, I 0 ) Γ(X, I 1 ) RΓ(X, F) Ab well-defined RΓ(X, F) i Ker ( Γ(X, I i ) Γ(X, I i+1 ) )/ Im ( Γ(X, I i 1 ) Γ(X, I i ) ) H i (X, F) X F i f : X X Shvét X 0 f I 0 f I 1 Rf F i R i f F 1.21 X Spec k F Spec k 1.16 G k M Γ(Spec k, F) = M G k M G k G k M M M G k Galois H i (G k, M) H i (Spec k, F) = H i (G k, M) Galois 14

15 1.3.2 k X k G m 1.22 H i (X, G m ) H 0 (X, G m ) = k, H 1 (X, G m ) = Pic(X), H i (X, G m ) = 0 (i 2) Pic(X) X Picard X H 0 (X, G m ) = Γ(X, G m ) = Γ(X, O X ) = k H 1 (X, G m ) = Pic(X) X H 1 Čech H 1 (X, G m ) fpqc Zariski H i (X, G m ) = 0 (i 2) X k(x) Galois H i (G k(x), k(x) ) i 2 Tsen k(x) C 1 ([Ser2, II, 3]) Tsen H i (X, G m ) = 0 (i 2) X X k 0 Γ(X, G m ) k(x ) ord x X Z 0 X X ord f k(x ) f X Γ(X, ) 0 G m j G m,η x X i x Z 0 η X j η X x X x X i x 15

16 x X H i (X, G m ) H i (X, j G m,η ) x X H i 1 (X, i x Z) H i (X, i x Z) 5 H i (X, j G m,η ) = H i (G k(x), k(x) ) H i (X, i x Z) = H i (G k, Z) = 0 (i 1) 1.42 Tsen H i (X, G m ) = X Z/nZ(1) 1.23 n 1 k H i (X, Z/nZ(1)) H 0 (X, Z/nZ(1)) = Z/nZ(1), H 1 (X, Z/nZ(1)) = Pic(X)[n], H 2 (X, Z/nZ(1)) = Z/nZ, H i (X, Z/nZ(1)) = 0 (i 3) Z/nZ(1) k 1 n k Z/nZ(1) = Z/nZ Pic(X)[n] Pic(X) n Pic(X) 0 Z/nZ(1) G m n G m 0 X G m G m U Et X a Γ(U, G m ) = Γ(U, O U ) U (U i U) i I a i Γ(U i, G m ) a n i = a Ui V = Spec O U [T ]/(T n a) V U 1.11 T Γ(V, G m ) n Γ(U, G m ) Γ(V, G m ) n a G m G m 1.22 H i (X, Z/nZ(1)) = 0 (i 3) 0 H 0 (X, Z/nZ(1)) k n k H 1 (X, Z/nZ(1)) Pic(X) n Pic(X) H 2 (X, Z/nZ(1))

17 H 0 (X, Z/nZ(1)) = Z/nZ(1), H 1 (X, Z/nZ(1)) = Pic(X)[n] deg: Pic(X) deg Z Pic 0 (X) Pic 0 (X) X Jacobi g k Pic 0 (X) n Jacobi [CS] [Mum] deg: Pic(X) deg Z Pic(X)/n Pic(X) Z/nZ H 2 (X, Z/nZ(1)) = Pic(X)/n Pic(X) = Z/nZ k 1 n X Z/nZ(1) = Z/nZ Z/nZ Z/nZ(1) = Z/nZ 1.23 X Z/nZ 1.24 n 1 k H i (X, Z/nZ) H 0 (X, Z/nZ) = Z/nZ, H 1 (X, Z/nZ) = Pic(X)[n]( 1), H 2 (X, Z/nZ) = Z/nZ( 1), H i (X, Z/nZ) = 0 (i 3) Z/nZ( 1) = Hom(Z/nZ(1), Z/nZ) Z/nZ M M( 1) = M Z/nZ Z/nZ( 1) m m 0 Z/nZ(m) = Z/nZ(1) m m < 0 Z/nZ(m) = Z/nZ( 1) ( m) Z/nZ M M(m) = M Z/nZ Z/nZ(m) M Tate (Tate twist) H 0 (X, Z/nZ), H 1 (X, Z/nZ), H 2 (X, Z/nZ) 1, 2g g X 1 Z/nZ 1.23 H 1 (X, Z/nZ) 2g Z/nZ 0 Pic 0 (X) Pic(X) deg Z 0 Pic(X)[n] = Pic 0 (X)[n] Pic 0 (X) X Jacobi k n k Pic 0 (X)[n] = (Z/nZ) 2g 1.25 = E k E(k) Pic 0 (X); P [P ] [O] O E(k) E(k) Pic(X) H 1 (E, Z/nZ) = E[n]( 1) Weil E[n] E[n] Z/nZ(1) E[n]( 1) = E[n] H 1 (E, Z/nZ) = E[n] 17

18 1.26 A 1 k Z/nZ k n k H i (X, Z/nZ) k p > 0 n = p H 2 (X, Z/pZ) = 0 X k H i (X, Z/pZ) Z/pZ X Z/nZ n X 1.28 k p > 0 X i) X 0 Z/pZ G a G a 0 G a a a p a ii) H i (X, G a ) = H i (X, O X ) Zariski X k H i (X, Z/pZ) H i (X, Z/pZ) = 0 (i 2) H 0 (X, Z/pZ), H 1 (X, Z/pZ) F p iii) X k H i (X, Z/pZ) F p 1.29 Z/nZ Z k X H 1 (X, Z) = 0 Z l X X n 1 Z/nZ H i (X, Z/nZ) l Galois Z/nZ Q l X Q l Z n 1 H i (X, Z/l n Z) Z l 18

19 Q l Q l Z/nZ X l 1.30 X Z l X (F n ) n 0 n 0 l n+1 F n = 0, F n+1 /l n+1 F n+1 = Fn 1.31 i) (Z/l n+1 Z) n 0 Z l Z l Z l Z l (m) ii) n 1 l n F = 0 F Z l iii) X Noether x π 1 (X, x) ρ: π 1 (X, x) Aut Zl (Λ) Z l Λ π 1 (X, x) l π 1 (X, x) Λ/l n+1 Λ X Y n F n (F n ) n 0 Z l ρ Z l X Z l (F n ) n 0 F n X (smooth) Noether X Z l π 1 (X, x) l 1.32 Q l Z l Z l F, G Hom Zl (F, G) Zl Q l Q l l Z l F l F Ql 1.33 i) Z l Z l (m) l Q l (m) ii) n 1 l n F = 0 F Z l 19

20 l 0 iii) X Noether x ρ: π 1 (X, x) GL(V ) π 1 (X, x) l Z l Λ l (ρ, Λ) X Z l F l F Ql Λ l ρ l X Z l l l (smooth) Noether X l π 1 (X, x) l Z l l 1.34 X (F n ) n 0 lim n Γ(X, F n ) i H i (X, ) Z l F = (F n ) n 0 X F l H i (X, F) l F Ql l H i (X, F Ql ) = H i (X, F) Zl Q l H i (X, Q l (m)) H i (X, (F n ) n 0 ) lim n H i (X, F n ) [Jan] 1.35 F = (F n ) n 0 Z l 1 lim n lim n lim n H i 1 (X, F n ) H i (X, F) lim H i (X, F n n ) 0 (H i 1 (X, F n )) n 0 Mittag-Leffler n 0 H i 1 (X, F n ) H i (X, F) = lim H i (X, F n n ) 1.36 i) X k l k 1.24 i, n H i (X, Z/l n+1 Z) H i (X, Q l ) = (lim H i (X, Z/l n+1 Z)) n Zl Q l 20

21 H 0 (X, Q l ) = Q l, H 1 (X, Q l ) = V l Pic(X)( 1), H 2 (X, Q l ) = Q l ( 1), H i (X, Q l ) = 0 (i 3) ii) X k l k X l F = (F n ) n 0 H i (X, F n ) Z/l n+1 Z H i (X, F) = lim n H i (X, F n ) 1.37 k G k l (ρ, V ) ρ Spec k l F H i (Spec k, F) = H i (G k, V ) Z l l R i f Z l (F n ) n 0 (R i f F n ) n 0 Z l Z l l Z l l Rf [Eke] Galois [SGA4], [SGA4 1 2 ] f : Y X F X f : H i (X, F) H i (Y, f F) g : Z Y (f g) = g f F Z/nZ f (Z/nZ) = Z/nZ f : H i (X, Z/nZ) H i (Y, Z/nZ) X H i (X, Z/nZ) Z/nZ l X H i (X, Q l ) Q l 6 l 21

22 X : H i (X, Z/nZ) H j (X, Z/nZ) H i+j (X, Z/nZ) x H i (X, Z/nZ), y H j (X, Z/nZ) x y = ( 1) ij (y x) f : Y X f (x y) = (f x) (f y) l 1.38 E k H 1 (E, Z/nZ) = E[n]( 1), H 2 (E, Z/nZ) = Z/nZ( 1) Weil E[n] E[n] Z/nZ(1) ( 2) I (X i ) i I Noether i j p ij : X j X i X = lim X i I i X i X i = Spec A i, A = lim A i I i X = Spec A X X i p i 1.39 [SGA4, Exposé VII] i I X i F i i j p ij F i = F j i I F = p i F i i H m (X, F) = lim H m (X i I i, F i ) n 1 H m (X, Z/nZ) = lim H m (X i I i, Z/nZ) l l ii) 1.40 k I k k (Spec L) L I lim L I Spec L = Spec k 22

23 i) F Spec k Spec L L k F L lim H i (Spec L, F L I L ) = H i (Spec k, F k ) Galois ii) F Spec k l Spec L L k F L lim H 0 (Spec L, F L I L ) = H 0 (Spec k, F k ) 1.41 f : Y X x X X x X X h x Y F (R i f F) x = H i (Y X X h x, F Y X X h x ) Y = X, f = id H i (Xx h, F X h) F x (i = 0), x = 0 (i 1) x X X h x x / U i X U U R i f F = X Et X Ab; V H i (Y X V, F Y X V ) lim (Y U X U) = Y X Xx h 1.39 (R i f F) x = lim U H i (Y X U, F Y X U) = H i (Y X X h x, F Y X X h x ) f = id R i f F = 0 (i 1) 23

24 1.42 j : η X 1.22 R i j G m = 0 (i 1) n n (torsion sheaf) X X 1.43 [SGA4, Exposé X] k X k d X l F H i (X, F) = 0 (i > 2d) X H i (X, F) = 0 (i > d) Lefschetz [SGA4, Exposé XIV] [SGA4, Exposé XII, XIII] Y g / Y X f g / X f f Y F g Rf F = Rf g F l 1.45 X X x 1.41 g R i f F = (R i f F) x = H i (Y X X h x, F Y X X h x ) R i f g F = H i (Y x, F Yx ) x 24

25 H i (Y X X h x, F Y X X h x ) = H i (Y x, F Yx ) X x H i (Y, F) = H i (Y x, F Yx ) 1.46 X Hausdorff Z X F H i (Z, F Z ) = lim U Z H i (U, F U ) 1.47 [SGA4, Exposé XV, XVI] Y g / Y X f g / X f g f Y F g Rf F = Rf g F l Y l k X k k k k n 1 H i = (X, Z/nZ) H i (X k, Z/nZ) k k Et X Et Xk ([SGA4, Exposé VIII]) k k(t 1,..., T m ) Spec k A m k = Spec k[t 1,..., T m ] x x A m k Spec k Spec k A m k Spec k 7 k Frac W (k) k 25

26 Spec k Spec k X Spec k A m k A m k f g g / X f / Spec k g R i f Z/nZ = R i f Z/nZ x 1.41 H i (X, Z/nZ) = H i (X k, Z/nZ) 2 k k(t 1,..., T m ) k k [SGA4 1 2, Finitude] k X k k n 1 H i (X, Z/nZ) Z/nZ l k H i (X, Q l ) Q l F l H i (X, F) Q l X k 1.24 X k Deligne ([dj]) X k (smooth purity) k [SGA4, Exposé XI, XVI] X C X C X(C) n 1 H i (X, Z/nZ) = H i (X(C), Z/nZ) l H i (X, Q l ) = H i (X(C), Q) Q Q l 26

27 1.51 X C H 1 Jacobi Poincaré k X k d n 1 k (trace map) ρ X : H 2d (X, Z/nZ(d)) Z/nZ d = 1 X ρ X 1.23 l k ρ X : H 2d (X, Q l (d)) Q l 1.52 Poincaré [SGA4, Exposé XVIII] H i (X, Z/nZ) H 2d i( X, Z/nZ(d) ) H 2d( X, Z/nZ(d) ) ρ X Z/nZ H i (X, Z/nZ) Hom Z/nZ ( H 2d i (X, Z/nZ(d)), Z/nZ ) l 1.53 X k Jacobi X, Y k X d Y d f : Y X k f : H i (X, Z/nZ) H i (Y, Z/nZ) (push-forward) f : H i (Y, Z/nZ) H i+2d 2d (X, Z/nZ(d d )) f : H i (Y, Q l ) H i+2d 2d (X, Q l (d d )) 1.54 x H i (X, Z/nZ), y H j (Y, Z/nZ) f (f x y) = x f y 27

28 1.55 f X, Y, f X k d Y k d f Künneth 1.56 Künneth [SGA4 1 2, Finitude] k l k k X, Y H m (X k Y, Q l ) = i+j=m H i (X, Q l ) Ql H j (Y, Q l ) i + j = m i, j H i (X, Q l ) Ql H j (Y, Q l ) pr 1 pr 2 H m (X k Y, Q l ) X, Y k Künneth X k Y pr 1 / X pr 2 Y / Spec k Deligne ([SGA4 1 2, Finitude]) X k Lefschetz k X k d l k Z X c Z X (cycle class) cl(z) H 2c (X, Q l (c)) ([SGA4 1 2, Cycle]) cl cl X Chow CH d c (X) X d c cl: CH d c (X) H 2c (X, Q l (c)) cl Chow ζ 1, 28

29 ζ 2 cl(ζ 1 ζ 2 ) = cl(ζ 1 ) cl(ζ 2 ) X k ζ CH 0 (X) deg ζ = ρ X (cl(ζ)) c = 0 X Z cl(z) H 0 (X, Q l ) Z 1 Z 0 X Q l X k Z k cl(z) Z X i Poincaré i : H j (Z, Q l ) H j+2c (X, Q l (c)) Gysin j = 0 i : H 0 (Z, Q l ) H 2c (X, Q l (c)) 1 H 0 (Z, Q l ) cl(z) 1.57 X k x X H 2 (X, Q l (1)) cl(x) H 2 k d H 2d (X, Q l (d)) Künneth Lefschetz 1.58 Lefschetz k X k f : X X k Γ f X f id X k X X k X k l X X k X Γ id 2 dim X i=0 ( 1) i Tr ( f ; H i (X, Q l ) ) = deg(γ f X ) deg(γ f X ) f : X X d = dim X Tate γ = cl(γ f ) H 2d (X k X) δ : X X k X deg(γ f X ) = ρ X δ (γ) f = pr 1 (f id), id = pr 2 (f id) x H i (X) f (x) = pr 2 (f id) (f id) pr 1(x) = pr 2 ( pr 1 (x) (f id) (1) ) 29

30 = pr 2 ( pr 1 (x) γ ) 2 3 Gysin Künneth H 2d (X k X) = s+t=2d Hs (X) H t (X) γ (s, t) n a s,n b t,n f (x) = n ρ X(x a 2d i,n )b i,n Tr(f ; H i (X)) = n ρ X(b i,n a 2d i,n ) 2d i=0 ( 1) i Tr ( f ; H i (X) ) = = 2d i=0( 1) i ρ X (b i,n a 2d i,n ) n 2d ρ X (a 2d i,n b i,n ) = ρ X δ (γ) i=0 n Lefschetz Galois

31 2 Galois 2.1 Galois k k l X k 8 σ G k X k σ id Spec σ X k = X k k X k k = X k X k (σ ) : H i (X k, Q l ) H i (X k, Q l ) G k H i (X k, Q l ) 2.1 G k H i (X k, Q l ) G k H i (X k, Z l ) 1.36 H i (X k, Z l ) = lim H i (X n k, Z/l n+1 Z) lim H i (X n k, Z/l n+1 Z) l m 1 X k 0 Z/l n+1 m Z lm Z/l n Z Z/l m Z 0 lim H i (X k, Z/l n+1 Z) lm lim H i (X n k, Z/l n+1 Z) H i (X k, Z/l m Z) n Mittag-Leffler ( ) l m lim H i (X n k, Z/l n+1 Z) = Ker lim H i (X k, Z/l n+1 Z) H i (X k, Z/l m Z) n G k H i (X k, Z/l n+1 Z) 1.39 H i (X k, Z/l n+1 Z) = lim H i (X L L, Z/l n+1 Z) L k k H i (X L, Z/l n+1 Z) Gal(k/L) G k 2.2 H i (X k, Q l ) Galois Galois Π 8 31

32 Π isotypic H i (X k, Q l ) H i (X k, Q l ) X, Y k X d Y d 2.2 Chow CH d (X k Y ) Q = CH d (X k Y ) Z Q Y X (algebraic correspondence) f : Y X k Y f id X k Y d k d Z k a: Z X k Y a [Z] [a] i = 1, 2 a i = pr i a a 2 a [a] Q 3.3 [a] Hecke a 2 a Sh U G U U G(A ) g G(A ) Hecke Sh U Sh U gug 1 pr y pr / Sh g 1 Ug g $ Sh U Sh U gug 1 Sh U Sh U [g] 2.4 γ Y X H i (X k, Q l ) pr 1 H i (X k k Y k, Q l ) cl(γ) H i+2d( X k k Y k, Q l (d) ) 32

33 pr 2 H i (Y k, Q l ) γ : H i (X k, Q l ) H i (Y k, Q l ) G k Q l γ f : Y X γ = f Lefschetz a: Z X k Y a 2 [a] = a 2 a i) Y k d γ 1, γ 2 Y X Y Y γ 1 γ 2 = pr 13 (pr 12 γ 1 pr 23 γ 2) Y X γ 1 γ 2 ii) (γ 1 γ 2 ) = γ 2 γ X X γ i γ H i (X k, Q l ) γ (idempotent) X γ (X, γ) H i (X k, γ, Q l ) = Im ( γ : H i (X k, Q l ) H i (X k, Q l ) ) G k l H i (X k, γ, Q l ) γ H i (X k, γ, Q l ) H i (X k, Q l ) γ H i (X k, γ, Q l ) σ G k Tr ( σ; H i (X k, γ, Q l ) ) = Tr ( σ γ ; H i (X k, Q l ) ) = Tr ( γ σ; H i (X k, Q l ) ) 33

34 2.8 k X (motive) 9 k X γ (X, γ) (X, γ) (X, γ ) X X δ γ δ = δ γ 10 (X, γ) H i (X k, γ, Q l ) G k l (X, γ) Galois Galois Galois [Ito2] 2.9 Hecke Galois C Q l H i (X k, Q l ) Q l H i (X k, Q l ) = H i (X k, Q l ) Ql Q l Q l γ (X, γ) Galois H i (X k, γ, Q l ) Q l l Q l 9 Q l (1) Tate Tate [Sch2] 10 X (X, X ) 34

35 3 Galois F G F l S F H i (S F, Q l ) S C S(C) 1.48 H i (S F, Q l ) = H i (S C, Q l ) = H i (S(C), Q) Q Q l dim Ql H i (S F, Q l ) = dim Q H i (S(C), Q) dim Q H i (S(C), Q) de Rham S S(C) S(C) de Rham Lie (g, K) S(C) H i (S(C), Q) Hecke Galois (g, K) G F H i (S F, Q l ) F v F v K H i (S F, Q l ) G K Galois G K H i (S F, Q l ) = H i (S K, Q l ) S K S K Galois S K K X Galois H i (X K, Q l ) v 12 v K O K X 3.1 K X O K X X OK K = X F F S 3.2 i) ([Nag1], [Nag2], [Lüt], [Con]) 11 F K 12 G K Z/2Z G K = Z/2Z H i (X K, Q l ) Hodge 35

36 ii) O K i) X X K v l X G K l O K X κ X κ v l p Hodge G K l H i (X K, Q l ) Weil-Deligne 13 v l 14 l F v l F F v K K O K κ p κ q κ q Frob v 3.3 G κ = Ẑ Frob v Frob Z v G κ G K G κ ; σ σ W K K Weil σ W K σ = Frob n(σ) v n(σ) n: W K Z W + K = {σ W K n(σ) 0} n(φ) = 1 φ W K Frobenius I K = {σ W K n(σ) = 0} G K W K = i Z φi I K I K W K W K I K O K ϖ l (ϖ 1/lm ) m t l : I K Z l (1) σ (σ(ϖ 1/lm )/ϖ 1/lm ) m ϖ l (ϖ 1/lm ) m t l Z l (1) I K l X K d X γ X F S S 13 Fontaine D pst v l l 14 [Mie] 36

37 3.1 Weil-Deligne G K l Weil-Deligne [BH, 7] Ω Weil-Deligne W K Ω (r, V ) N : V V σ W K Nr(σ) = q n(σ) r(σ)n 3.4 N W K N : V V ( 1) m N m : V V ( m) 0 2 Z l (1) = Z l Weil-Deligne Ω C Q l Weil-Deligne Q l Weil-Deligne Weil-Deligne l 3.5 Z l (1) = Z l Weil-Deligne (r, N) ρ(σ) = r(σ) exp ( t l (φ n(σ) σ)n ) (σ W K ) W K l ρ Z l (1) = Z l t l I K Z l (r, N) ρ Frobenius φ Z l (1) = Z l (r, N) ρ W K l Weil-Deligne Grothendieck 3.6 Grothendieck 3.5 (r, N) ρ Q l Weil-Deligne l WD 37

38 (r, N) ρ 15 Grothendieck G K l [ST] 3.7 i) κ p l l W K l W K l W K n l GL n (K) l Langlands Harris- Taylor [HT] Henniart [Hen] ii) Galois G K l l Galois Weil l 3.8 W K l ρ G K l ρ(φ) l 3.9 ρ W K l WD(ρ) = (r, N) ρ r IK N t l : I K Z l (1) = Z l 1 σ 0 I K N = log ρ(σ 0 ) = n=1 ( 1)n (ρ(σ 0 ) 1) n /n Weil-Deligne Frobenius Weil-Deligne 3.10 W F Weil-Deligne (r, N) r r(φ) (r, N) 2 Frobenius Weil-Deligne 15 G K l ρ (quasi-unipotent) σ I K m 1 ρ(σ) m 1 38

39 Weil-Deligne (r, N) Frobenius Weil-Deligne (r ss, N) r(φ) = su = us r(φ) Jordan s u r ss (φ n σ) = s n r(σ) (σ I K ) r ss φ (r ss, N) (r, N) Frobenius (r, N) F -ss Weil-Deligne (r ss, 0) (r, N) ss (r, N) 2 Frobenius Weil-Deligne (r, N), (r, N ) r r 3.11 [SaT1, Lemma 1 (1)] r, r W K σ W + K Tr r(σ) = Tr r (σ) r = r 3.12 r : W K GL(V ) W K i) r(i K ) ii) m 1 r(φ m ): V V W K V x 1,..., x n V r Stab IK (x i ) I K F L I K W L n i=1 Stab I K (x i ) L F Galois H = I K W L W K H I K Ker r r(i K ) φ I K /H I K /H m > 0 φ m I K /H m r(φ m ): V V W K W K I K φ ii) r(φ m ), r (φ m ) W K m 1 r(φ m ) r (φ m ) Q l a 1,..., a k r r(φ m ) r = r 1 r k r i r(φ m ) a i r r (φ m ) r = r 1 r k r i r (φ m ) a i Q i (T ), P i (T ) Q i (T ) = (T a i ) 1 n j=1 (T a j), P i (T ) = Q i (a i ) 1 Q i (T ) P i (r(φ m )) r r i 39

40 P i (r (φ m )) r r i σ W + K ( ( Tr r i (σ) = Tr P i r(φ m ) ) ) ( ( r(σ) = Tr P i r (φ m ) ) ) r (σ) = Tr r i(σ) σ W K φ ml σ W + K l Tr r i (σ) = a l i Tr r i (φ ml σ) = a l i Tr r i (φml σ) = Tr r i (σ) χ i : W K Q l φ a 1/m i χ i r i, χ i r i W K (χ i r i )(φ m ) = id (χ i r i )(W K ) r i (I K ) 3.12 χ i (φ n ) (0 n m 1) χ i r i χ i r i χ i r i = χi r i r i = r i 2 Weil-Deligne (r, N), (r, N ) r = r N Weil-Deligne 3.13 (r, V ) W K k (r, V ) k (strictly pure of weight k) r(φ) q k/2 Frobenius φ W K V {Fil W i } i R (r, V ) (weight filtration) i R gr W i V := Fil W i V/( j<i FilW j V ) i (r, V ) (mixed) gr W i 0 i R (r, V ) (weight) Weil-Deligne (r, V, N) (r, V, N) (r, V ) 3.14 Weil-Deligne Nr(φ) = qr(φ)n (r, N, V ) N Fil W i Fil W i 2 N : grw i V gr W i 2 V 3.15 Fil W = {Fil W i } i Z 40

41 Weil-Deligne 3.16 Weil-Deligne (r, N, V ) (pure) w R (r, N, V ) w + Z i 0 N i : gr W w+i V gr W w i V w (r, N, V ) (weight) 3.17 Langlands n Weil-Deligne GL n (K) (absolutely tempered representation) 16 ([TY, Lemma 1.4 (3)]) 3.18 W K Q l Q l ( 1) Fil W 1 = 0, Fil W 0 = Fil W 1 = Q l, Fil W 2 = Q l Q l ( 1) {0, 2} ( (Q l ) Q l ( 1), 0) Weil-Deligne N = 0 1 (Q l Q l ( 1), N) Weil-Deligne Weil- 0 0 Deligne Langlands GL 2 (K) Steinberg 3.19 i) Weil-Deligne (r, N) (r, N) (r, N) F -ss ii) L K K Weil-Deligne (r, N) L (r WL, N) l (r, N) (r WL, N) Frobenius Weil-Deligne 3.20 [TY, Lemma 1.4 (4)] (r, V, N), (r, V, N ) Frobenius Weil-Deligne (r, V, N) = (r, V, N ) 16 C 41

42 W K (r, V ) m (r(m), V ) r(m)(σ) = q n(σ)m r(σ) (r, V ) (r(m), V ) (r, V ) V i = gr W i V (r, V ) W K V = i V i V = i V i N N Vi : V i V i 2 i 0 N i+1 : V i N N V i 2 P i V i+2 i+1 Vi V i 2 V i = NV i+2 P i V i = i+2j i Z j=0 N j P i+2j = i i Z j=0 N j P i 0 j i N j : P i V i 2j N i j r i = r Pi i,j N j : i Z i j=0 r i(j) i Z i j=0 N j P i W K i Z i j=0 r i(j) r i (j) 0 j < i id Pi : r i (j) r i (j + 1) j = i 0 N P i, r i P i P i V i V i 2 ( i 1) W K V i V i 2 ( i 1) r i = r i i i Z j=0 r i(j) = i i Z j=0 r i (j) (r, V, N) = (r, V, N ) W K l Weil-Deligne l ρ, ρ W K l ρ Frobenius WD(ρ) Frobenius ρ Frobenius ρ F -ss ρ ss WD WD(ρ) F -ss, WD(ρ) ss σ W + K Tr ρ(σ) = Tr ρ (σ) ρ ss = ρ ss 3.11 WD(ρ) = (r, N) ρ(σ) r(σ) Tr ρ(σ) = Tr r(σ) ρ WD(ρ) ρ, ρ Frobenius l ρ ss = ρ ss ρ = ρ Galois 42

43 o o G κ Q l (ρ, V ) w ρ(frob v ) q w/2 3.3 ρ G K l W K w w 3.2 Rψ H i (X K, Q l ) G K O K O ur K O K Y Y κ i / Y O ur K j Y K Spec κ / Spec O ur K Spec K 3.22 [SGA7, Exposé XIII] Y l F RψF = i Rj (F YK ) Y κ l Rψ (nearby cycle functor) RψF i R i ψf RψQ l G K σ G K (σ ) RψQ l RψQ l σ σ G κ Y κ G K RψQ l I K Y X X Y O K RψQ l X K 3.23 G K H i (X κ, RψQ l ) = H i (X K, Q l ) G K E i,j 2 = H i (X κ, R j ψq l ) = H i+j (X K, Q l ) O ur K X O ur K Spec Our K 1.45 H i (X κ, RψQ l ) = H i (X O ur K, Rj Q l ) = H i (X K, Q l ) H i (X K, Q l ) RψQ l X κ 2 43

44 o o 3.3 X Spec O K X X v RψQ l 3.24 X Spec O K RψQ l = Q l R 0 ψq l = Q l R i ψq l = 0 (i 1) RψQ l I K X κ i / X O ur K j X K f f f Spec κ i / Spec O ur K j Spec K f i Rj Q l = i f Rj Q l = i Rj f Q l = RψQ l 3.23 X = Spec O K H m (Spec κ, i Rj Q l ) = H m (Spec K, Q l ) m = 0 Q l I K m 1 0 i Rj Q l = Q l, RψQ l = f Q l = Q l i) 3.25 X Spec O K G K H i (X K, Q l ) = H i (X κ, Q l ) G K G κ H i (X κ, Q l ) G K G κ H i (X K, Q l ) H i (S F, Q l ) 3.26 G F l H i (S F, Q l ) S S S Spec O F S U S S Spec O F U 44

45 Spec O F W Spec O F (Spec O F ) \ W Spec O F W S Spec O F (Spec O F ) \ W 3.25 v / W H i (S F, Q l ) v 3.25 X Spec O K G K H i (X K, Q l ) G κ H i (X κ, Q l ) G κ Frobenius Frob v G κ Frob v H i (X κ, Q l ) 3.27 κ m κ m κ Y 2d i=0 ( 1) i Tr ( Frob m v ; H i (Y κ, Q l ) ) = #Y (κ m ) κ m κ Y κm Y m = 1 ϕ v : Y Y q Frobenius q κ Frob v ϕ v : H i (Y κ, Q l ) H i (Y κ, Q l ) 17 ϕ v Y κ Y (κ) 1 ϕ v 0 Lefschetz 3.28 Spec κ ([SGA4 1 2, Rapport]) κ Y Z(Y, T ) Y (congruence zeta function) κ n κ n ( Z(Y, T ) = exp n=1 #Y (κ n ) T n) n 17 Frob v Frob v Frobenius 45

46 3.30 Y = P 1 κ #P1 (κ n ) = q n + 1 Z(P 1 κ, T ) ( Z(P 1 κ, T ) = exp = n=1 q n T n n + n=1 1 (1 T )(1 qt ) T n ) = exp ( log(1 qt ) log(1 T ) ) n 3.31 Y κ P i (Y, T ) = det(1 Frob v T ; H i (Y κ, Q l )) Z(Y, T ) = 2 dim Y i=0 P i (Y, T ) ( 1)i Frob v H i Weil 3.33 Weil Deligne [Del2], [Del3] Y κ Frob v H i (Y κ, Q l ) α Q l α Z ι: Q l = C ι(α) = q i/2 G κ l H i (Y κ, Q l ) i Frob v H i (Y κ, Q l ) P i (Y, T ) P i (Y, T ) β Q l Q ι: Q l = C ι(β) = q i/ κ Y i, j P i (Y, T ) P j (Y, T ) P i (Y, T ) P j (Y, T ) 46

47 2 dim Y i=0 P i (Y, T ) ( 1)i+1 P i (Y, T ) Tr(Frob m v ; H i (Y κ, Q l )) i) n #Y (κ n ) ii) i) Z(Y, T ) iii) Z(Y, T ) q i/2 β 1,..., β k P i (Y, T ) = k j=1 (1 β 1 j T ), Tr(Frob m v ; H i (Y κ, Q l )) = β1 m + + β m k X O K n X κ n Tr(Frob m v ; H i (X K, Q l )) S v Tr(Frob m v ; H i (S F, Q l )) n S κ n 3.35 F 3 Y 0 : y 2 = x 5 +1 F 3 Y Y 0 A 1 F 3 ; (x, y) x f : Y P 1 F 3 P 1 F Riemann-Hurwitz f 6 Y 2 f P 1 F 3 1 F 3 H 1 (Y F3, Q l ) 4 P 1 (Y, T ) x x F 3 F 3, F 9 F 9 #Y (F 3 ) = 4, #Y (F 9 ) = 10 H 0 (Y F3, Q l ), H 2 (Y F3, Q l ) Frob 3 1, 3 Tr(Frob 3 ; H 1 (Y F3, Q l )) = Tr(Frob 2 3; H 1 (Y F3, Q l )) = 0 Frob 3 H 1 (Y F3, Q l ) a, b, c, d a + b + c + d = a 2 + b 2 + c 2 + d 2 = 0 H 1 (Y F3, Q l ), Poincaré Frob 3 (x), Frob 3 (y) = 3 x, y det Frob 3 = 9 abcd = 9 1 Poincaré {a, b, c, d} = {3/a, 3/b, 3/c, 3/d} 1/a + 1/b + 1/c + 1/d = 0 a, b, c, d T 4 +9 = 0 4 P 1 (Y, T ) = 1+9T 4 Weil Tr ( Frob m 3 ; H 1 (Y F3, Q l ) ) 0 (4 m) = 4( 9) m/4 (4 m) 47

48 P i (Y, T ), Tr(Frob m v ; H i (Y κ, Q l )) 3.36 Y κ P i (Y, T ) l Tr(Frob m v ; H i (Y κ, Q l )) l P i (Y, T ) {β 1,..., β k } l P i (Y, T ) l β 1,..., β k Q σ G Q σ(β j ) {β 1,..., β k } 3.33 ι P i (Y, T ) = k j=1 (1 β 1 j T ) Q[T ] G Q Q 3.33 β1 1,..., β 1 k P i (Y, T ) P i (Y, T ) Z[T ] 3.37 {H i (S F, Q l )} l p 18 F Σ v / Σ v l l H i (S F, Q l ) GK m Z Tr(Frob m v ; H i (S F, Q l )) l γ X H i (X K, γ, Q l ) H i (X K, Q l ) 3.38 H i (X K, γ, Q l ) G K Γ S G F l H i (S F, Γ, Q l ) CH d (X OK X) CH d (X K X) γ X OK X γ γ γ X κ κ X κ γ ([Ful, 20.3]) γ CH d (X κ κ X κ ) H i (X κ, Q l ) = H i (X K, Q l ) γ / H i (X κ, Q l ) = γ / H i (X K, Q l ) 17 [Tay] [Tay] v l p 48

49 γ γ G K H i (X K, γ, Q l ) = H i (X κ, γ, Q l ) σ W K H i (X K, γ, Q l ) Frob n(σ) v H i (X κ, γ, Q l ) i ( 1)i Tr(Frob m v ; H i (X κ, γ, Q l )) γ i ( 1)i Tr(γ Frob m v ; H i (X κ, Q l )) X κ γ (m) γ (m) = (ϕ m v id) γ ϕ v q Frobenius 2d i=0 ( 1) i Tr ( Frob m v ; H i (X κ, γ, Q l ) ) = deg ( [γ (m) ] X ) i ( 1)i Tr(γ Frob m v ; H i (X κ, Q l )) γ γ a: Z X κ κ X κ Z z ϕ m v (a 1 (z)) = a 2 (z) det(1 Frob v T ; H i (X κ, γ, Q l )) l Tr(Frob m v ; H i (X κ, γ, Q l )) l Γ S {H i (S F, Γ, Q l )} l m 0 Tr(Frob m v ; H i (X κ, γ, Q l )) l 3.34 Q(T ) = c 0 + c 1 T + + c n T n Q[T ] Q(T ) 1 (mod P i (X κ, T )), Q(T ) 0 (mod P j (X κ, T )) (j i) Q(Frob v ) H i (X κ, Q l ) id H j (X κ, Q l ) (j i) 0 Tr ( Frob m v ; H i (X κ, γ, Q l ) ) = Tr ( γ Frob m v ; H i (X κ, Q l ) ) = j ( 1) j Tr ( γ Frob m v Q(Frob v ); H j (X κ, Q l ) ) = = n c l ( 1) j Tr ( γ Frob m+l v ; H j (X κ, Q l ) ) l=0 l=0 j n c l ( 1) j Tr ( Frobv m+l ; H j (X κ, γ, Q l ) ) j 49

50 3.39 l γ c 1 det(1 Frob v T ; H i (X κ, γ, Q l )) c γ det(1 Frob v T ; H i (X κ, γ, Q l )) Z[T ] [Kle] 3.41 k Y i 0 H i (Y k, Q l ) id H j (Y k, Q l ) (j i) 0 i Künneth (Künneth projector) k i Künneth Q(ϕ v ) k Künneth Y a 2 a: Z X κ κ X κ Z κ d γ 3.42 [Fuj], [Var] Z κ d a: Z X κ κ X κ κ a 2 = pr 2 a m 1 2d i=0 ( 1) i Tr ( Frob m v ; H i (X κ, [a], Q l ) ) = # { z Z(κ) ϕ m v (a 1 (z)) = a 2 (z) } 3.43 m 1 i ( 1)i Tr(Frob m v ; H i (X κ, [a], Q l )) m i ( 1)i Tr(Frob m v ; H i (X κ, [a], Q l )) 3.44 X κ κ m [HT] [Laf] 50

51 3.45 F 7 3 C : X 3 + Y 3 = Z 3 1 H 1 (C F7, Q l ) 2 C Z/3Z a[x : Y : Z] = [2 a X : Y : Z] H i (C F7, Q l ) Z/3Z a Z/3Z Tr(a Frob 7 ; H 1 (C F7, Q l )) 3.42 [(2 a X) 7 : Y 7 : Z 7 ] = [X : Y : Z] [X : Y : Z] P 2 (F 7 ) 2 i=0 ( 1)i Tr(a Frob 7 ; H i (C F7, Q l )) a = 0 9, a = 1 12 a = 1 3 a H 0 (C F7, Q l ), H 2 (C F7, Q l ) Tr(a Frob 7 ; H 0 (C F7, Q l )) = 1, Tr(a Frob 7 ; H 2 (C F7, Q l )) = 7 Tr(a Frob 7 ; H 1 (C F7, Q l )) a = 0 1 a = 1 4 a = 1 5 Q l 1 3 ω l 1 3 χ: Z/3Z Q l χ(a) = ωa i = 0, 1, 2 γ i = (1/3) a Z/3Z χ(a) i [a] H 1 (C F7, Q l ) H 1 (C F7, Q l ) = 2 i=0 H1 (C F7, γ i, Q l ) H 1 (C F7, γ i, Q l ) H 1 (C F7, Q l ) Z/3Z χ i Tr ( Frob 7 ; H 1 (C F7, γ 1, Q l ) ) = 1 + 3ω, Tr ( Frob 7 ; H 1 (C F7, γ 2, Q l ) ) = 1 + 3ω 2 H 1 (C F7, γ i, Q l ) 0 (i = 1, 2) H 1 (C F7, γ 0, Q l ) = 0, dim Ql H 1 (C F7, γ 1, Q l ) = dim Ql H 1 (C F7, γ 1, Q l ) = 1 Frob 7 H 1 (C F7, γ 1, Q l ), H 1 (C F7, γ 2, Q l ) 1 + 3ω 1 + 3ω Weil Galois Ramanujan Galois Weil Weil Ramanujan (q) = q n=1 (1 qn ) 24 = n=1 τ(n)qn G Q l ρ p l det(1 Frob p T ; ρ ) = 1 τ(p)t + p 11 T 2 Q Hecke ([Del1], [Sch1]) Weil 1 τ(p)t + p 11 T 2 p 11/2 τ(p) τ(p) 2p 11/2 51

52 3.4 X Spec O K 3.47 O K Y (semistable) y Y 0 r n O K ϖ y 19 Y Y Y Spec O K [T 1,..., T n ]/(T 1 T r ϖ) Y κ κ Y (strictly semistable) 3.48 i) O K O K Y κ ii) Y O K y Y 0 r n O K ϖ y Zariski Y Y Y Spec O K [T 1,..., T n ]/(T 1 T r ϖ) X X X Galois 1.5 ii) 3.49 X H i (X K, Q l ) G K V G K l W V G K V W, V/W I K R i ψq l X N 1 σ I K x X κ (σ 1) N (R i ψq l ) x 0 (R i ψq l ) x x 0 r n 18 y 52

53 N > 0 Spec O K [T 1,..., T n ]/(T 1 T r ϖ) O K R i ψq l (σ 1) N 0 Spec O K [T 1,..., T n ]/(T 1 T r ϖ) Spec O K [T 1,..., T r ]/(T 1 T r ϖ) R i ψ R i ψ n = r n = r = 2 P 1 O K P 1 κ O K Y Y y Y κ O K y Y Spec O K [T 1, T 2 ]/(T 1 T 2 ϖ) (R i ψ Y Q l ) y Y Rψ Rψ Y I K U = Y κ \ {y} I K H i (Y κ, RψQ l ) (R i ψq l ) y H i+1 c (U κ, RψQ l ) Y P 1 K Hi (Y κ, RψQ l ) = H i (Y K, Q l ) I K 3.25 U O K 3.24 Hc i+1 (U κ, RψQ l ) = Hc i+1 (U κ, Q l ) 20 I K (σ 1) 2 (σ I K ) (R i ψq l ) y 0 n = r Spec O K [T 1,..., T n ]/(T 1 T n 1 ϖ) (T 1, T n ) ϖ Spec O K [T 1,..., T n ]/(T 1 T n ϖ) O K Y j > 2 dim Y κ i > dim Y K H j (Y κ, R i ψq l ) = [RZ] 3.51 X R i ψq l I K R i ψq l P K K RψQ l I K P K X O K 53

54 X 3.49 I K H i (X K, Q l ) H i (X K, Q l ) Frobenius 2 σ W + K Tr(σ; Hi (X K, Q l )) N = n=1 ( 1)n 1 (σ 0 1) n /n σ 0 t l (σ 0 ) Z l (1) I K 3.9 X κ D 1,..., D m {1,..., m} I D I = i I D i j D (j) = #I=j+1 D I 3.52 [RZ], [SaT2] X G K E s,t 1 = i max{0, s} H t 2i( D (s+2i) κ, Q l ( i) ) = H s+t (X K, Q l ) (weight spectral sequence) σ 0 1 N E s,t 1 = i max{0, s} Ht 2i( D (s+2i) κ, Q l ( i) ) id t l (σ 0 ) H s+t (X K, Q l ) σ 0 1 E s+2,t 2 1 = i max{1, s 1} Ht 2i( D (s+2i) κ, Q l ( i + 1) ) H s+t (X K, Q l ) N X d D (s+2i) d s 2i E s,t t 2i 2(d s 2i) i max{0, s} E s,t 1 0 (s, t) 0 2s + t 2d 0 t 2d d = 2 E 1 Q l H 0 (D (2) Gys )( 2) H 2 (D (1) Gys )( 1) H 4 (D (0) κ κ κ ) H 1 (D (1) Gys )( 1) H 3 (D (0) κ H 0 (D (1) Gys )( 1) κ κ ) H2 (0) (Dκ ) Res Res H 0 (D (2) κ )( 1) H 2 (D (1) Gys κ ) H 1 (D (0) κ ) Res H 1 (D (1) H 0 (D (0) κ ) Res κ ) H 0 (D (1) κ ) Res H 0 (D (2) κ ) s = 0 t = 0 Res ±1 Gys Gysin 54

55 Poincaré ± i) H i (X K, Q l ) Fil W Hi (X K, Q l ) H i (X K, Q l ) l ii) E 2 Weil G κ E s,t 1 t Tate 2 Fil W t / Fil W t 1 Ei t,t 1 G K t Fil W i) ii) d 2 : E s,t 2 E s+2,t E s,t 2 E s+2,t 1 2 G κ 3.54 i) σ W + K 2d i=0 ( 1)i Tr(σ; H i (X K, Q l )) l ii) σ I K (σ 1) d+1 H i (X K, Q l ) 0 X i) G K 2d i=0 ( 1) i Tr ( σ; H i (X K, Q l ) ) = s,t = s i max{0, s} ( 1) s+t Tr ( σ; H t 2i (D (s+2i) κ, Q l ( i)) ) i max{0, s}( 1) s q n(σ)i t ( 1) t 2i Tr ( Frob n(σ) v ; H t 2i (D (s+2i) κ, Q l ) ) 3.36 l ii) 3.49 I K t l σ = σ σ 0 1 Fil W i Fil W i 2 FilW 1 = 0, Fil W 2d = Hi (X K, Q l ) (σ 0 1) d+1 (H i (X K, Q l )) Fil W 2 = 0 55

56 3.55 E Weierstrass y 2 = x 3 + x Q 5 1 H 1 (E Q5, Q l ) W Q5 P 2 Z 5 3 E : Y 2 Z = X 3 + X 2 Z + 25Z 3 E E (x, y, 5) Z 5 y 2 = x 3 + x Z 5 Ẽ E ẼF 5 2 D 1, D 2 P 1 F 5 D 1 D 2 2 F 5 Ẽ E 1 E 2, 1 1 E 2,0 1 E 1,0 1 E 0,0 1 E 0,1 1 5 E 2, 1 1 = H 0 (D 1,F5 D 2,F5 )( 1) = Q l ( 1) 2, E 2,0 1 = H 2 (D 1,F5 ) H 2 (D 2,F5 ) = Q l ( 1) 2, E 1,0 1 = 0, E 0,0 1 = H 0 (D 1,F5 ) H 0 (D 2,F5 ) = Q 2 l, E 0,1 1 = H 0 (D 1,F5 D 2,F5 ) = Q 2 l σ W Q5 E 2, 1 1 E 2,0 1 5 n(σ) E 0,0 1 E 0, i=0 ( 1)i Tr(σ; H i (E Q5, Q l )) = 0 H 0 (E Q5, Q l ) = Q l, H 2 (E Q5, Q l ) = Q l ( 1) Tr(σ; H 1 (E Q5, Q l )) = n(σ) det(σ; H 1 (E Q5, Q l )) = ((1 + 5 n(σ) ) 2 ( n(σ) ))/2 = 5 n(σ) σ H 1 (E Q5, Q l ) 1 5 n(σ) H 1 (E Q5, Q l ) Frobenius WD(H 1 (E Q5, Q l )) ss = Q l Q l ( 1) N E 2 pt P 1 F 5 Gysin H 0 (pt) H 2 (P 1 F 5 ) d 1 : E 2, 1 1 E 2,0 1 (a, b) ( a b, a + b) (a, b Q l ( 1)) d 1 : E 0,0 1 E 0,1 1 (a, b) ( a + b, a + b) (a, b Q l ) 3.53 gr W 2 H 1 (E Q5, Q l ) = E 2, 1 2 = {(a, a) a Q l ( 1)} = Q l ( 1), gr W 0 H 1 (E Q5, Q l ) = E 0,1 2 = Q 2 l /{(b, b) b Q l} = Q l, gr W i H 1 (E Q5, Q l ) = 0 (i 0, 2) 56

57 3.52 N : gr W 2 grw 0 (a, a) (t l (σ 0 )a, t l (σ 0 )a) N : gr W 2 gr W 0 W Q5 l H 1 (E Q5, Q l ) Weil-Deligne WD(H 1 (E Q5, Q l )) = ( Q l Q l ( 1), ( ) ) N 3.6 N : gr W 2 gr W [RZ] ([SaT2]) σ 0 I K t l (σ 0 ) Z l (1) RψQ l σ 0 1 RψQ l R i ψq l σ 0 RψQ l (perverse sheaf) Riemann-Hilbert A N A M ([SaT2, Lemma 2.3]) M i = 0 (i 0), M i = A (i 0) N(M i ) M i 2 i > 0 N i : gr M i A gr M i A RψQ l σ 0 1 γ X γ [SaT2, 2.3, 2.4] γ E 1 57

58 3.56 σ W + K 2d i=0 ( 1)i Tr(γ σ; H i (X K, Q l )) l γ 2d i=0 ( 1)i Tr(σ; H i (X K, γ, Q l )) l Künneth i) 3.57 i 0 X i Künneth σ W + K Tr(γ σ; H i (X K, Q l )) l γ Tr(σ; H i (X K, γ, Q l )) l Γ i i Künneth ( 1) i Tr ( γ σ; H i (X K, Q l ) ) = 2d j=0 ( 1) j Tr ( Γ i γ σ; H j (X K, Q l ) ) γ Γ i Künneth i i 0 H i (X K, γ, Q l ) = 0 Künneth 3.56 H i (X K, Q l ) [Yos] 3.5 X K L X L O L 3.58 X K K L O L Y Y L = XL Y 58

59 L Y X 1 ([DM]) K p 0 C((T )) ([KKMSD]) G L H i (X K, Q l ) = H i (Y L, Q l ) H i (X K, Q l ) G K G L G K Y Y κ S S X = S K L Y L Y S OK L K O L [TY, 3] Harris-Taylor L K Galois L K 0 K Galois L Y OL O L [SaT2, Lemma 1.11] 3.60 de Jong [dj] X K K L O L Y f : Y L X U X f U : f 1 (U) U Y O L f U L K Galois

60 3.62 H i (X K, Q l ) f H i (Y OK K, Q l ) f H i (X K, Q l ) deg f deg f f U Y = Y OK K = Y OL (O L OK K) = Y OL L K H i (X K, Q l ) f H i (Y K, Q l ) f H i (X K, Q l ) deg f ξ H i (X K, Q l ) f (f ξ) = f (f ξ 1) = f ( f ξ cl([y ]) ) = ξ f ( cl([y ]) ) = ξ cl(f ([Y ])) = deg f (ξ cl([x]) ) = deg f ξ L K Galois τ Gal(L/K) τ : O L O L Y Y τ Y OK K = Y OL (O L OK K) = τ Gal(L/K) Yτ L Hi (X K, Q l ) τ Gal(L/K) Hi (Y τ L, Q l) (deg f) 1 f f 3.49 G L H i (X K, Q l ) H i (X K, Q l ) Grothendieck 3.6 Grothendieck 3.53 i) 3.63 H i (X K, Q l ) l H i (X K, Q l ) G L 3.64 τ Gal(L/K) Y τ L X L Y τ L Yτ L L Y τ L Γ τ σ G L Tr ( σ; H i (X K, Q l ) ) = (deg f) 1 τ Gal(L/K) Tr ( Γ τ σ; H i (Y τ L, Q l) ) Y τ L Y O K L f id L X L f τ H i (Y OK K, Q l ) = τ Gal(L/K) Hi (Y τ L, Q l) 3.62 f τ f τ f τ f τ Tr ( σ; H i (X K, Q l ) ) = Tr ( (deg f) 1 f f σ; H i (Y OK K, Q l ) ) 60

61 2 Y τ L = (deg f) 1 τ Gal(L/K) Tr ( f τ f τ σ; H i (Y τ L, Q l) ) id f τ Y τ L L X L Y τ f τ id L X L L Y τ L Γ τ Γ τ = f τ f τ G L H i (X K, Q l ) τ Gal(L/K) O L Y τ H i (Y τ L, Q l) G L G L G K Y 3.58 σ W + K Y σ : O L O L Y σ Y σ L X L XL X L L X L Γ Y σ L L Y L Γ Y σ OL Y X L Galois σ : X L X L Y σ Y σ Γ Y σ OL Y σ Γ E s,t 1 σ H s+t (Y L, Q l ) σ H s+t (X K, Q l ) σ Γ E σ,s,t 1 E s,t 1 H s+t (Y σ L, Q l) H s+t (X K, Q l ) Γ id H s+t (Y L, Q l ) H s+t (X K, Q l ) E σ,s,t 1 Y σ E 1 E 1 σ κ σ Frobenius n(σ)[κ L : F p ] κ L L κ σ geom σ = σ geom H i (X K, Q l ) σ E 1 X γ 3.65 [SaT2] γ X σ W + K 61

62 2d i=0 ( 1)i Tr(γ σ; H i (X K, Q l )) l γ 2d i=0 ( 1)i Tr(σ; H i (X K, γ, Q l )) l 3.66 Γ S S i Künneth {H i (S F, Γ, Q l )} l p F v WD(H i (S F, Γ, Q l ) WK ) ss l p l 3.67 E Weierstrass y 2 = x 3 + x Q 5 1 H 1 (E Q5, Q l ) W Q5 P 2 Z 5 3 E : Y 2 Z = X 3 + X 2 Z + 5Z 3 E K = Q 5 ( 5) E OK (x, y, 5) O K Y 3.55 Y E K Y Y F5 2 D 1, D 2 P 1 F 5 D 1 D 2 2 F 5 σ W Q5 Y Z 5 E : y 2 = x 3 + x E O K E O K (x, y, 5) x U Y y = wx, 5 = tx y 2 = x 3 + x x 2 w 2 = x t 2 U = Spec O K [x, w, t]/(tx 5, x+1+t 2 w 2 ) = Spec O K [w, t]/ ( t(w 2 t 2 1) 5 ) U E O K (x, y) (w 2 t 2 1, w(w 2 t 2 1)) σ W + Q 5 \ W + K Uσ = Spec O K [w, t]/(t(w 2 t 2 1) + 5) O K f : U U σ (w, t) (w, t) U / E O K Y / E OK f id U σ E / O K σ σ U / E O K f id Y σ / E OK σ σ Y / E OK 62

63 61 f E 1 f = f mod 5 21 mod 5 U F5 = Spec F 5 [w, t]/(t(w 2 t 2 1)) F 5 absfrob n(σ) σ f (w, t) (w 5n(σ), t 5n(σ) ) 22 absfrob U F5 Frobenius 5 σ E 1 f (ϕ 5 )n(σ) f E 1 E 1 (ϕ 5 )n(σ) = Frob n(σ) 5 σ W + K E 1 W Q W Q5 l H 1 (E Q5, Q l ) Q 5 E : y 2 = x 3 + 2x H 1 (E Q5, Q l ) W Q E Ẽ Q 25 Q 5 2 Z 25 E Frob 5 E Gabber 3.60 p l 3.60 L, Y, f deg f l Z l Z/l n Z H i (X K, γ, Q l ) ss X κ H i (X K, γ, Q l ) 3.70 H i (X K, Q l ) l i H i (X K, Q l ) Fil W 3.63 j 1 N j : gr W i+j Hi (X K, Q l ) gr W i j Hi (X K, Q l ) 21 Y = Y σ Y σ (x, y, 5) Y = Y σ 2 Y = Y σ Y 22 Y F5 = Y σ F 5, σ = Frob n(σ) 5 σ geom = ϕ n(σ) 5 63

64 H i (X K, γ, Q l ) H i (X K, Q l ) H i (X K, γ, Q l ) ss H i (X K, γ, Q l ) F -ss Γ S S i Künneth 3.70 {H i (S F, Γ, Q l )} l p F v WD(H i (S F, Γ, Q l ) WK ) F -ss l p l 3.70 Langlands [Car] [SaT3] [TY] [Car] [SaT3] [Mie] ii) X O K i = ([SGA7, Exposé I]) dim X ([RZ]) K p [Ste] [SaM1] p > 0 X Deligne Néron Deligne ([Ito1]) 3.70 ([SaM1], [SaM2]) X 3.70 X κ dim X = 2, i = 2 54 E 2 (a) N : gr W 3 gr W 1, (b) N 2 : gr W 4 gr W 0 Tate (a) Ker ( H 1 (D (1) κ ) Gys H 3 (D (0) κ )) Coker ( H 1 (D (0) κ (b) Ker ( H 0 (D (2) κ ) Gys H 2 (D (1) κ )) Coker ( H 0 (D (1) κ ) Res H 1 (D (1) κ )), ) Res H 0 (D (2) )) H 1 (D (1) κ ) Gys H 3 (D (0) κ ) H1 (D (0) κ ) Res H 1 (D (1) κ ) κ 64

65 (a) H 1 (D (1) κ ) H1 (D (1) κ ) Q l H 1 (D (0) κ ) Res H 1 (D (1) κ ) Im Res X O K Res i Pic0 (D i ) i<j Pic0 (D i D j ) Tate A Im Res = V l A H 1 (D (1) κ ) = V l ( i<j Pic0 (D i D j )) i<j Pic0 (D i D j ) L Weil V l A L A Weil L A Im Res (b) H 0 (D (2) κ ) H0 (D (2) κ ) Q l H 0 (D (0) κ ) Res H 0 (D (2) κ ) Im Res Q l Q V, W D (2), D (0) Q r : W V Φ: V V Q V, W, r, Φ H 0 (D (2) κ ), H0 (D (0) κ ), Res, Q Φ Φ r Im Res 3.72 dim X = 1 [TY], [Boy], [Dat] [Dat] Drinfeld Drinfeld 65

66 [BBD] [BH] [Boy] [Car] [Con] [CS] [Dat] [Del1] [Del2] [Del3] [dj] [DM] [DS] [Eke] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp C. J. Bushnell and G. Henniart, The local Langlands conjecture for GL(2), Grundlehren der Mathematischen Wissenschaften, vol. 335, Springer-Verlag, Berlin, P. Boyer, Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math. 177 (2009), no. 2, H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, B. Conrad, Deligne s notes on Nagata compactifications, J. Ramanujan Math. Soc. 22 (2007), no. 3, G. Cornell and J. H. Silverman (eds.), Arithmetic geometry, Springer- Verlag, New York, 1986, Papers from the conference held at the University of Connecticut, Storrs, Connecticut, July 30 August 10, J.-F. Dat, Théorie de Lubin-Tate non-abélienne et représentations elliptiques, Invent. Math. 169 (2007), no. 1, P. Deligne, Formes modulaires et representations l-adiques, Séminaire Bourbaki, 21ème année (1968/69), Exp. No. 355, 1969., La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. (1974), no. 43, , La conjecture de Weil. II, Inst. Hautes Études Sci. Publ. Math. (1980), no. 52, A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. (1996), no. 83, P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), no. 36, P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), (1975). T. Ekedahl, On the adic formalism, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp

67 [Fuj] [Ful] [Hen] [HT] [Ito1] [Ito2] K. Fujiwara, Rigid geometry, Lefschetz-Verdier trace formula and Deligne s conjecture, Invent. Math. 127 (1997), no. 3, W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin, G. Henniart, Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139 (2000), no. 2, M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001, With an appendix by Vladimir G. Berkovich. T. Ito, Weight-monodromy conjecture over equal characteristic local fields, Amer. J. Math. 127 (2005), no. 3, (2006) 2008 [Ive] B. Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, [Jan] U. Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), no. 2, [KKMSD] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer- Verlag, Berlin, [Kle] S. L. Kleiman, Algebraic cycles and the Weil conjectures, Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, pp [KS] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften, vol. 292, Springer-Verlag, Berlin, 1994, With a chapter in French by Christian Houzel. [KW] R. Kiehl and R. Weissauer, Weil conjectures, perverse sheaves and l adic Fourier transform, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 42, Springer-Verlag, Berlin, [Laf] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002), no. 1, [Lüt] W. Lütkebohmert, On compactification of schemes, Manuscripta Math. 80 (1993), no. 1,

68 [Mie] R = T Tate Serre 2009 [Mum] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay, [Nag1] M. Nagata, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ. 2 (1962), [Nag2], A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math. Kyoto Univ. 3 (1963), [RZ] M. Rapoport and Th. Zink, Über die lokale Zetafunktion von Shimuravarietäten. Monodromiefiltration und verschwindende Zyklen in ungleicher Charakteristik, Invent. Math. 68 (1982), no. 1, [SaM1] M. Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988), no. 6, (1989). [SaM2] M. Saito, Monodromy filtration and positivity, preprint, [SaT1] T. Saito, Modular forms and p-adic Hodge theory, Invent. Math. 129 (1997), no. 3, [SaT2] T. Saito, Weight spectral sequences and independence of l, J. Inst. Math. Jussieu 2 (2003), no. 4, [SaT3], Hilbert modular forms and p-adic Hodge theory, to appear in Compositio Mathematica. [Sch1] A. J. Scholl, Motives for modular forms, Invent. Math. 100 (1990), no. 2, [Sch2], Classical motives, Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp [Ser1] J.-P. Serre, Propriétés galoisiennes des points d ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, [Ser2], Cohomologie galoisienne, Lecture Notes in Mathematics, vol. 5, Springer-Verlag, Berlin, [Sil] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, [ST] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), [Ste] J. Steenbrink, Limits of Hodge structures, Invent. Math. 31 (1975/76), no. 3, [Tay] R. Taylor, Galois representations, Ann. Fac. Sci. Toulouse Math. (6) 68

69 [TY] [Var] [Yos] [EGA4] [SGA4] [SGA4 1 2 ] [SGA5] [SGA7] 13 (2004), no. 1, R. Taylor and T. Yoshida, Compatibility of local and global Langlands correspondences, J. Amer. Math. Soc. 20 (2007), no. 2, Y. Varshavsky, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara, Geom. Funct. Anal. 17 (2007), no. 1, T. Yoshida, Weight spectral sequence and Hecke correspondence on Shimura varieties, Ph.D. thesis, Harvard University, A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas., Inst. Hautes Études Sci. Publ. Math. no. 20, 24, 28, 32. Théorie des topos et cohomologie étale des schémas, Lecture Notes in Mathematics, Vol. 269, 270, 305. P. Deligne, Cohomologie étale, Lecture Notes in Mathematics, Vol. 569, Springer-Verlag, Berlin. Cohomologie l-adique et fonctions L, Lecture Notes in Mathematics, Vol. 589, Springer-Verlag, Berlin. Groupes de monodromie en géométrie algébrique, Lecture Notes in Mathematics, Vol. 288, 340, Springer-Verlag, Berlin. 69

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec

Noether [M2] l ([Sa]) ) ) ) ) ) ( 1, 2) ) ( 3) K F = F q O K K l q K Spa(K, O K ) adc adc [Hu1], [Hu2], [Hu3] K A Spa(A, A ) Sp A A B X A X B = X Spec l Wel (Yoch Meda) Graduate School of Mathematcal Scences, The Unversty of Tokyo 0 Galos ([M1], [M2]) Galos Langlands ([Ca]) K F F q l q K, F K, F Fr q Gal(F /F ) F Frobenus q Fr q Fr q Gal(F /F ) φ: Gal(K/K)

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

非可換Lubin-Tate理論の一般化に向けて

非可換Lubin-Tate理論の一般化に向けて Lubin-Tate 2012 9 18 ( ) Lubin-Tate 2012 9 18 1 / 27 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 ( ) Lubin-Tate 2012 9 18 2 / 27 Lubin-Tate p 1 1 Lubin-Tate GL n n 1 Lubin-Tate ( ) Lubin-Tate 2012

More information

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv

( ) 1., ([SU] ): F K k., Z p -, (cf. [Iw2], [Iw3], [Iw6]). K F F/K Z p - k /k., Weil., K., K F F p- ( 4.1).,, Z p -,., Weil..,,. Weil., F, F projectiv ( ) 1 ([SU] ): F K k Z p - (cf [Iw2] [Iw3] [Iw6]) K F F/K Z p - k /k Weil K K F F p- ( 41) Z p - Weil Weil F F projective smooth C C Jac(C)/F ( ) : 2 3 4 5 Tate Weil 6 7 Z p - 2 [Iw1] 2 21 K k k 1 k K

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+

k + (1/2) S k+(1/2) (Γ 0 (N)) N p Hecke T k+(1/2) (p 2 ) S k+1/2 (Γ 0 (N)) M > 0 2k, M S 2k (Γ 0 (M)) Hecke T 2k (p) (p M) 1.1 ( ). k 2 M N M N f S k+ 1 SL 2 (R) γ(z) = az + b cz + d ( ) a b z h, γ = SL c d 2 (R) h 4 N Γ 0 (N) {( ) } a b Γ 0 (N) = SL c d 2 (Z) c 0 mod N θ(z) θ(z) = q n2 q = e 2π 1z, z h n Z Γ 0 (4) j(γ, z) ( ) a b θ(γ(z)) = j(γ, z)θ(z)

More information

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T SAMA- SUKU-RU Contents 1. 1 2. 7.1. p-adic families of Eisenstein series 3 2.1. modular form Hecke 3 2.2. Eisenstein 5 2.3. Eisenstein p 7 3. 7.2. The projection to the ordinary part 9 3.1. The ordinary

More information

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe 3 del Pezzo (Hirokazu Nasu) 1 [10]. 3 V C C, V Hilbert scheme Hilb V [C]. C V C S V S. C S S V, C V. Hilbert schemes Hilb V Hilb S [S] [C] ( χ(s, N S/V ) χ(c, N C/S )), Hilb V [C] (generically non-reduced)

More information

1

1 1 Borel1956 Groupes linéaire algébriques, Ann. of Math. 64 (1956), 20 82. Chevalley1956/58 Sur la classification des groupes de Lie algébriques, Sém. Chevalley 1956/58, E.N.S., Paris. Tits1959 Sur la classification

More information

1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,,

1. Γ, R 2,, M R. M R. M M Map(M, M) 3, Aut R (M). ρ : Γ Aut R (M) Γ. M R n, R, R ρ : Γ Aut R (M) GL n (R) := {g M n (R) det(g) R } 4. ρ Γ R R M.,,.,, I ( ) (i) l, l, l (ii) (Q p ) l, l, l (iii) Artin (iv). (i),(ii). (iii) 1. (iv),.. [9]. [4] L-,.. Contents 1. 2 2. 4 2.1. 4 2.2. l 5 2.3. l 9 2.4. l 10 2.5. 12 2.6. Artin 13 3. 15 3.1. l, l, l 15 3.2.

More information

日本数学会・2011年度年会(早稲田大学)・総合講演

日本数学会・2011年度年会(早稲田大学)・総合講演 日本数学会 2011 年度年会 ( 早稲田大学 ) 総合講演 2011 年度日本数学会春季賞受賞記念講演 MSJMEETING-2011-0 ( ) 1. p>0 p C ( ) p p 0 smooth l (l p ) p p André, Christol, Mebkhout, Kedlaya K 0 O K K k O K k p>0 K K : K R 0 p = p 1 Γ := K k

More information

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q

( ),, ( [Ka93b],[FK06]).,. p Galois L, Langlands p p Galois (, ) p., Breuil, Colmez([Co10]), Q p Galois G Qp 2 p ( ) GL 2 (Q p ) p Banach ( ) (GL 2 (Q 2017 : msjmeeting-2017sep-00f006 p Langlands ( ) 1. Q, Q p Q Galois G Q p (p Galois ). p Galois ( p Galois ), L Selmer Tate-Shafarevich, Galois. Dirichlet ( Dedekind s = 0 ) Birch-Swinnerton-Dyer ( L s

More information

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P

62 Serre Abel-Jacob Serre Jacob Jacob Jacob k Jacob Jac(X) X g X (g) X (g) Zarsk [Wel] [Ml] [BLR] [Ser] Jacob ( ) 2 Jacob Pcard 2.1 X g ( C ) X n P P 15, pp.61-80 Abel-Jacob I 1 Introducton Remann Abel-Jacob X g Remann X ω 1,..., ω g Λ = {( γ ω 1,..., γ ω g) C g γ H 1 (X, Z)} Λ C g lattce Jac(X) = C g /Λ Le Abel-Jacob (Theorem 2.2, 4.2) Jac(X) Pcard

More information

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c GL 2 1 Lie SL(2, R) GL(2, A) Gelbart [Ge] 1 3 [Ge] Jacquet-Langlands [JL] Bump [Bu] Borel([Bo]) ([Ko]) ([Mo]) [Mo] 2 2.1 H = {z C Im(z) > 0} Γ SL(2, Z) Γ N N Γ (N) = {γ SL(2, Z) γ = 1 2 mod N} g SL(2,

More information

q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom

q n/2 X H n (X Fq,et, Q l) Frobenius q 1/2 (Deligne, [D5]) X (I) (II) X κ open (proper )smooth X κ proper strictly semi-stable weight filtration cohom Weight filtration on log crystalline cohomology ( ) 1 κ κ X cohomology X H n (X) Grothendieck, Deligne weight yoga ([G], [D1], [D4]) 1.1. H n (X) filtrationp k H n (X) (k Z) (1) gr P k Hn (X) := P k H

More information

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X 2 E 8 1, E 8, [6], II II, E 8, 2, E 8,,, 2 [14],, X/C, f : X P 1 2 3, f, (O), f X NS(X), (O) T ( 1), NS(X), T [15] : MWG(f) NS(X)/T, MWL(f) 0 (T ) NS(X), MWL(f) MWL(f) 0, : {f λ : X λ P 1 } λ Λ NS(X λ

More information

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En

.5.1. G K O E, O E T, G K Aut OE (T ) (T, ρ). ρ, (T, ρ) T. Aut OE (T ), En OE (F ) p..5.. G K E, E V, G K GL E (V ) (V, ρ). ρ, (V, ρ) V. GL E (V ), En p 1. 1.1., 01 8 3, 57,,.. 1.., Gal(Q p /Q p ), 1. Wach,,. 1.3. Part I,,. Part II, Part III. 1.4.., Paé. Part 1. p.. p p.1. p Q p p (Q p p )... E Q p, E p Z p E, O E. O E E. E Q p, O E. v p : E Q Q E, v

More information

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo

Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo Siegel Hecke 1 Siege Hecke L L Fourier Dirichlet Hecke Euler L Euler Fourier Hecke [Fr] Andrianov [An2] Hecke Satake L van der Geer ([vg]) L [Na1] [Yo] 2 Hecke ( ) 0 1n J n =, Γ = Γ n = Sp(n, Z) = {γ GL(2n,

More information

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8)

2 Riemann Im(s) > 0 ζ(s) s R(s) = 2 Riemann [Riemann]) ζ(s) ζ(2) = π2 6 *3 Kummer s = 2n, n N ζ( 2) = 2 2, ζ( 4) =.3 2 3, ζ( 6) = ζ( 8) (Florian Sprung) p 2 p * 9 3 p ζ Mazur Wiles 4 5 6 2 3 5 2006 http://www.icm2006.org/video/ eighth session [ ] Coates [Coates] 2 735 Euler n n 2 = p p 2 p 2 = π2 6 859 Riemann ζ(s) = n n s = p p s s ζ(s)

More information

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p

Q p G Qp Q G Q p Ramanujan 12 q- (q) : (q) = q n=1 (1 qn ) 24 S 12 (SL 2 (Z))., p (ordinary) (, q- p a p ( ) p ). p = 11 a p ( ) p. p 11 p a p .,.,.,..,, 1.. Contents 1. 1 1.1. 2 1.2. 3 1.3. 4 1.4. Eisenstein 5 1.5. 7 2. 9 2.1. e p 9 2.2. p 11 2.3. 15 2.4. 16 2.5. 18 3. 19 3.1. ( ) 19 3.2. 22 4. 23 1. p., Q Q p Q Q p Q C.,. 1. 1 Q p G Qp Q G

More information

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p

Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara Sp(2, R) p Siegel modular forms of middle parahoric subgroups and Ihara lift ( Tomoyoshi Ibukiyama Osaka University 1. Introduction [8] Ihara 80 1963 Sp(2, R) p L holomorphic discrete series Eichler Brandt Eichler

More information

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P

Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, P Milnor 1 ( ), IX,. [KN].,. 2 : (1),. (2). 1 ; 1950, Milnor[M1, M2]. Milnor,,. ([Hil, HM, IO, St] ).,.,,, ( 2 5 )., Milnor ( 4.1)..,,., [CEGS],. Ω m, PC ( 4 5 )., 5, Milnor Milnor., ( 6 )., (I) Z modulo

More information

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1

E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 E1 (4/12)., ( )., 3,4 ( ). ( ) Allen Hatcher, Vector bundle and K-theory ( HP ) 1 (4/12) 1 1.. 2. F R C H P n F E n := {((x 0,..., x n ), [v 0 : : v n ]) F n+1 P n F n x i v i = 0 }. i=0 E n P n F P n

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib

Donaldson Seiberg-Witten [GNY] f U U C 1 f(z)dz = Res f(a) 2πi C a U U α = f(z)dz dα = 0 U f U U P 1 α 0 a P 1 Res a α = 0. P 1 Donaldson Seib ( ) Donaldson Seiberg-Witten Witten Göttsche [GNY] L. Göttsche, H. Nakajima and K. Yoshioka, Donaldson = Seiberg-Witten from Mochizuki s formula and instanton counting, Publ. of RIMS, to appear Donaldson

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17

平成 19 年度 ( 第 29 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 19 ~8 年月 72 月日開催 30 日 ) R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17 R = T, Fermat Wiles, Taylor-Wiles R = T.,,.,. 1. Fermat Fermat,. Fermat, 17, 400.. Descartes ( ) Corneille ( ), Milton ( ), Velázquez ( ), Rembrandt van Rijn ( ),,,. Fermat, Fermat, Fermat, 1995 Wiles

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. R-space ( ) Version 1.1 (2012/02/29) i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,. ii 1 Lie 1 1.1 Killing................................

More information

wiles05.dvi

wiles05.dvi Andrew Wiles 1953, 20 Fermat.. Fermat 10,. 1 Wiles. 19 20., Fermat 1. (Fermat). p 3 x p + y p =1 xy 0 x, y 2., n- t n =1 ζ n Q Q(ζ n ). Q F,., F = Q( 5) 6=2 3 = (1 + 5)(1 5) 2. Kummer Q(ζ p ), p Fermat

More information

Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets pr

Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets pr Langlands 1 1. Langlands p GL n Langlands [HT] The local Langlands conjecture is one of those hydra-like conjectures which seems to grow as it gets proved. ([HT], p.1) hydra [KP] Langlands Langlands Langlands

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) =

2018/10/04 IV/ IV 2/12. A, f, g A. (1) D(0 A ) =, D(1 A ) = Spec(A), D(f) D(g) = D(fg). (2) {f l A l Λ} A I D(I) = l Λ D(f l ). (3) I, J A D(I) D(J) = 2018/10/04 IV/ IV 1/12 2018 IV/ IV 10 04 * 1 : ( A 441 ) yanagida[at]math.nagoya-u.ac.jp https://www.math.nagoya-u.ac.jp/~yanagida 1 I: (ring)., A 0 A, 1 A. (ring homomorphism).. 1.1 A (ideal) I, ( ) I

More information

kb-HP.dvi

kb-HP.dvi Recent developments in the log minimal model program II II Birkar-Cascini-Hacon-McKernan 1 2 2 3 3 5 4 8 4.1.................. 9 4.2.......................... 10 5 11 464-8602, e-mail: fujino@math.nagoya-u.ac.jp

More information

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t e-mail: koyama@math.keio.ac.jp 0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo type: diffeo universal Teichmuller modular I. I-. Weyl

More information

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi 1 Surveys in Geometry 1980 2 6, 7 Harmonic Map Plateau Eells-Sampson [5] Siu [19, 20] Kähler 6 Reports on Global Analysis [15] Sacks- Uhlenbeck [18] Siu-Yau [21] Frankel Siu Yau Frankel [13] 1 Surveys

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T 0 2 8 8 6 3 0 0 Young Young [F] 0.. Young λ n λ n λ = (λ,, λ l ) λ λ 2 λ l λ = ( m, 2 m 2, ) λ = n, l(λ) = l {λ n n 0} P λ = (λ, ), µ = (µ, ) n λ µ k k k λ i µ i λ µ λ = µ k i= i= i < k λ i = µ i λ k >

More information

等質空間の幾何学入門

等質空間の幾何学入門 2006/12/04 08 tamaru@math.sci.hiroshima-u.ac.jp i, 2006/12/04 08. 2006, 4.,,.,,.,.,.,,.,,,.,.,,.,,,.,. ii 1 1 1.1 :................................... 1 1.2........................................ 2 1.3......................................

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) Carathéodory 10.3 Fubini 1 Introduction 1 (1) (2) {f n (x)} n=1 [a, b] K > 0 n, x f n (x) K < ( ) x [a % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2007.11.5 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

D 24 D D D

D 24 D D D 5 Paper I.R. 2001 5 Paper HP Paper 5 3 5.1................................................... 3 5.2.................................................... 4 5.3.......................................... 6

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15

R R P N (C) 7 C Riemann R K ( ) C R C K 8 (R ) R C K 9 Riemann /C /C Riemann 10 C k 11 k C/k 12 Riemann k Riemann C/k k(c)/k R k F q Riemann 15 (Gen KUROKI) 1 1 : Riemann Spec Z 2? 3 : 4 2 Riemann Riemann Riemann 1 C 5 Riemann Riemann R compact R K C ( C(x) ) K C(R) Riemann R 6 (E-mail address: kuroki@math.tohoku.ac.jp) 1 1 ( 5 ) 2 ( Q ) Spec

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

17 Θ Hodge Θ Hodge Kummer Hodge Hodge

17 Θ Hodge Θ Hodge Kummer Hodge Hodge Teichmüller ( ) 2015 11 0 3 1 4 2 6 3 Teichmüller 8 4 Diophantus 11 5 13 6 15 7 19 8 21 9 25 10 28 11 31 12 34 13 36 14 41 15 43 16 47 1 17 Θ 50 18 55 19 57 20 Hodge 59 21 63 22 67 23 Θ Hodge 69 24 Kummer

More information

( ) ( ) (B) ( , )

( ) ( ) (B) ( , ) () 2006 2 6 () 2006 2 6 2 7 7 (B) ( 574009, ) 2006 4 .,.. Introduction. [6], I. Simon (), J.-E. Pin. min-plus ().,,,. min-plus. (min-plus ). a, b R,, { a b := min(a, b), a b := a + b.. (R,, ) (, ). ( min-plus

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

73

73 73 74 ( u w + bw) d = Ɣ t tw dɣ u = N u + N u + N 3 u 3 + N 4 u 4 + [K ] {u = {F 75 u δu L σ (L) σ dx σ + dσ x δu b δu + d(δu) ALW W = L b δu dv + Aσ (L)δu(L) δu = (= ) W = A L b δu dx + Aσ (L)δu(L) Aσ

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

2016 Course Description of Undergraduate Seminars (2015 12 16 ) 2016 12 16 ( ) 13:00 15:00 12 16 ( ) 1 21 ( ) 1 13 ( ) 17:00 1 14 ( ) 12:00 1 21 ( ) 15:00 1 27 ( ) 13:00 14:00 2 1 ( ) 17:00 2 3 ( ) 12

More information

untitled

untitled Lie L ( Introduction L Rankin-Selberg, Hecke L (,,, Rankin, Selberg L (GL( GL( L, L. Rankin-Selberg, Fourier, (=Fourier (= Basic identity.,,.,, L.,,,,., ( Lie G (=G, G.., 5, Sp(, R,. L., GL(n, R Whittaker

More information

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1 014 5 4 compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) 1 1.1. a, Σ a {0} a 3 1 (1) a = span(σ). () α, β Σ s α β := β α,β α α Σ. (3) α, β

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

コホモロジー的AGT対応とK群類似

コホモロジー的AGT対応とK群類似 AGT K ( ) Encounter with Mathematics October 29, 2016 AGT L. F. Alday, D. Gaiotto, Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010), arxiv:0906.3219.

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2. A A 1 A 5 A 6 1 2 3 4 5 6 7 1 1.1 1.1 (). Hausdorff M R m M M {U α } U α R m E α ϕ α : U α E α U α U β = ϕ α (ϕ β ϕβ (U α U β )) 1 : ϕ β (U α U β ) ϕ α (U α U β ) C M a m dim M a U α ϕ α {x i, 1 i m} {U,

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h 2011 9 5 1 Lie 1 2 2.1 (category) (object) a, b, c, a b (arrow, morphism) f : a b (2.1) f a b (2.2) ( 1) f : a b g : b c (composite) g f : a c ( 2) f f a b g f g c g h (2.3) a b c d (2.4) h (g f) = (h

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1,

平成 30 年度 ( 第 40 回 ) 数学入門公開講座テキスト ( 京都大学数理解析研究所, 平成 30 ~8 年月 72 月日開催 30 日 [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, [6] 1 4 A 1 A 2 A 3 l P 3 P 2 P 1 B 1 B 2 B 3 m 1 l 3 A 1, A 2, A 3 m 3 B 1, B 2, B 3 A i 1 B i+1 A i+1 B i 1 P i i = 1, 2, 3 3 3 P 1, P 2, P 3 1 *1 19 3 27 B 2 P m l (*) l P P l m m 1 P l m + m *1 A N

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹

Îã³°·¿¤Î¥·¥å¡¼¥Ù¥ë¥È¥«¥êto=1=¡á=1=¥ë¥�¥å¥é¥¹ (kaji@math.sci.fukuoka-u.ac.jp) 2009 8 10 R 3 R 3 ( wikipedia ) (Schubert, 19 ) (= )(Ehresmann, 20 ) (Chevalley, 20 ) G/P: ( : ) W : ( : ) X w : W X w W G: B G: Borel P B: G/P: 1 C n ( ) Fl n := {0 V

More information

Dynkin Serre Weyl

Dynkin Serre Weyl Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................

More information

2

2 III ( Dirac ) ( ) ( ) 2001. 9.22 2 1 2 1.1... 3 1.2... 3 1.3 G P... 5 2 5 2.1... 6 2.2... 6 2.3 G P... 7 2.4... 7 3 8 3.1... 8 3.2... 9 3.3... 10 3.4... 11 3.5... 12 4 Dirac 13 4.1 Spin... 13 4.2 Spin

More information

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like

(2) Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [2], [13]) Poincaré e m Poincaré e m Kähler-like 2 Kähler-like () 10 9 30 1 Fisher α (α) α Fisher α ( α) 0 Levi Civita (1) ( 1) e m (e) (m) ([1], [], [13]) Poincaré e m Poincaré e m Kähler-like Kähler-like Kähler M g M X, Y, Z (.1) Xg(Y, Z) = g( X Y, Z) + g(y, XZ)

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

On a branched Zp-cover of Q-homology 3-spheres

On a branched Zp-cover of Q-homology 3-spheres Zp 拡大と分岐 Zp 被覆 GL1 表現の変形理論としての岩澤理論 SL2 表現の変形理論 On a branched Zp -cover of Q-homology 3-spheres 植木 潤 九州大学大学院数理学府 D2 December 23, 2014 植木 潤 九州大学大学院数理学府 D2 On a branched Zp -cover of Q-homology 3-spheres

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull Feynman Encounter with Mathematics 52, 200 9 [] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull. Sci. Math. vol. 28 (2004) 97 25. [2] D. Fujiwara and

More information

Twist knot orbifold Chern-Simons

Twist knot orbifold Chern-Simons Twist knot orbifold Chern-Simons 1 3 M π F : F (M) M ω = {ω ij }, Ω = {Ω ij }, cs := 1 4π 2 (ω 12 ω 13 ω 23 + ω 12 Ω 12 + ω 13 Ω 13 + ω 23 Ω 23 ) M Chern-Simons., S. Chern J. Simons, F (M) Pontrjagin 2.,

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona Macdonald, 2015.9.1 9.2.,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdonald,, q., Heckman Opdam q,, Macdonald., 1 ,,. Macdonald,

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18

A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18 2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1

More information

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University

ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University ALGEBRA I Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 8 8 1 9 9 1 10 10 1 E-mail:hsuzuki@icu.ac.jp 0 0 1 1.1 G G1 G a, b,

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information