福大紀要 02730816/教育科学 太田 氏家

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "福大紀要 02730816/教育科学 太田 氏家"

Transcription

1

2

3

4

5

6

7

8 πνιξ

9

10

11

12

13

14

15

16

17

18

組N

組N 2 421 @0836532028 88 202 14 38 70 25 3 21 21 4 π 20 12 21 01 02 5 6 7 21 300 100 50 100 1 0839333188 1 0839213090 034145 040176 065 8 9 山口県の中小企業 10 11 128 0836831403 41 19 10839222606 21 6020 12 13 60

More information

34号 目 次

34号 目 次 1932 35 1939 π 36 37 1937 12 28 1998 2002 1937 20 ª 1937 2004 1937 12 º 1937 38 11 Ω 1937 1943 1941 39 æ 1936 1936 1936 10 1938 25 35 40 2004 4800 40 ø 41 1936 17 1935 1936 1938 1937 15 2003 28 42 1857

More information

<4D F736F F D EA98DECB2DDCBDFB0C0DEDDBDA5B1C5D7B2BBDEB082F A282BDBDCBDFB0B6B082CC666F82C6B2DDCBDFB0C0DEDDBD82CC91AA92E85B8CF68A4A5D732E648163>

<4D F736F F D EA98DECB2DDCBDFB0C0DEDDBDA5B1C5D7B2BBDEB082F A282BDBDCBDFB0B6B082CC666F82C6B2DDCBDFB0C0DEDDBD82CC91AA92E85B8CF68A4A5D732E648163> 166Hz 167Hz 168Hz Z Z X RX = G X C = 2 π f 1 Z () 2 2 Z RLS L = ( H ) RLS 2 π f 2 R 2 CP ( F) R CP Z X Z X Z X = e 2 1 + e 2 2 e2 = e 1 2 2 4 3. Z = e + X 1 e2 e2 1 e1 RX Z X = = Za = Z X RX Zb

More information

untitled

untitled Y U Z A T O W N P U B L I C R E L A T I O N S 1300 1310 1330 61312006141200 6141300 612 10001530 1 200961 2 1127 200961 3 w r e q i!0 o u 200961 4 t y!3 1725880 5 200961!4!1!2 200961 6 Youth President's

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

広 報 平成28年 人口と世帯(7/1現在) 13,383人( 68) 6,288人( 26) 女 7,027人( 42) 世 帯 6,127戸( 10) 総人口 8 男 ( )内は前月比 518 賢くなりますように 7月24日 乗台寺文殊様 賢くなりますように 7月24日 賢くなりますように 7月24日 乗台寺文殊様 乗台寺文殊様 賢くなりますように 7月24日 乗台寺文殊様 A B C

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

and καὶ Α καὶ Β A B both also 3 auto- iste D in orthan asso forwhen thatso that

and καὶ Α καὶ Β A B both also 3 auto- iste D in orthan asso forwhen thatso that 1. 2. 3. 4. ὁ, ἡ, τό ὅς, ἥ, ὅ αὐτός, -ή, -ό καί 5. 6. 7. 8. δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 9. 10. 11. 12. ἤ ἐν μὲν... δέ γάρ 13. 14. 15. 16. οὐ, οὐκ, οὐχ μή ὡς τε and καὶ Α καὶ Β A B both also 3

More information

andκαὶακαὶβa B bothalso 3 even auto- iste D in orthan asso forwhen thatsothat (G) (G) (A) (A) (G) (G) (D) (A) (A) (A) (G) (A) + subj. (G) (G) (D) (D)

andκαὶακαὶβa B bothalso 3 even auto- iste D in orthan asso forwhen thatsothat (G) (G) (A) (A) (G) (G) (D) (A) (A) (A) (G) (A) + subj. (G) (G) (D) (D) 1. ὁ,ἡ,τό 2. ὅς,ἥ,ὅ 3. αὐτός, -ή, -ό 4. καί 5. δέ 6. τίς, τί 7. τις, τι 8. οὗτος, αὕτη, τοῦτο 9. ἤ 10. ἐν 11. μὲν... δέ 12. γάρ 13. οὐ,οὐκ,οὐχ 14. μή 15. ὡς 16. τε 17. εἰς 18. ἐπί 19. κατά 20. ἐγώ 21.

More information

εἰς ἐπί κατά ἐγώ ἡμεῖς πρός ἐ ᾱν διά ἀλλά ἐκ,ἐξ περί ὅστις,ἥτις,ὅτι ἄν σύ ῡμεῖς ἀνά

εἰς ἐπί κατά ἐγώ ἡμεῖς πρός ἐ ᾱν διά ἀλλά ἐκ,ἐξ περί ὅστις,ἥτις,ὅτι ἄν σύ ῡμεῖς ἀνά 1. 2. 3. 4. ὁ,ἡ,τό ὅς,ἥ,ὅ αὐτός, -ή, -ό καί 5. 6. 7. 8. δέ τίς, τί τις, τι οὗτος, αὕτη, τοῦτο 9. 10. 11. 12. ἤ ἐν μὲν... δέ γάρ 13. 14. 15. 16. οὐ,οὐκ,οὐχ μή ὡς τε 17. 18. 19. 20. εἰς ἐπί κατά ἐγώ 21.

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

XI 2 (KOMIYAMA, Hirosh) 2004 4 21 1 1.1 1 20 silent spring 1970 1 1.2 1999 2000 2050 2030 2050 2050 1.3 3 20 2 2 20 2.1 20 21 20 20 20 18 60 2000 60 3.5 7.5 1900 7.5 20 20 500 60 20 19 20 3.5 7.5 20 30

More information

INNOVATION NAVIGATOR 研究シーズ集 2015 東京理科大学山口東京理科大学諏訪東京理科大学 Tokyo University of Science λ π π δ α http://www.tus.ac.jp/ura/

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

202mk5_OM-J_RevD

202mk5_OM-J_RevD D01053901D 202@^ Double Auto Reverse Cassette Deck 2 TASCAM 202MKV á á á è í ì ì ó í í è ì ó í á TASCAM 202MKV 3 @V @V 4 TASCAM 202MKV TASCAM 202MKV 5 6 TASCAM 202MKV 1 2 3 4 5 6 7 8 9 0 q w e r ø t º

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

[FX11]シリーズカタログ

[FX11]シリーズカタログ May.1.218 Copyright 218 HIROSE ELECTRIC CO., LTD. All Rights Reserved. ICR (db) 6 5 4 3 2 ICR 3mm(Without GND) 1 ICR IEEEspec 1 2 3 4 5 6 7 8 9 1 Frequency (GHz) Z (Ohm) 12 115 11 15 1 95 9 Impedance 3mm(Without

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

2

2 th 37 ICh Theoretical Examination - - - - 5 - - : - ( ): ( ) - : 279 - - - - - - - G D L U C K 1 2 1 amu = 1.6605 10-27 kg N = 6.02 10 23 mol -1 k = 1.3806503 10-23 J K -1 e = 1.6022 10-19 C F = 9.6485

More information

( 工 ~ ~m-j ~ ~ndoped =~ Pl サすく 2π ケ l k ~)γ(1+3z (at~/.) ~~i Mn(a~~/o) ~ ~~,~ ここで採用した T m (l~ )AJ~. J と ()' を適当なパラメータにとると, 式 M の α'm=aj~ を 温度 T の関数で表すことができる O ここでは Snl~xMnxTe 系の ~ 見積もられる O 一方, われわれの磁性半導体は,

More information

16 4 1 2003 JASS5 1 16 4 1 2 16 4 1 1999 90 90 JASS5RC 180 135 90 RC -1 (D) JASS5 L2 90 2/3 2030-1 JASS5 JASS5 JASS5 JASS5 JASS5 JASS5 90 JASS5 RC RC JASS5 JASS5 JASS5 190 RC JASS5 2 JASS5 (L22/3) 3 (2)

More information

CMP Technical Report No. 4 Department of Computational Nanomaterials Design ISIR, Osaka University 2 2................................. 2.2......................... 2 3 3 3................................

More information

,

, 2 ver 1.0 (2016 5 23 ) (Neumann and Morgenstern 1953=2009:136). 1 S 2. S 2. 1. 1, (http://www.sal.tohoku.ac.jp/ hamada/ ) 1 , 2 1 2.1 2 2, 1 0, 0 0, 0 1, 2 1: 2 2 4 2 1 3 2.2 1 ( ). 2 1. 2. 1. (, ) 最初の状態

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

J.qxd

J.qxd IQ 2 I/Q IQ IQ IQ IQ 3 IQ 4 5 6 I Q 7 IQ 0 deg 8 IQ I QI I Q Q Q Q { I Q { I I 9 I/QI/QI/Q IQ IQ I/Q Q Σ I IQ I Q 10 I/Q I/Q I/Q IQ IQ 11 π 12 01 00 11 10 13 I/Q I QI I/Q IQ 14 π QI π I/QI Q IQ IQ π 15

More information

.

. . ~ ~ か " の設問で r3~4 年 J 信事圃圃 ~~ 圃 私 え ~!! だって牛いるんじゃないの?J え ~ マジで ~!J と一瞬 会場がどよめきますが r あい ~J わる t 皮 ~ 業も酪農も全くの素人だが あえて知らない ~ るつもりなのか質問すると とりあえず 2~ 平成元年の設立より 新規就農 8 組 13 名 酪 ~ 後 を増やしたり 広域派遣という 1f~

More information

On a branched Zp-cover of Q-homology 3-spheres

On a branched Zp-cover of Q-homology 3-spheres Zp 拡大と分岐 Zp 被覆 GL1 表現の変形理論としての岩澤理論 SL2 表現の変形理論 On a branched Zp -cover of Q-homology 3-spheres 植木 潤 九州大学大学院数理学府 D2 December 23, 2014 植木 潤 九州大学大学院数理学府 D2 On a branched Zp -cover of Q-homology 3-spheres

More information

1 ( ) 1 4 5 1 J. L. eiberg (ed.) rchimedis Opera Omnia cum Commentariis utocii (3 vols.) Teubner 18801881 2 J. L. eiberg (Iterum didit). S. Stamatis (Corrigenda diecit) rchimedis Opera Omnia cum Commentariis

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

Title 菌株保存と分類の話題 Author(s) 阿部, 歩 Citation 北海道大学大学院農学研究科技術部研究 技術報告, 12: 11-15 Issue Date 2005-03 DOI Doc URLhttp://hdl.handle.net/2115/35477 Right Type bulletin Additional Information File Information 12_p11-15.pdf

More information

æ ,439 4, ,

æ ,439 4, , Title 蘇南地域における農村企業の展開と出稼ぎ労働者 : 江村の追跡調査 (7) Author(s) 朴, 紅 ; 坂下, 明彦 ; 姚, 富坤 Citation 北海道大学農經論叢, 67: 83-95 Issue Date 2012-03-31 DOI Doc URLhttp://hdl.handle.net/2115/49172 Right Type bulletin (article)

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描

g µν g µν G µν = 8πG c 4 T µν (1) G µν T µν G c µ ν 0 3 (1) T µν T µν (1) G µν g µν 2 (1) g µν 1 1 描 419 特集 宇宙における新しい流体力学 - ブラックホールと SASI- SASI Study of SASI in Black Hole Accretion Flows by Employing General Relativistic Compressive Hydrodynamics Hiroki NAGAKURA, Yukawa Institute for Theoretical Physics,

More information

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ Complete Ancient Greek 2010 (2003 ) October 15, 2013 * 25 04-23 0 ἅ ὅς 03 05(06) 0 ἄβιος,-ον, 15 99-02 0 ἄβροτον ἄβροτος 15 99-02 0 ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυσσος

More information

to~ard ~19 の数詞の不規則きである ll, 12 は, 日本語では 10 進法にもとづく算用数字の記数法そのままに わが国では 乗法九九は小学校 2 年生の後半のわずか 1~2 か月 文部省の学習指導要領によれば約 20 つけている児童の割合は 4O ~50% というほぼ一致した結果がでている とすれば このあたりがアメリカ 乞 αi~ ンり

More information

3章 問題・略解

3章 問題・略解 S S W R S O( l) O( ) c Jg g J Jg S R J 7. K.9 JK S W S R S JK S S R J 7. K.9JK 4 (a) -Tice 7.K T ice T N 77 K S R.9 JK 4. JK T T ice N.6JK S W S R S JK S S.6JK R (b) S R JK S.6 JK T T ice N 6 O( c) O(

More information

text_0821.dvi

text_0821.dvi Team DIANA 2007 8 21 2 ( ) ( ) Team DIANA 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 Janosfalvi Zsuzsa 1 1 3 1 5 1.1.................................. 5 1.2................................. 5 1.3.....................................

More information

untitled

untitled ()(H) () / (havng) W W mg ρg d (.) m ρ d d () ( d ) F ρg (.) ρg m () G B :m :W W mg ρg m ρ (.3) η ( d η) F ρg ( d η) (.4) G B :m :W η F()- F()- η ρ ρ d F W d d m g g η ρ ρ d d m g g (.5) a (.5) Laplac

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

圃 ~-~ 里 : 二一一干の ー 思 ~---~ ~ ~ ~ ~ ~ ~

圃 ~-~ 里 : 二一一干の ー 思 ~---~ ~ ~ ~ ~ ~ ~ 圃 ~-~ 里 : 二一一干の ー 思 ~---~ ~ ~ ~ ~ ~ ~ 37 扇 同夜副 1 而一同 9-~π 百一面, 訂刊笈訂一一一一一一一一一一 ï8 誠一雨 r~3ö: 23 面 ~29-1rä6 阪両一一一一一 ~ lò~oo 一 ~~2ïT4 日 575. 町 1 岡両 I 扇 ----33~33 嗣一一一一一一一一一一一一 ---~2f6í 6- 暫 ~ ~ ~ ~ ~ 常語海域におけるマアナゴの全長階級

More information

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

新年あけましておめでとうございます ~ 併 月園邑,~~ 圃 可圃 ii ノ司邑ノ司 ~"" 墨./'B../ 可置 ~ ー電量 ν 可語 可 s.' 弓言忌弓君主 J 雪量忌 j" 量 v, 圃 "-^ J 可圃./'1& 月 ~ 吉富也 J 宅 E 邑舟重量 /' 吾孟 J 司 ~ 宅邑 A " 可 v 望書 " 可 æi... 官主弓 '" ~ は 2 月 16 日 ~3 月 15 日 贈与税の申告は

More information

プラズマ核融合学会誌1月【83-2】/講座2-3

プラズマ核融合学会誌1月【83-2】/講座2-3 2.3 Plasma Flow Measurements Spectroscopic Methods KADO Shinichiro author s e-mail: kado@q.t.u-tokyo.ac.jp Czerny-Turner GN: grating normalmn: mount normalfn: facet normal. f L L Fig. 3 μ μ in-situ μ

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

極限

極限 si θ = ) θ 0 θ cos θ θ 0 θ = ) P T θ H A, 0) θ, 0 < θ < π ) AP, P H A P T PH < AP < AT si θ < θ < ta θ si θ < θ < si θ cos θ θ cos θ < si θ θ < θ < 0 θ = h θ 0 cos θ =, θ 0 si θ θ =. θ 0 cos θ θ θ 0 cos

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

.~ 佑天堂行幸記念碑メ国 ( 牛 λ 市 ) yasuh isa.u ~hb. 祉センターで 10 時 ~ 15 時まで行い その頃は発病から 7 ~ 8 年立って に病院に行き 2~3 日精密検査をす ります 年に 3~4 回の講演会 交 ~2 回 / 週 ~r~ グラク ν スミスクライ >/1. 研究に基盤.. ぐ tit-w をリ-f"T

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A 7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable

More information

逝去会員 一 6 ~7 ' 1O~ 1l " 1 2~ 1 3 ' 1 5~ 1 7 すいどうばし.... H..... H.. 19~24 会員住所変更 一一 24 ~ 25

逝去会員 一 6 ~7 ' 1O~ 1l  1 2~ 1 3 ' 1 5~ 1 7 すいどうばし.... H..... H.. 19~24 会員住所変更 一一 24 ~ 25 逝去会員 一 6 ~7 ' 1O~ 1l " 1 2~ 1 3 ' 1 5~ 1 7 すいどうばし.... H..... H.. 19~24 会員住所変更...... 一一 24 ~ 25 とき昭和 53 年 6 月 11 日 ( 日 午後 1 時 ~3 時 30 分 30~ 30~ 14 50~ 17 30 ~ 12 OO~ 17 30~ 30~ 1 4 20~ 17 30~ 30~ 30

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

ms.dvi

ms.dvi ( ) 2010 11 21 1 review Onsager [1] 2 2 1 1 PPM 2010-09 図 1: 実験装置の図 写真中央にある円筒形の容器が超電導コイルで囲まれた真空 容器で この中に電子を閉じ込める 左側の四角い箱の中には光学系が設置されて おり 電子の像を箱左端の CCD カメラへ導く役割を担う このようにして超電導マ グネットから CCD カメラを遠ざけないと 強磁場の影響を受け正しい撮像が行え

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

RIMS Kôkyûroku Bessatsu B32 (2012), (Iwasawa invariants of rea abeian number fieds with prime power conductors) By (Keiichi Komatsu), (Takashi

RIMS Kôkyûroku Bessatsu B32 (2012), (Iwasawa invariants of rea abeian number fieds with prime power conductors) By (Keiichi Komatsu), (Takashi Tite 素数巾導手実アーベル体の岩澤不変量 (Agebraic Number Theory and Reated Topics 2010) Author(s) 小松, 啓一 ; 福田, 隆 ; 森澤, 貴之 Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2012), B32: 105-124 Issue Date 2012-07 URL http://hd.hande.net/2433/196246

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

15_15KEK

15_15KEK 25, Nov. 24th - - T. Hyodo, Int. J. Mod. Phys. A 28, 3345 (23) T. Hyodo, Phys. ev. Lett., 322 (23) - - - Λ(45) Y. Kamiya, T. Hyodo, arxiv:59.46 [hep-ph] K or N 2 イントロダクション ハドロンの構造とエキゾチック状態 ハドロンの分類 観測されているハドロン

More information

BIS P ee e e e e

BIS P ee e e e e BIS BIS P ee e e e e e r r e r r/e e r e r r e r ep rme K me K r/e e Pme K d /de em/p 1 em/p m/p e e em/p e r r ep r me K e e m/ P r m/ P r m/p e e Galbraith, J. K Money : Where It Came, Where It Went,

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題

2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題 1 SK-I 大気ニュートリノにおける ニュートリノ振動の発見 石塚正基 ( 東京工業大学 ) 2016 年 2 月 20 日 第 29 回宇宙ニュートリノ研究会 東京大学宇宙線研究所 2 内容 大気ニュートリノ スーパーカミオカンデ ニュートリノ振動の発見 検証 今後のニュートリノ振動の課題 3 大気ニュートリノ 大気ニュートリノ生成 From SK website p π µ + ν µ e +

More information

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h]

Microsoft PowerPoint - ‚æ3‘Í [„Ý−·…‡†[…h] 第 3 章変形と理論強度 目的 弾性変形および塑性変形に関し, 原子レベルからの理解を深める. 3. 弾性変形 (elastic defomation) 3.. 原子間に作用する力 3.. ポテンシャルエネルギー 33 3..3 フックの法則 3..4 弾性率の温度依存性 3..5 弾性変形時のポアソン比 3..6 理論強度 3. 塑性変形 (plastic defomation) 3.. すべり

More information

金融不安・低金利と通貨需要 「家計の金融資産に関する世論調査」を用いた分析

金融不安・低金利と通貨需要  「家計の金融資産に関する世論調査」を用いた分析 IMES DISCUSSION PAPER SERIES 金融不安 低金利と通貨需要 家計の金融資産に関する世論調査 を用いた分析 しおじえつろう ふじきひろし 塩路悦朗 * 藤木 裕 ** Discussion Paper No. 2005-J-11 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 日本銀行金融研究所 103-8660

More information

ヘ ~ 望者 J'i-~~ l~é (7) 役 ~ÍJJ (7) 終 ~ E 富小 E 霊 ト 京都洛 V~ の正佼に 48 車! の家族がつくったコーポラティフ íj 宅 '1nU1 'L~ 村 7~:~fì '1' 駐の防段 Ji;~Jllo (T33322; アのみ I)~ 唾互 ~ ~,4-..!ê.l 吉宮 ~ はと台!:?-r~ ~ ν 勾

More information

グラフを作成

グラフを作成 Microsoft Office を使ってグラフを作成する方法について 一例です 操作ができなかったら色々試してください 山際 1 グラフ用紙に手書きでグラフを書いた場合の利点 (1) 副目盛があるので プロットした点の座標を確認しやすい (2) 上付きや下付きの文字 分数を書きやすい (3) データ点を結んで線を引くときに 全体の傾向を正しく認識しやすい 2 Office を使って書いたグラフの欠点

More information

~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ Title サブゼミ 光で探る物質の電子状態 テキスト ( 第 54 回物性若手夏の学校 (2009 年度 ), 講義ノート ) Author(s) 岡村, 英一 Citation 物性研究 (2010), 93(6): 863-880 Issue Date 2010-03-05 URL http://hdl.handle.net/2433/169257 Right Type Departmental

More information

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography)

176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive evaluation:qnde) (1) X X X X CT(computed tomography) B 1) B.1 B.1.1 ( ) B.1 1 50 100 m B.1.2 (nondestructive testing:ndt) (nondestructive inspection:ndi) (nondestructive evaluation:nde) 175 176 B B.1: ( ) ( ) ( ) (2 2 ) ( ) ( ) ( ) (quantitative nondestructive

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

( ) p.2/70

( ) p.2/70 p.1/70 ( ) p.2/70 ( p.3/70 (1)20 1970 cf.box and Jenkins(1970) (2)1980 p.4/70 Kolmogorov(1940),(1941) Granger(1966) Hurst(1951) Hurst p.5/70 Beveridge Wheat Prices Index p.6/70 Nile River Water Level p.7/70

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

@08460207ヨコ/立花 220号

@08460207ヨコ/立花 220号 παιδεραστεία παιε ραστεύωε ράω ιλέωιλία ε ράω by ιλέω ιλητόν ιλητόν τελεὶα ιλία μέσον α κρότη θεωρειν definition John M. Cooper morally good (in some respect, in some degree) character friendship Cooper

More information

元素戦略アウトルック 材料と全面代替戦略

元素戦略アウトルック 材料と全面代替戦略 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 2.2.4 スカンジウム ジウム内包フラーレンに関する研究 などがある スカンジウムはレアメタルの中でも特に希少な金属で 製 錬のプロセス技術を確立すること自体が研究課題である プ ロセスに関する研究は東京大で行われている その他 スカンジウム錯体を用いた触媒への応用 スカン 24 2.2.5

More information

1: DTS r 1, r 2 v ρ(x) = π(r1 2 r2) 2 dr dt 1 v x (2) t=x/v DTS [2] wt% KCl %/ 2 3 5wt% NaCl 3wt% ( ) 2 45 NaCl 300Hz 4-1.3%/ [2]

1: DTS r 1, r 2 v ρ(x) = π(r1 2 r2) 2 dr dt 1 v x (2) t=x/v DTS [2] wt% KCl %/ 2 3 5wt% NaCl 3wt% ( ) 2 45 NaCl 300Hz 4-1.3%/ [2] 5 2011 12 14 Distributed temperature sensor (DTS) technology is used widespreadly among many applications, such as temperature monitoring in plant engineering. The author has developped a novel DTS, capable

More information

河川中・下流域の河道地形

河川中・下流域の河道地形 7 * River Configuraion in Middle-Lower Reach of River Bain Hirohi TAKEBAYASHI, Facul of Engineering, Univeri of Tokuhima 1 1 (a (b 1 4 3 1 *770-8506 -1 E-mail: akeh@ce.okuhima-u.ac.jp 5 3 6 km 7 km 8.1

More information

FIG. 3. Color Absorption images of 171 Yb atoms a and 174 Yb atoms b in the fermion-boson mixture trapped in the crossed FORT. Optical density increas

FIG. 3. Color Absorption images of 171 Yb atoms a and 174 Yb atoms b in the fermion-boson mixture trapped in the crossed FORT. Optical density increas FIG. 3. Color Absorption images of 171 Yb atoms a and 174 Yb atoms b in the fermion-boson mixture trapped in the crossed FORT. Optical density increases from red to blue. Blue areas near the center of

More information

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>

<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D> 単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/

More information

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord -K + < qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading order (NLO) NLO (low energy constant,lec) χ I = I

More information

FinePix S5000 使用説明書

FinePix S5000 使用説明書 BL00260-101(2) 1 2 2 3 B p y S J B? m,. / N M < > e d x b d c n f f j k h D * + A j G z B r r 4 6 F 5 B o i T t t p u u U 3 e y y y y y y y y y 4 x x p x x x x x x x x x x x x 5 6 abdc d c 7 1 1 2! 3!

More information

Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T (

Hsiao (2003, 6 ) Maddala, Li, Trost and Joutz (1997) Hsiao and Pesaran (2004) 4.2 y it = γy it 1 + x itβ + ε it i = 1, 2,..., N t = 1, 2,...T ( 2004 1 4 4.1 Balestra and Nerlove (1966) 1960 1980 (GMM) Arellano and Bond (1991) Arellano (2003) N T N T Smith and Fuerter (2004) 1 (the random coefficient model) 1 1995 2001 Singer and Willett (2003

More information

,'~;I.

,'~;I. Title 雪崩発生機構の考察 Author(s) 遠藤, 八十一 Citation 低温科學. 物理篇 = Low temperature science Physical sciences, 23: 75-86 Issue Date 1965-03-30 DOI Doc URLhttp://hdl.handle.net/2115/18022 Right Type bulletin Additional

More information

機関誌「救急救命」

機関誌「救急救命」 ~ ~ 極 00 ~ 1 年目 (1998.5~1999 刈輔 : 1999.5~2000 訓 : 3 年巨 (2000.5~2001 却 ~ い制限理主主 urn 越監 γ 判 J.lJ 請や 同母番地取 ii\iñ.lj

More information

untitled

untitled JPEG yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka u.ac.jp/member/yoshi/ (Computer Graphics: CG) (Virtual/Augmented(Mixed) Reality: VR AR MR) (Computer Graphics: CG) (Virtual/Augmented(Mixed)

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information