学習内容と日常生活との関連性の研究-第2部-第6章

Size: px
Start display at page:

Download "学習内容と日常生活との関連性の研究-第2部-第6章"

Transcription

1 378

2 379

3 10% 10%10% 10% 100% 380

4 381

5 2000 BSE CJD CJD CJD

6

7 384

8 385

9 GRS X,Y,Z X,Y,Z X,Y,Z X(N) cos() cos() Y(N) cos() sin() ZN+(1e 2 ) sin() e 2 f 2f Na1e 2 sin 2 () m GRS80 f a m GRS80 a f[ ] 386

10 (2004) CD-ROM Web (2002) 387

11 GPS GPSGlobal Positioning System 1,000 GPS GPS xyz iabc jxyz L = ( x j A) + ( y j B) + ( z j C) + c dti + c dt j L c dti dtj LA2 A1 LA2 B2 xyz GPS km mm cm 388

12 A B LA2 LA1 LB1 LB2 xyz - (xyz) GPS (2001) GPS GPS pp (2003) GPS GPS pp

13 II GPS 1 COS GPS 390

14 N () 391

15 GPS GPSGlobal Positioning System GPS GPS GPS GPS xyz dt ABC L c ( x A) + ( y B) + ( z C) + c dt L = m m 24 GPS GPS 392

16 A2B2C2 A3B3C3 L2 L3 A1B1C1 L1 L4 A4B4C4 xyz (xyz) dt (2001) GPS GPS pp (2003) GPS GPS pp

17 394

18

19 396

20 (1) (2) (3) 397

21 398

22 LCR LCR 399

23 400

24 401

25 402

26 403

27 A A = A A 0.9 α A A A n 0 = A1 A0 = A2 A0 = A α = A 0.9 α = A ( 1 n 0.9 α ) A 0 3 A α 0.9 α A A = A A 1 2 = A A = A A n = A ( 1 β ) ( 1 β ) = A0 ( 1 β ) ( 1 β ) = A0 ( 1 β ) ( 1 β ) n A 404

28 URL:http://www.taxanswer.nta.go.jp/ URL: 405

29 406

30 407

31 W [t] L [t/year] D [t/year] M [t] C [t/t]t MCD t L D = dm dt M = C W D C k D / W = k C dc / dt = L / W k C b C = L / k W 1 b exp kt { ( )} { ( )} 408

32 L [t/year] W [t] M [t] C [t/t] D [t/year] C () t () 409

33 A B A B Pfd B A A T T 0 P dp dp = ( 1 P) λ dt = λ dt 1 P ( ) T λt log e ( 1 P) = λ dt P = 1 e λt ( λ) 0 1 P 1 = λt 2 410

34 2 3 n x x x x x e = ! 2! 3! n! e = ( x = 1) = ! 2! 3! n! λ 1 e x λx 411

35

36

37 1, ,

38 1, , , , (2001) pp

39 ( ) ( 4 ) ( ) =

40 417

41 NC 1952 NC: Numerical Control NC 418

42 419

43 B A r ax,ay,az B r = bx,by,bz A r B r = A B cos 420

44 421

45 422

46 423

47 424

48 425

49 426

50 [mm] 427

51 r r r a = ( a1, a 2 ), b = ( b1, b2 ) a b r = a1b1 + a2b2 428

52 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6 429

53 430

54 2 431

55 A B C () () A B C () A B C () A B C a a a a a a a a a w1 w w2 = λ w w3 w w1w2w3 w1w2w =

56 a a a a a a a a a a a a a a a a = = = = = = λ λ λ λ b a b a b a b a

57 434

58 [-] [g] 435

59 436 = (0) 1 (0) 21 (0) 11 M M X n X X = (1) 1 (1) 21 (1) 11 M M A X X X n = = (2) 1 (2) 21 (2) 11 M M M A A A X X X n ( ) = A I A A A I m L ( ) = = = ) ( n m m A I A A A I A A A β β β M M M L M L M M M

60 ( I A) ( I A) 1 to from 1 2 X j 1 [ X ij ] 1 2 X X X n1 X X X n2 X 1 n X 2 n X X 1 X 2 X n 2 [ a ij ] = [ A] 1 2 nn 1 2 a 11 a 21 a n1 a 12 a 22 a n2 a 1 n a 2 n a nn a ij = X ij X 3 [ θ ] = [ I A] j ij a 11 a 21 a n1 a 12 1 a 22 a n2 a 1n a 2n 1 a nn 4 [ ] [ ] 1 [ ] 1 β = = I A ij θ ij β 11 β 21 β n1 β 12 β 22 β n2 β 1n β 2n β nn 437

61 y=ax+b 2 X Y a b 2 3 xi[g] yi[cm] i=1n y=ax+b a b 2 2 ( ) ( ) 2 ( ) 2 E = ax + b y + ax + b y + L + ax + b y N N a,b E E = 2{ ( ax1 + b y1 ) x1 + L+ ( axn + b y N ) xn } = 0 = 2{ ( ax1 + b y1 ) + L+ ( axn + b y N )} = 0 a b 2 2 ( x + L + xn ) + b( x1 + L + xn ) = x1 y1 + L xn y N a + a x + + x + b N = y + L+ y 1 L 1 1 ( N ) N 438

62 y x y (x3,y3) (x6,y6) (x2,y2) (x1,y1) (x4,y4) (x5,y5) x y (x6,y6) (x3,y3) (x2,y2) (x4,y4) (x5,y5) (x1,y1) x 439

63 x1 x2 A B Z=a1x1+a2x2 A B A B a1 a2 x1 x2 440

64 x2 Z=a1x1+a2x2 x1 441

65 C A / /3 / /27 0 6/ / / /27 1/ / = / / / =

66 443

67 C CT X CT 4 ABCD a AB c CD d AC a BD b ABCD 4 4 ABCD

68 A C a B D b c d 445

69

70 447

71 ( ),,, a 2 448

72 449

73 100 A,B VaRValue at Risk regret 100 C,D,E E VaR C D VaR D C E 450

74 451

75 452

76

77

78 455

79 B 350ml

80 1 457

81 B C 458

82 459

83 A a 0 1 1aa1a a a1a3535 a a1a2050a

84

85 462

86 463

87

88 465

89 (x) (y)y=0.393x 1 6 4, ,

90 () (2003) (2003) 467

91 IC 468

92 469

93 3 A n T ν n = ( n = 1,2,3 ) 2 L p () 1 ν = 2 L T p () 470

94 L T T

95 2 = km 150cm km 40km km 472

96

97 474

98 475

99

100

101 478

102 10 cm 15 cm 10 cm 10 cm 5 cm 0 cm 5 cm 10 cm 5 cm 5 cm 479

103 480

104 481

105 D 5m C 1/5 7.5mm mm m 0.2 5cm37.5mm7m5m 482

106 (a) 5mm (b) 7mm (c) 10mm (d) 10cm (e) 20cm (f) 45cm ABCDE (g) (h) 13cm (i) 9cm ()30cm (j) 50cm

107 C 5 C B () ) 100m 1/ m

108 ()100m CHRONO DASH IC 485

109 cm cm c (1.09)

110 cm cm cm cm

111

112 489

113 490

114 491

115 /10/ JAN EAN )JAN = % 0.1%

116 JAN =

117

118 / /

119 496

120 497

121

122 499 16

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

8 8 0

8 8 0 ,07,,08, 8 8 0 7 8 7 8 0 0 km 7 80. 78. 00 0 8 70 8 0 8 0 8 7 8 0 0 7 0 0 7 8 0 00 0 0 7 8 7 0 0 8 0 8 7 7 7 0 j 8 80 j 7 8 8 0 0 0 8 8 8 7 0 7 7 0 8 7 7 8 7 7 80 77 7 0 0 0 7 7 0 0 0 7 0 7 8 0 8 8 7

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

untitled

untitled 146,650 168,577 116,665 122,915 22,420 23,100 7,564 22,562 140,317 166,252 133,581 158,677 186 376 204 257 5,594 6,167 750 775 6,333 2,325 298 88 5,358 756 1,273 1,657 - - 23,905 23,923 1,749 489 1,309

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

( )

( ) ) ( ( ) 3 15m t / 1.9 3 m t / 0.64 3 m ( ) ( ) 3 15m 3 1.9m / t 0.64m 3 / t ) ( β1 β 2 β 3 y ( ) = αx1 X 2 X 3 ( ) ) ( ( ) 3 15m t / 1.9 3 m 3 90m t / 0.64 3 m ( ) : r : ) 30 ( 10 0.0164

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

ab c d 6 12 1:25,000 28 3 2-1-3 18 2-1-10 25000 3120 10 14 15 16 7 2-1-4 1000ha 10100ha 110ha ha ha km 200ha 100m 0.3 ha 100m 1m 2-1-11 2-1-5 20cm 2-1-12 20cm 2003 1 05 12 2-1-13 1968 10 7 1968 7 1897

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

サイプレス 55号(冬号)/P01(目次)

サイプレス 55号(冬号)/P01(目次) IT x y x y x y x y y x x y x y y =2x y = ax a x a = 2 x y x y x y x y x y x x y x y x y x y x y x(n) x(n +1) n x(n) x(n +1)x(n) x(n +1) x(n +1)=2x(n) x y x(n) x(n) n x(n +1) x(n) x(n +2) x(n +1)=ax(n)

More information

2005

2005 20 30 8 3 190 60 A,B 67,2000 98 20 23,600 100 60 10 20 1 3 2 1 2 1 12 1 1 ( ) 340 20 20 30 50 50 ( ) 6 80 5 65 17 21 5 5 12 35 1 5 20 3 3,456,871 2,539,950 916,921 18 10 29 5 3 JC-V 2 ( ) 1 17 3 1 6

More information

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5

2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 1D000425-2 1 2 3 5 5 5 5 6 6 7 7 8 10 10 10 10 11 11 12 12 13 16 16 16 16 17 19 21 21 22 5 3 29 29 29 30 31 31 32 35 35 35 36 41 41 41 46 48 48 48 52 57 4 700 13 1988 4 5 4 5 21 1 1 3 4 5 6 21 10 1888

More information

経済論集 46‐2(よこ)(P)☆/2.三崎

経済論集 46‐2(よこ)(P)☆/2.三崎 1 2 1869 11 17 5 10 1 3 1914 5 15 5 1872 9 12 3 1870 1 26 14 1881 11 11 12 6 11 1878 5 9 13 1880 6 17 1 15 1882 1 2 3 11 1828 2 26 24 1891 4 22 2 1849 12 1 3 1856 pp 20 21. 1971 p.429. 1973 1, pp.440 444.

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216

More information

10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11

More information

T1 T2 T3 T4-3- -4- -5- 11 11 12 12 12-6- -7- -8- -9- L 12-10- T T T T -11- 12 T1 T2 T3 T4 14 15 16 10 11 12 1 2 10 40 10 45 10 50 4 11 25 11 35 17 18 19 20 21 2.5cm T1 T2 T3 T4 T5 T6 T7 T8 22 23 24 25

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

90 27 1 29 ( ) 27 4 26 ( ) 27 4 29 ( ) 4 27 3 30 ( ) 1 30 4 27 4 8 ( ) 16 ( ) 9 P2 3 301 27 4 14 ( ) 15 ( ) 9 5 27 4 21 ( ) 4 27 4 21 ( ) 8 30 5 27 4 23 ( ) 5 10 11 12 13 4 3 4 14 27 4 23 ( 27 4 25 ( )

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

「諸雑公文書」整理の中間報告

「諸雑公文書」整理の中間報告 30 10 3 from to 10 from to ( ) ( ) 20 20 20 20 20 35 8 39 11 41 10 41 9 41 7 43 13 41 11 42 7 42 11 41 7 42 10 4 4 8 4 30 10 ( ) ( ) 17 23 5 11 5 8 8 11 11 13 14 15 16 17 121 767 1,225 2.9 18.7 29.8 3.9

More information

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3...........................

1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3........................... 24 3 28 : 1 1 2 1 3 1 4 2 4.1 AKB............................................... 2 4.2......................................... 6 4.3............................................. 9 5 9 5.1.........................................

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

Microsoft Word - Documento2

Microsoft Word - Documento2 ? 3 2 ... 19 20 20 2 1 1 20 40 20 2 9 20 20 2 40 : http://www.hirahidenobu.com/scw/entry 平 秀 信 : 250 400 2 4 58CD4 CD1: 2 2 CD2 URL CD3: CD4: CD CD4... 250 200 250 http://www.hirahidenobu.com/scw/entry

More information

MultiWriter5150/5140 ユーザーズガイド

MultiWriter5150/5140 ユーザーズガイド 3 4 P.40 P.47 Windows Macintosh P.77 P.47 Windows Macintosh P.77 P.47 Windows Macintosh P.77 P.47 Windows Macintosh P.77 P.28 P.49 Windows Macintosh P.80 P.51 Windows Macintosh P.80 P.57 Windows Macintosh

More information

1 食品安全を主な目的とする取組

1 食品安全を主な目的とする取組 --a 2003 7 26 3. 3.1-1- 16 2 27 0227012-2-a 23 7 1 82 2 1 7 9 2 ( ) -2- -2-b 19 3 28 18 14701-2-c ) 15 5 2-3- 26 21 7 2 2 7 2 3 7 2 4 10 83 23 3 1 7 2 5 7 2 5-2-d -4- -5 - -3-a -6- -4-a -7- -4-b -8- -5-a

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

NX501 NX501 2 NX501 1... 5 1.1...5 1.2 GPS...6 1.2.1 GPS...6 1.2.2...6 1.3...6 1.4...7 1.5...10 1.6...12 1.7...13 1.8...16 1.9...20

More information

()

() () vii viii 1 3 3 3 4 5 5 5 6 7 7 8 10 10 10 11 11 11 11 11 11 12 12 12 15 15 15 ii 16 16 17 17 17 17 17 19 19 19 20 21 21 23 23 24 25 25 26 26 26 26 27 27 27 27 27 28 28 28 28 28 29 29 29 29 30 30 30

More information

競技スポーツの科学研究 ~ アトランタ五輪を終えて ~ 新潟大学・山崎 健

競技スポーツの科学研究  ~ アトランタ五輪を終えて ~ 新潟大学・山崎  健 1997 3 1998 12 sin cos 1997 3 1998 12 1997 3 1998 12 1997 3 1998 12 4 1997 3 1998 12 1964!? 100m 94 100m 100mH 10 100m 1964 1997 3 1998 12 1996 100m 7 0.174 0.14 9 84 1988 200m 25m 1986 1997 3 1998 12

More information

Machine-Readable Cataloging ( ) ~ -

Machine-Readable Cataloging ( ) ~ - Machine-Readable Cataloging ( ) ~ - 1.1 1.11 () 1.111 2 9 1 9 5 9 8 9 0.28 910.268 911 3 1.12 1.13 1.13 1.132 1.135-1 - 1.132 1.133 1 7 9 1.134 913.36 1.135 1.14 1.2 1.21 1.22 1.3 1.31 1.311 1.312 mm

More information

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1...

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1... DT-870/5100 &DT-5042RFB ...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1....39 5-2...40 5-3...43...49

More information

卒論 提出用ファイル.doc

卒論 提出用ファイル.doc 11 13 1LT99097W (i) (ii) 0. 0....1 1....3 1.1....3 1.2....4 2....7 2.1....7 2.2....8 2.2.1....8 2.2.2....9 2.2.3.... 10 2.3.... 12 3.... 15 Appendix... 17 1.... 17 2.... 19 3.... 20... 22 (1) a. b. c.

More information

28 27 8 4 10 17 2 27 8 7 14 00 1 27 8 14 15 00 2 27 8 21 15 00 1 4 5 2 6 1 27 ABCD 6 2 2 5 5 8% 108 100 49 2 13 140 22 12 7 153-8501 19 23 03-5478-1225 27 8 4 (1) (2) (3) (1) (2) (3) (4) (5) (6) (7) (8)

More information

untitled

untitled 20 7 1 22 7 1 1 2 3 7 8 9 10 11 13 14 15 17 18 19 21 22 - 1 - - 2 - - 3 - - 4 - 50 200 50 200-5 - 50 200 50 200 50 200 - 6 - - 7 - () - 8 - (XY) - 9 - 112-10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 -

More information

untitled

untitled 19 1 19 19 3 8 1 19 1 61 2 479 1965 64 1237 148 1272 58 183 X 1 X 2 12 2 15 A B 5 18 B 29 X 1 12 10 31 A 1 58 Y B 14 1 25 3 31 1 5 5 15 Y B 1 232 Y B 1 4235 14 11 8 5350 2409 X 1 15 10 10 B Y Y 2 X 1 X

More information

030801調査結果速報版.PDF

030801調査結果速報版.PDF 15 8 1 15 7 26 1. 2. 15 7 27 15 7 28 1 2 7:13 16:56 0:13 3km 45 346 108 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3. 3.1 26 7 10 1 20cm 2 1 2 45 1/15 3 4 5,6 3 4 3 5 6 ( ) 7,8 8 7 8 2 55 9 10 9 10

More information

cm H.11.3 P.13 2 3-106-

cm H.11.3 P.13 2 3-106- H11.3 H.11.3 P.4-105- cm H.11.3 P.13 2 3-106- 2 H.11.3 P.47 H.11.3 P.27 i vl1 vl2-107- 3 h vl l1 l2 1 2 0 ii H.11.3 P.49 2 iii i 2 vl1 vl2-108- H.11.3 P.50 ii 2 H.11.3 P.52 cm -109- H.11.3 P.44 S S H.11.3

More information

1

1 005 11 http://www.hyuki.com/girl/ http://www.hyuki.com/story/tetora.html http://www.hyuki.com/ Hiroshi Yuki c 005, All rights reserved. 1 1 3 (a + b)(a b) = a b (x + y)(x y) = x y a b x y a b x y 4 5 6

More information

橡魅力ある数学教材を考えよう.PDF

橡魅力ある数学教材を考えよう.PDF Web 0 2 2_1 x y f x y f f 2_2 2 1 2_3 m n AB A'B' x m n 2 1 ( ) 2_4 1883 5 6 2 2_5 2 9 10 2 1 1 1 3 3_1 2 2 2 16 2 1 0 1 2 2 4 =16 0 31 32 1 2 0 31 3_2 2 3_3 3_4 1 1 GO 3 3_5 2 5 9 A 2 6 10 B 3 7 11 C

More information

untitled

untitled ( ) 200133 3 3 3 3, 7 347 57 10 i ii iii -1- -2- -3- -4- 90011001700mm -5- 4.2 1991 73.5 44.4 7.4 10.5 10.5 7.4 W 3 H 2.25 H 2.25 7.4 51.8 140.6 88.8 268.8m 5,037.9m 2 2mm 16cm916cm 10.5 W 3 H 2.25 62.8

More information

住宅ローンのリスク管理

住宅ローンのリスク管理 NSSOL & CPC 2008 (p.23) Credit Pricing Corp. @ Now Printing PD i 1 i 2 t = 1 α t Now Printing T i i i 1 1 2 2 n n T exp( βx ) βx = β x + β x + Lβ x x i DTI x i Now Printing Now Printing Now Printing

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

TIJ日本語教育研究会通信40号

TIJ日本語教育研究会通信40号 XYZ AX B X Y Z A A ) AA B A D ) AD B D E AE B E A B ) A B A B A B A B A ( ) B A B A B C ( ) A B ( ) A B ( ) A B A ( ) B A B A B B A B 21 21 A B ( ) ( ) ( ) ( ) ( ) ) 300 A B BBQ vs vs A B 4 4 RPG 10 A

More information

A大扉・騒音振動.qxd

A大扉・騒音振動.qxd H21-30 H21-31 H21-32 H21-33 H21-34 H21-35 H21-36 H21-37 H21-38 H21-39 H21-40 H21-41 H21-42 n n S L N S L N L N S S S L L log I II I L I L log I I H21-43 L log L log I I I log log I I I log log I I I I

More information