( )

Size: px
Start display at page:

Download "( )"

Transcription

1 NAIST-IS-DD

2 ( )

3 ,.,,,.,,,,.,.,,.,.,.,,.,,., (FIR), Kalman-Yakubovich- Popov,, (IIR),,, NAIST-IS- DD16116, i

4 .,,.,.,.,.,,.,,, Kalman-Yakubovich-Popov, ii

5 Energy-Efficient Power Assisting Methods for Periodic Motions Kazuyoshi Hatada Abstract In recent years, the research on the power assist technology is wide spreading because of its potential benefit to our society in medical, welfare, industrial and other fields. The simplest assist method would be to apply additional force generated by machines in proportion to the instantaneous value of the force generated by human. Although there seems to be no other choice when the motion is irregular and unpredictable, in case of the periodic motions, as is typical in our persistent tasks, such a strategy must be undesirable since it amplify the pulsation of periodic force and result in unsteady, inefficient dynamical behavior. Thus, in this thesis, the optimal power assist control method for periodic motions from the viewpoint of energy-efficiency is investigated. First we consider the pedaling motion of a human on a bicycle. A dynamical model of the power train of an electric power-assisted bicycle is derived. The optimality condition for the pedaling is examined based on this model. The result implies that to flatten the torque pattern by removing the input pulsation improves the efficiency. This fact justifies the previous work to use a version of the repetitive control to reject the non-dc components of the periodic torque disturbance invoked by the human pedaling action. Another type of repetitive controller synthesis based on the generalized Kalman-Yakubovich-Popov (KYP) Doctoral Dissertation, Department of Information Systems, Graduate School of Information Science, Nara Institute of Science and Technology, NAIST-IS-DD16116, March 15, 213. iii

6 lemma is proposed in the literature. In this framework, the delay component in the standard repetitive controller is replaced by a Finite Impulse Response (FIR) filter and the gain specifications at a set of independent finite frequency ranges are satisfied by using the gkyp lemma. A power assist controller design via yet another synthesis framework is proposed here. The key feature is that the usage of Infinite Impulse Response (IIR) filter with the gkyp lemma to derive reduced-order controllers satisfying the design specifications. The effectiveness of proposed method is demonstrated by comparing the energy efficiency of each method via numerical simulations and experiments. Next we consider the engine speed control of a ship cruising in regular heading waves. Such a ship experiences periodic force disturbances and this is an analogous situation to the bicycle pedaling discussed above. Therefore our design procedure can be applied to this problem to obtain a feedback engine speed controller. The energy efficiency of the proposed method against the case of constant throttle opening is evaluated through numerical simulations. Keywords: periodic motions, power assist control, repetitive control, generalized Kalman- Yakubovich-Popov lemma, engine speed control iv

7 KYP KYP KYP KYP KYP FIR IIR v

8 A. Shur 75 vi

9 (1) (2) (2) FIR K RC (z) IIR F I (z) τ h v vii

10 29 ( ) (PPC) (MRC) (IIRRC) G c (s) Ψ K I (z) viii

11 R C x x, x R(s) s I(s) s s s R n m n m C n m n m I n n A T A A A He(A) A He(A):= A + A H n n tr(a) A A B A, B A B (i, j) A =[a ij ] Ba ij. Ker(A) A Im(A) A L 2 R G 2 : G H 2. G 2 :=. σ max (A) A 1 2π tr(g (jω)g(jω))dω G : G H. G := sup ω R σ max (G(jω)). {c, d} λ, s, z. ix

12 % [1].,.,,,,., [2], [3],., [4] [5], [6], - [7] HAL(Hybrid Assistive Limb)[8].,,. HAL.,,.,., 3. (a) (b) (c),. 1

13 (Hybrid Electric Vehicle: HEV ) (Electric Vehicle: EV ) [9]. (a),, HEV EV, [1]. (b), HEV [11]. (c), [12]. (c),,. 1.2., [13, 14].,,,.,.,.,., [15], 8±1[rpm].,.,,. [16], 2

14 , [17]., [18],,,.,,.. [19],, V.,,, [2].,, ,., /,,.,.,.,, 2 3 [21], 1993, [22, 23, 24].,,.,. 3

15 ,.,,.,,,.,,.,.,. CO 2 [25, 26, 27, 28, 29],.,,.,, , Kalman-Yakubovich-Popov.,. 3.,.,,.,,. 4,,. 5. 4

16 2. 2.1, [3].,.,,.,,.,,., [31, 32]. 1., r, y, K(s), G(s) ( ) 1, y r, (KG(s)). 5

17 ,, 1/s., T, T -., [31],., 1 e st 1., [33] , 2 T. R c (s). R c (s) = = e st 1 e st 1 e st 1, R c (jω) = 6 1 e jωt 1

18 ., 1 R c (jω) =, ω. ω = 2πk, k =, 1, 2, T T =1, G(s) =(.9s +.8)/(s +1) (1/(1 + R c G(s))) 3. 3, T 5 magnitude [db] frequency [rad/s] 3., T., 1. 2,, e(s) = r(s) y(s) y(s) = Gu(s) u(s) = e st e(s) 1 e st 7

19 . e(s), e(s) =(1 G(s))e st e(s)+d e (s) (1)., D e (s) =(1 e st )r(s)., (1), (1) [34],. 2.2 [3] G(s), 1 G(s) < 1 (2), e L 2, L 2..,,.,., 3,. 8

20 T =1, r(t) = sin 2πt +1, G(s) =.9s +.8 s +1., 1 G(s) =.2 (2) time [s] error time [s] 6 9

21 5 r, y.,.,., G(s) = 7.5s +7.5 s 2 +1s +7.5, 1 G(s) =1 (2)., time [s] 7 (2) error time [s] (2) 1

22 ,,.,, Linear Matrix Inequality: LMI Kalman-Yakubovich-Popov KYP ). 2.2 KYP KYP [35, 36]., KYP.,,., KYP KYP [37]., KYP KYP KYP, n u n y n p G(jω)=C(jωI A) 1 B + D (3). ( ) ( ), : G (jω)g(jω) <γ 2 I, ω R (4) : G(jω)+G (jω) >, ω R (5). G C n y n u Π H ny +n u σ σ(g, Π) := [ G I nu ] Π [ ] G I nu 11

23 (4) (5) σ(g(jω), Π) <, ω R (6)., (6), [ ] Iny Π=Π br := γ 2 I nu, Π=Π pr := [ I nu I nu ]., KYP [35, 36], (6). 2. n p n p P. [ A B ] [ P ][ A B ] I np P I np +Θ< (7), [ C D ] [ C D ] Θ := Π I nu I nu KYP (6) [38]. Λ c Λ d, λ. Λ {c,d} := { λ C σ(λ, Φ {c,d} )=} (8) 12

24 , Λ c Λ d Φ {c,d} ] ] Φ c = [ 1 1, Φ d := [ 1 1., [ P ] P =Φ c P, σ(g(λ), Π) <, λ Λ {c,d} (9) 2. n p n p P. ] ] [ A B I np (Φ {c,d} P ) [ A B I np +Θ<, KYP KYP, KYP, (LF) (MF) (HF) LMI. Φ, Ψ H 2,. Λ(Φ, Ψ) := { λ C σ(λ, Φ) =, σ(λ, Ψ) } (1), Ψ [ 1 λc ] Ψ c = λ c r 2 λ c 2 13

25 , σ(λ, Ψ c )=r 2 λ λ c 2, λ c, r., Ψ [ ] a + jb Ψ l = a jb 2c, σ(λ, Ψ l )=ar(λ)+bi(λ)+c. (8), (1). 9.,. 9 14

26 ,,, 1. 1 Ψ LF MF HF [ ] [ ] [ 1 1 jϖc 1 jω ϖ 2 l e jθ [ 1 1 2cosϑ l ] [ jϖ c ϖ 1 ϖ 2 e jϑ c e jϑc 2cosϑ ϖl 2 ] [ 1 1 ] 2cosϑ h ], ϖ c,ϑ c,ϑ. ϖ c := ϖ 1 + ϖ 2 2 ϑ c := ϑ 1 + ϑ 2 2 ϑ := ϑ 2 ϑ 1 2, KYP [37]. 2.3 [37, 38] A, B, C, D Π H ny +n u (1) Λ(Φ, Ψ). det(λi A), σ(g(λ), Π), λ Λ(Φ, Ψ) (11), P H np,q H np. [ A B I np ] (Φ P +Ψ Q) 15 [ A B I np ] +Θ (12)

27 KYP [37],., (11), [ (λinp A) 1 ] [ ] [ ][ ] B C D C D (λi A) 1 B σ(g(λ), Π) = Π I nu I nu I nu I nu [ (λinp A) 1 ] [ ] B (λinp A) 1 B = Θ (13) I nu I nu. (12), [ (λinp A) 1 ] [ B A B σ(g(λ), Π) I nu I np [ ][ ] A B (λinp A) 1 B ] (Φ P +Ψ Q) I np., (13) [ ][ ] A B (λinp A) 1 B I np I nu = = = I nu [ ] A(λInp A) 1 B + B (λi np A) 1 B [ ] A +(λinp A) (λi np A) 1 B [ λinp I np ] I np (λi np A) 1 B. [ B [(λi np A) 1 ] λinp ] I np ] B [(λi np A) 1 ] [ λinp I np (Φ P ) (Ψ Q) [ λinp I np [ λinp I np ] (λi np A) 1 B ] (λi np A) 1 B (14), λ Λ, P (14)., σ(λ, Ψ), Q [ ] [ ] λinp λinp (Ψ Q) I np 16 I np

28 ,., G(λ). KYP, ẋ(t) = Ax(t)+B 1 w(t)+b 2 u(t) G : z(t) = C 1 x(t)+d 11 w(t)+d 12 u(t) y(t) = C 2 x(t)+d 21 w(t) G, u(t) =K s x(t) (15), K s., x(t), w(t), u(t), z(t), y(t),,,,. (15) C 2 = I, D 21 = G cl : { ẋ(t) = (A + B2 K s )x(t)+b 1 w(t) z(t) = (C 1 + D 12 K s )x(t)+d 11 w(t)., P> K s. P (A + B 2 K s )+(A + B 2 K s ) T P<, LMI., P 1. X, (A + B 2 K s )X + X(A + B 2 K s ) T <, X> K s. LMI, X := K s X LMI, K s X X 1., G cl <γ K s, (7) (15), P K s. 17

29 KYP,., LMI., [ ] Π11 Π 12 Π=, Π 11 H nny, Π 11 (16) Π 21 Π 22, SISO. Π 11 > (9), Π 11 =. (16), (12) Schur [39]. [ Γ(P, Q, C, D) C D] S ] < S [C D R, Π 11 = SR 1 S, rankr =rankπ 11 Γ(P, Q, C, D) := [ A B I np ] [ ] [ ] A B C Π 12 (Φ P +Ψ Q) + I np Π 12 D Π 12 +Π 12D +Π 22., P, Q C, D, Π 11 A, B C, D Π 22 LMI.,. FIR, PID [38]., KYP FIR KYP, FIR KYP, FIR., γ 2., gkypsdp[4]. F (e jθ ).1 (= 4dB) :.4π ω π F (e jθ ) e jdθ <γ : ω.3π 18

30 magnitude [db] normalized frequency 1 5 phase [rad] normalized frequency 11 19

31 3. 3.1,.,,.,.,.., 3.2, 3.3,., 3.4, 3.5., 3.6.,,., 3.7, ,,.,.,,. 2

32 ,..,,, [41].,.,..,.,. DC,.,,.,.,

33 12 3.3,., 6[deg] 12[deg],, 18[deg]. 18[deg],.,. [42]

34 13, 14., [N] force pedaling time [s] 14.,., [15], 23

35 , 13 8 ± 1[rpm] 5,.,,. 14.,.,,,,,. 15,

36 angle [deg] time [s] (a) θ 1 angle [deg] angle [deg] time [s] 4 5 (b) θ time [s] 4 5 (c) θ ,. 25

37 3.4 17,, 18. θ(t) 17 [rad], τ h (t)[n m], τ m (t)[n m].,,,, J d [kg m 2 ], r b [m].,, D d [N s/m]., τ h (t)+τ m (t) v(t)[m/s] J d θ(t)+dd θ(t) =τh (t)+τ m (t), v = r b θ(t), r b v = (τ h + τ m ) J d s + D d =: G o (s)(τ h + τ m ) (17) 26

38 18., (17) G o (s).,, τ m τ m = C(τ h,v) (18)., (17) (18), G c (s)., v = G c (s)τ h (19). 3.5 G c (s). G c (s),.,. 27

39 3.1, τ h [, ˆω] T, G c (j).,. G c (jω k )= (2) ω k = 2πk ˆωT, k =1, 2, 3,,N, N = T 2π τ h. N τ h = α k e jω kt k= N (21), τ h, α k =ᾱ k., v (19) (21)., 1 T T v = N k= N vdt = 1 T α k G c (jω k )e jω kt T N k= N = α G c (j) α k G c (jω k )e jω kt dt,. E D d v v,. E = T D d v 2 dt { T N 2 = D d α k G c (jω k )e kt} jω dt k= N, f k (t). f k = α k G c (jω k )e jω kt 28

40 , f(t), g(t), f,g = T f(t)g(t)dt., E. N N E = D d f k, f l, T k= N l= N { T (k = l) e jωkt e jωlt dt = (k l), E N E = D d T α k 2 G c (jω k ) 2 (22) k= N.,. N D d T α k 2 G c (jω k ) 2 D d T α 2 G c (j) 2 k= N (2).,,.,.,, (N =) (N =1) 2., v := α G c (j), β := α 1 G c (jω 1 ). E 1 = D d Tv 2., v = v + βe jω1t + βe jω 1t = v +2 β sin(ω 1 t + φ) 29

41 , v 2 β β = v 2. (22) E 2 = D d T ( v 2 +2β 2) = 3 2 D dtv 2 = 3 2 E 1., 5[%]. 3.6 (Pedaling force Proportional Control: PPC ).,,. PPC 19. δ>. 19, DC δ. [43, 44] ( ) 3

42 2,. PPC ( ) G c (s) =(1+δ)G o (s)., G o (jω k ) (2). 3.1, T τ h, [45] K R (s), M d (s). 2 2, τ h v G c (s) = G o (s) 1+R c K R M d G o (s), G c (jω k )=,k =, 1, 2,, (2)., (2) k =,., k = 31

43 ., τ h,.,,. T s T, ζ = T/T s., R c (z) = z ζ 1 z = 1 ζ z ζ 1 (23), 21., (23) 21 z ζ 1=(z 1)(z ζ 1 + z ζ z +1), z =1. (Modified-type Repetitive Control: MRC )

44 3.6.2 FIR.,,., FIR, [46]. FIR, [47]. FIR LMI [46]. FIR (FIR Filter-type Repetitive Control: FIRRC ) [48]., 21 z ζ ξ X(z) = X k z k k=., ξ = ζ, X = X 1 = = X ξ 1 =,X ξ =1,., X(z). FIR X(z), KYP,.,.. FIRRC 23. K F (z) 23 FIR 33

45 , K RC (z). K RC (z) = XL(z) 1 X(z) (24). K RC. 24 K RC (z) FIRRC [46], K F (z) 1+K F M d G o (z) =,., L(z) = 1+K F M d G o (z) K F M d G o (z) [49, 5]., (24) τ h v G c (z) = G o (z) (1 X(z)) 1+K F M d G o (z)., K F (z) 1 X(z) G c (z)., FIR X(z) X k. minimize γ 2 subject to 1 X(e jωt s ) γ 1 1 X(e jωt s ) γ 2,ω [ω l,ω h ] X(e jωt s ) γ 3, ω ω d (25) 34

46 , 3.1,. [ω l,ω h ], ω d. KYP, IIR FIR., FIR IIR [51]., KYP ( ) [52].,.., IIR F I (z)., KYP,., [52] K I (z). IIR (IIR filter-type Repetitive Control: IIRRC ) ( 25). 25 IIR 35

47 . G c (e jωts ) γ 1, ω [ω l,ω h ] G c (e jωt s ) γ 2, ω [,ω d ] (26),. KYP [52]. G p (λ) K(λ) [ ] [ ] z w = G p (λ), u = K(λ)y y u G p (λ) = K(λ) = A k A B 1 B 2 C 1 D 11 D 12 C 2 D 21 C k., G p (λ), K(λ) n p, n c,, w(t) R nw, u(t) R nu, z(t) R nz, y(t) R ny. w z G wz (λ). G wz (λ) := A c C c B c D c B k D k A + B 2 D k C 2 B 2 C k B 1 + B 2 D k D 21 = B k C 2 A k B k D 21 C 1 + D 21 D k C 2 D 12 C k D 11 + D 12 D k D 21, (12) [ ] [ ] Ac I np +n k (Φ T P +Ψ T Ac I np +n Q) k C c C c [ ] [ ] Bc Bc + Π < (27) D c I nz 36 D c I nz

48 . LMI. 3.1 [53], n := n p + n k, J R (2n+n z) 2n, H C (2n+nz) (nw+nz), L C (2n+nz) n. [ ] I n I2n J :=, H := B c, L := A c D c, P, Q H n, R C n (2n+nz), Φ, Ψ H 2, Π H nw +n z. N, R Ker(R) = Im(N)., 2. I nz 1. (27),. N (J(Φ T P +Ψ T Q)J )N + N (HΠH )N< C c 2. W C n n. J(Φ T P +Ψ T Q)J + HΠH < He(LW R) (28), (27) (28). X, Y, U, V C np np W [ ] X (Inp XY )(V 1 ) W = U UY (V 1 ), M, G, H, L. [ ] M G H L := + [ Y AX ] [ V ][ YB2 Ak ][ B k U ] I nu C k D k C 2 X I ny 37

49 , A C := B D AX + B 2 H A+ B2 LC2 B 1 + B 2 LD21 M YA+ GC 2 YB 1 + GD 21 C 1 X + D 21 H C1 + D 12 LC2 D 11 + D 12 LD21 F := [ ] Inp, Y V F := diag(f, F, I nz ) Z := YX+ VU, [ ] X Inp W := Z Y (29), R RF = F R, (28). 3.2 [52] (11) n p K(λ). 2. X, Y, Z, M, G, H, L, P Hn, Q H n > 1.,. J(Φ T P+Ψ T Q)J + HΠH < He(LR) P := FPF, Q := FQF W H := B, L := A D C I nz 1 Z U, V (29), U, V Z. 38

50 , ω [ω a,ω b ], R = [ I 2np e j(ωa+ω b)/2 I 2np ], Φ P<He LMI. ([ ] A W [ ] ) I 2np I 2np I 2np T s.1[s]. (17)... G o (z) = z , M d(z) = τ h T,.75[s]( ω=8.38[rad/sec]). MRC, ζ = T/T s =75. K R (z),. FIRRC K R (z) = 4.78z 4.3 z G o M d (z) K F (z) = 3.33z 3.33 z

51 . FIR X(z) 4, (25), γ 1 =1.2, γ 3 =.5, ω l =7.96, ω h =8.8, ω d = FIR X k (k =1,, 4). IIRRC, 26 F I (z)., magnitude [db] frequency [rad/s] 26 F I (z) F I (z) = (z z ) z z +1., (26), 3.1. γ 1 =.93, γ 2 =.82 ω l =7.96, ω h =8.8, ω d =

52 , K I (z). K I (z) = K 3 i=1 (z z i) 3 i=1 (z p j) , FIRRC IIRRC MRC magnitude [db] 1 MRC IIRRC -4-5 FIRRC frequency [rad/s] 27 τ h v. MRC 75, FIRRC 41, IIRRC 5. 2 K I (z) K p 1.49 z 1.39 p 2, p 3.15 ±.33j z 2, z 3.88 ±.9j 41

53 3.7.2,,. ω 1 =8.38, [15] ω 2 = τ h (t) =1.4 sin ωt +3.8, PPC, 2 δ =

54 velocity deviation [km/h] PPC MRC, FIRRC, IIRRC time [s] (a) Nominal frequency case (ω = ω 1 ) velocity deviation [km/h] PPC MRC FIRRC, IIRRC time [s] (b) Perturbed frequency case (ω = ω 2 ) 28 43

55 (a) (ω = ω 1 ), (b) (ω = ω 2 )., MRC, FIRRC, IIRRC,., PPC.,,, MRC. FIRRC IIRRC,.,. ( 29). 44

56 velocity deviation [km/h] PPC MRC IIRRC time [s] (a) Nominal frequency case (ω = ω 1 ) velocity deviation [km/h] PPC MRC IIRRC time [s] (b) Perturbed frequency case (ω = ω 2 ) 29 ( ) 45

57 リミッタを挿入したことで, MRC, IIRRC ともに変動除去性能は低下している が, 速度偏差の大小関係においてはリミッタなしの場合と同様の傾向を示してい る. なお, 前述の結果より FIRRC と IIRRC がほぼ同等の性能を有することが確 認できたので, FIRRC の結果を省略している 実験系の構成 人間が長時間にわたって一定のペダリング動作を続けることは難しく, また実 験ごとの再現性を確保することも困難である. そこで本研究では実験時のペダリ ングトルクを正確に発生させるためにモータ駆動されるペダリング機器 図 3 を製作した. 図 3 ペダリング機器 走行中の負荷は競技用のトレーニング機器 図 31 を装着することで再現した. 46

58 31,,. [54]

59 , PPC (a), (b). MRC (a), (b). IIRRC (a) (b),. velocity deviation [km/h] time [s] velocity deviation [km/h] time [s] (a) Nominal case (b) Perturbed case 33 (PPC) 48

60 velocity deviation [km/h] velocity deviation [km/h] time [s] time [s] (a) Nominal case (b) Perturbed case 34 (MRC) velocity deviation [km/h] velocity deviation [km/h] time [s] time [s] (a) Nominal case (b) Perturbed case 35 (IIRRC), ( )

61 12 1 distance [m] PPC 2 MRC IIRRC time [s] 36.5 voltage drop [V] PPC MRC IIRRC time [s] 37 5

62 ,..,,.,. 36,,. 37 MRC, IIRRC. 3.8,.,.,,. 51

63 4. 4.1, [28],.,. [26],.,., 3.,.. 4.2,. 4.3, 3,., , 38, [26, 55]. x s

64 , λ s [m], O s G s ξ G [m], v s [m/s], c s [m/s]. v s = 1 t c, t v s (τ)dτ ξ G =(c s + v s )t (3)., X w, ρ, g, ξ w, k w, d s, b s, s s, S(x S ), X w (ξ G )= ρgξ w k w e k ds 2 bs s s S(x s )W (ξ G,x S )dx s (31)., W (ξ G,x s ) = sin 2π(ξ G + x s )/λ s (32)., (32) (3), W (ξ G,x s ) = sin 2π (c S + v s ) t cos 2π x s λ s, (31),., λ s +cos2π (c s + v s ) X w (ξ G )=α sin ω t + β cos ω t λ s t sin 2π x s λ s α = ρgξ w k w e k ds 2 β = ρgξ w k w e k d s 2 bs s s bs s s S(x s )cos2π x s λ s dx s, S(x s ) sin 2π x s λ s dx s,., ω =2π c s + v s λ s X w = γ s sin(ω t + δ) 53

65 γ s = α 2 + β 2,δ=tan 1 α β., X w 2π/ω., n s, t p, D p, K T (v s )., T h (v s,n s ). T h (v s,n s )=(1 t p )ρd 4 pk T (v s )n 2 s, n s h h n 2 s (33) [56], k T h h T h (v s,h) kk T (v s )h. M s, R s (v s ), (31) (33),. M s dv dt + R s(v s )=γ s sin(ω t + δ)+kk T (v s )h k = kk T ( v s ),R s (v s )= R s v s,. M s dv s dt + R s v s (t) =γ s sin(ω t + δ)+ kh (34) , G o (s) { } v s = G o (s) γ s sin(ω t + δ)+ kh (35). (35) 3.6 IIRRC 39., 39 r s., X w 54

66 v s G c (s) 39 G c (s) = G o (s) 1+KF kg o (s).,. G c (jω) γ 1, ω [ω l,ω h ] [ω l,ω h ]. 3., 3 MCR(Maximum Continuous Rating)., λ s 3[m], ξ w 2.4[m], c s 3 mass [kg] length depth breadth propeller diameter MCR of the engine speed 15 [m] 13.5 [m] 27.2 [m] 5.4 [m] 165 [rpm] 5.5[m/s]., R s , v s 2.5[m/s].,,, 37.5[s] (ω =.17[rad/s]). 55

67 G o (jω ) , ω ±5[%] G c (jω) G o (jω ) 4[dB].,. F s (s) = 8s +.56 s F s (s), 4[dB]. K(s). ±5[%] ω l =.15, ω h =.18. G o (jω ) γ 1 = KYP,., K(s). K(s) = (s +3.71)(s +.53)(s +.26) (s +.1)(s s ) X w v s G c (s) 4. 56

68 12 magnitude [db] frequency [rad/s] 4 G c (s) , 41,.,., , 42,., (33). d s, f s f s = d s /n 2 s.,. f c f o f c f o = , 2[%]. 57

69 velocity [m/s] constant engine speed proposed method time [s] constant engine speed proposed method engine speed [rpm] time [s] 42 58

70 4.4,.,,.,. 59

71 5. 5.1,.,,,., KYP,.,,.,,,.,,.,.,,. 5.2,.,.,,,, [57]

72 (a) (b) (c) (d) 43 61

73 [58], v D s v α s (D s = 4.7 ± 1.,α s =2.95 ±.49).,,., 3.5., 2, 3., 3., v = v + v a sin ωt., T. 1 T T D s v 3 dt = D s T = D s T = D s T = D s T T T T (v + v a sin ωt) 3 dt (v 3 +3vv 2 a sin ωt +3v va 2 sin 2 ωt + va 3 sin 3 ωt)dt {v 3 +3v 2v a sin ωt +3v 2v ( 12 a 12 ) cos 2ωt ( 3 +v 3 4 sin ωt 1 ) } sin 3ωt dt 4 {v 3T 3v 2v a cos ωt +3v 2v ( 12 a T 14 ) sin 2ωT +v 3 ( 3 1 cos ωt cos 3ωT ) } 12, T (T =2π/ω).. D s (v v v 2 a,., 3,. 62 )

74 ,. 8.,,.,,,.,, , 8.38[rad/sec],.,., B,., (a) 44(b) 45., 45, (1 ν (1/ω) µ ). 63

75 spectral density [V /(rad/s)] frequency [rad/s] (a) spectral density [V /(rad/s)] frequency [rad/s] (b) A spectral density [V /(rad/s)] frequency [rad/s] (c) B spectral density [V /(rad/s)] frequency [rad/s] (d) C 44 64

76 spectral density [V /(rad/s)] frequency [rad/s] (a) spectral density [V /(rad/s)] frequency [rad/s] (b) A 45, µ =,,., µ =1,, 1/f [59]., ν 65

77 . A, B, C 4, 1/f., B, µ ν. 4 µ ν A B C [15],., 1/f., 1 (µ =) µ =2., 1/f -1[dB/dec],., 1/f [6, 61].,,,.,,,. [62],.,. 66

78 ,,.,. 1,,..,.,..,.,.,.,.. 1,.,..,,..,.,..,,.,.,. 67

79 [1] [2] T. Miyoshi, K. Suzuki and K. Terashima: Development of Five-Degree-of- Freedom Wire Suspension Power-Assisted System Using Linear Cylinders; in Proc. 211 IEEE International Conference on Robotics and Automation, pp (211) [3],,,, Vol. 76, No. 767, pp (21) [4],, : 3, 1A2-B26 (21) [5] T. Ishida, T. Kiyama, K. Osuka, G. Shirogauchi, R. Oya and H. Fujimoto: Movement analysis of power-assistive machinery with high strengthamplification; in Proc. SICE Annual Conference 21(SICE 21), pp (21) [6],,,,, Vol. 45, No. 12, pp (29) [7], -, Vol. 38, No. 3, pp (22) [8] K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa and Y. Sankai: Intentionbased walking support for paraplegia patients with robot suit HAL; Advanced Robotics, Vol. 21, No. 12, pp (27) 68

80 [9],,,,, D, Vol. 116, No. 3, pp (1996) [1],, 211, pp (211) [11], (28) [12], 22, IIC-1-19, pp (21) [13] / /, Vol. 49, No. 1, pp (25) [14] K. Hirata: On Internal Stabilizing Mechanism of Passive Dynamic Walking; SICE Journal of Control, Measurement, and System Integration, Vol. 4, No. 1, pp (211) [15] D. J. Sanderson and A. T. Amoroso: The influence of seat height on the mechanical function of the triceps surae muscles during steady-rate cycling; Journal of Electromyography and Kinesiology, Vol. 19, No. 6, pp (29) [16] A. P. Seyranian and A. O. Belyakov: How to twirl a hula hoop; American Journal of Physics, Vo. 79, No. 7, pp (211) [17] J. Nishizaki, S. Nakaura and M. Sampei: Modeling and Control of Hula- Hoop System; in Proc. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, pp (29) [18],, 56, pp (212) 69

81 [19] R. Sepulchre and M. Gerard: Stabilization of periodic orbits in a wedge billiard; in Proc. 42th IEEE Conference on Decision and Control, pp (23) [2] R. Ronsse, P. Lefevre and R. Sepulchre: Sensorless Stabilization of Bounce Juggling; IEEE Transactions on Robotics, Vol. 22, No. 1, pp (26) [21], , be on Saturday [22],,,, PAS211 YAMAHA MOTOR TECHNICAL REVIEW, No. 47, pp. 4-6 (211) [23],,, Vol. 69, No. 68, pp (23) [24],,, 54, pp (211) [25], Vol. 76, No. 1, pp (21) [26],, 55, pp (211) [27],,, 23 (211) [28],,, -, Vol. 44, No. 1, pp (29) 7

82 [29] J. A. Heine, R. N. Schane and J. M. Bielefeld: Minimizing Fuel Consumption in Ocean Vessels; IEEE Transactions on Industrial Electronics and Control Instrumentation, Vol. IECI-2, No. 2, pp (1973) [3],,,, (1989) [31] B. A. Francis and W. M. Wonham: The Internal Model Principle for Linear Multivariable Regulators; Applied Mathematics & Optimization, Vol. 2, No. 2, pp (1975) [32] (22) [33] Y. Yamamoto and S. Hara: Relationships Between Internal and External Stability for Infinite-Dimensional Systems with Applications to a Servo Problem; IEEE Transactions on Automatic Control, Vol. 33, No. 11, pp (1988) [34] S. Skogestad and I. Postlethwaite: Multivariable Feedback Control Analysis and Design Second Edition; WILEY (23) [35] A. Rantzer: On the Kalman-Yakubovich-Popov lemma; Systems & Control Letters, Vol. 28, No. 1, pp. 7-1 (1996) [36] LMI, (212) [37] T. Iwasaki and S. Hara: Generalized KYP Lemma: Unified Frequency Domain Inequalities With Design Applications; IEEE Transactions on Automatic Control, Vol. 5, No. 1, pp (25) [38] KYP, Vol. 44, No. 8, pp (25) [39] LMI, (1997) 71

83 [4] Z. Liu and L. Vandenberghe: [41], E, Vol. 121, No. 11, pp (21) [42] D. G. Wilson: Bicycling Science third edition, The MIT Press [43] [44] [45] 26, (27) [46] G. Pipeleers, B. Demeulenaere, J. De Schutter and J.Swevers: Generalized repetitive control: Better performance with less memory; in Proc. 1th IEEE International Workshop on Advanced Motion Control, pp (28) [47],,,, Vol. 29, No. 11, pp (1993) [48] FIR 28, (29) [49] M. Steinbuch: Repetitivecontrol for systems with uncertain period-time; Automatica, Vol. 38, No. 12, pp (22) [5] M. Tomizuka: Zero phase error tracking algorithm for digital control; Journal of Dynamic Systems, Measurement, and Control, Vol. 19, No. 1, pp (1987) [51],,, (1993) 72

84 [52] T. Iwasaki and S. Hara: Dynamic Output Feedback Synthesis with Frequency Domain Specifications; 16th IFAC World Congress (25) [53] T. Iwasaki and R. E. Skelton: All Controllers for the General H Control Problem: LMI Existence Conditions and State Space Formulas; Automatica, Vol. 3, No. 8, pp (1994) [54],, (1979) [55], No. 152, pp (1983) [56] O. Bondarenko, M. Kashiwagi, S. Naito: Dynamics of Diesel Engine in the Framework of Ship Propulsion Plant;, No. 8, pp (29) [57] - -, (27) [58] F. Celentano, G. Cortili, P. E. Prampero and P. Cerretelli: Mechanical aspects of rowing; Journal of Applied Physiology, Vol. 36, No. 6, pp (1974) [59],, 1/f 51, pp (28) [6], 1/f, D-II, Vol. J8-D-II, No. 1, pp (1997) [61] B. Kaulakys, J. Ruseckas, V. Gontis and M. Alaburda: Nonlinear stochastic models of 1/f noise and power-law distributions; Physica A, Vol. 365, pp (26) 73

85 [62],, - : 2 12 (SI211), pp (211) 74

86 A. Shur A.1 [36, 39] [ A11 A 12 A = A T 12 A 22 ], A> 2. A 22 > A 11 A 12 A 1 22 A T 12 > 3. A 11 > A 22 A T 12P 1 11 A 12 > 75

87 1.,,,, Vol. 25, No. 2, pp (212) 2.,, Vol. 49, No. 2, pp (213) ( ) 1. Kazuyoshi Hatada and Kentaro Hirata: Energy-Efficient Power Assist Control for Periodic Motions; in Proc. SICE Annual Conference 21(SICE 21), pp (21) 2. Kazuyoshi Hatada and Kentaro Hirata: Energy-Efficient Power Assisting Methods for Periodic Motions and its Experimental Verification; in the 212 IEEE International Conference on Industrial Technology(ICIT212), pp (212) ( ) 1., 1 (SI29), pp (29) 2., 55 (SCI 11), pp (211) 3., 12, P162 (212) 76

88 4.,, 56 (SCI 12), pp (212) 1. Kiminao Kogiso, Makoto Noguchi, Kazuyoshi Hatada, Naoki Kida, Naofumi Hirade and Kenji Sugimoto: Experimental Validation of Switching Strategy for Tracking Control with Collision Avoidance in Non-Cooperative Situation Using Toy Model Cars; SICE Journal of Control, Measurement, and System Integration, Vol. 3, No. 4, pp (21) ( ) 1. Kentaro Hirata, Mayumi Tomida and Kazuyoshi Hatada: Gain Scheduling Control Experiment of Balancing Transformer Robot using LEGO Mindstorms; in International Conference on Design and Modeling in Science, Education, and Technology(DeMset211), DM42NY (211) ( ) 1. Kiminao Kogiso, Makoto Noguchi, Kazuyoshi Hatada, Naoki Kida and Naofumi Hirade; Experimental Validation of Tracking Control with Collision Avoidance Using Rc Model Cars; SIAM Conference on Control and Its Applications(CT9), PP(29) 1. 29,,,

89 2. SI29,,,

( )

( ) NAIST-IS-MT0851087 2010 3 17 ( ) , Ecological Economical,.,.,,.,,, FIR.,,,.,,,.,,, FIR,, NAIST-IS- MT0851087, 2010 3 17. i Energy Efficiency of Power Assisting Control Methods for Electric Bicycles Kazuyoshi

More information

2012 September 21, 2012, Rev.2.2

2012 September 21, 2012, Rev.2.2 212 September 21, 212, Rev.2.2 4................. 4 1 6 1.1.................. 6 1.2.................... 7 1.3 s................... 8 1.4....................... 9 1.5..................... 11 2 12 2.1.........................

More information

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo IIC--7 Precise Positioning Control of High-order Pitching Mode for High-Precision Stage Yushi Seki, Hiroshi Fujimoto (The University of Tokyo), Hideaki Nishino, Kazuaki Saiki (Nikon) Abstract Precision

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 77 (..3) 77- A study on disturbance compensation control of a wheeled inverted pendulum robot during arm manipulation using Extended State Observer Luis Canete Takuma Sato, Kenta Nagano,Luis Canete,Takayuki

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2 CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for

More information

ばらつき抑制のための確率最適制御

ばらつき抑制のための確率最適制御 ( ) http://wwwhayanuemnagoya-uacjp/ fujimoto/ 2011 3 9 11 ( ) 2011/03/09-11 1 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 2 / 46 Outline 1 2 3 4 5 ( ) 2011/03/09-11 3 / 46 (1/2) r + Controller - u Plant y

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L 1,a) 1,b) 1/f β Generation Method of Animation from Pictures with Natural Flicker Abstract: Some methods to create animation automatically from one picture have been proposed. There is a method that gives

More information

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo

5D1 SY0004/14/ SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomo 5D1 SY4/14/-485 214 SICE 1, 2 Dynamically Consistent Motion Design of Humanoid Robots even at the Limit of Kinematics Kenya TANAKA 1 and Tomomichi SUGIHARA 2 1 School of Engineering, Osaka University 2-1

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> MATLAB/Simulink による現代制御入門 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/9241 このサンプルページの内容は, 初版 1 刷発行当時のものです. i MATLAB/Simulink MATLAB/Simulink 1. 1 2. 3. MATLAB/Simulink

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 : Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a), Tetsuo SAWARAGI, and Yukio HORIGUCHI 1. Johansson

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi ODA Department of Human and Mechanical Systems Engineering,

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se The Visual Servo Control of Drone in Consideration of Dead Time,, Junpei Shirai and Takashi Yamaguchi and Kiyotsugu Takaba Ritsumeikan University Abstract Recently, the use of drones has been expected

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

三石貴志.indd

三石貴志.indd 流通科学大学論集 - 経済 情報 政策編 - 第 21 巻第 1 号,23-33(2012) SIRMs SIRMs Fuzzy fuzzyapproximate approximatereasoning reasoningusing using Lukasiewicz Łukasiewicz logical Logical operations Operations Takashi Mitsuishi

More information

xia2.dvi

xia2.dvi Journal of Differential Equations 96 (992), 70-84 Melnikov method and transversal homoclinic points in the restricted three-body problem Zhihong Xia Department of Mathematics, Harvard University Cambridge,

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

JFE.dvi

JFE.dvi ,, Department of Civil Engineering, Chuo University Kasuga 1-13-27, Bunkyo-ku, Tokyo 112 8551, JAPAN E-mail : atsu1005@kc.chuo-u.ac.jp E-mail : kawa@civil.chuo-u.ac.jp SATO KOGYO CO., LTD. 12-20, Nihonbashi-Honcho

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i 1. A. M. Turing [18] 60 Turing A. Gierer H. Meinhardt [1] : (GM) ) a t = D a a xx µa + ρ (c a2 h + ρ 0 (0 < x < l, t > 0) h t = D h h xx νh + c ρ a 2 (0 < x < l, t > 0) a x = h x = 0 (x = 0, l) a = a(x,

More information

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yuichiro KITAGAWA Department of Human and Mechanical

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAM

1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAM 1, 2, 2, 2, 2 Recovery Motion Learning for Single-Armed Mobile Robot in Drive System s Fault Tauku ITO 1, Hitoshi KONO 2, Yusuke TAMURA 2, Atsushi YAMASHITA 2 and Hajime ASAMA 2 1 Department of Precision

More information

214 March 31, 214, Rev.2.1 4........................ 4........................ 5............................. 7............................... 7 1 8 1.1............................... 8 1.2.......................

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

213 March 25, 213, Rev.1.5 4........................ 4........................ 6 1 8 1.1............................... 8 1.2....................... 9 2 14 2.1..................... 14 2.2............................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

2 1 ( ) 2 ( ) i

2 1 ( ) 2 ( ) i 21 Perceptual relation bettween shadow, reflectance and luminance under aambiguous illuminations. 1100302 2010 3 1 2 1 ( ) 2 ( ) i Abstract Perceptual relation bettween shadow, reflectance and luminance

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

通信容量制約を考慮したフィードバック制御 -  電子情報通信学会 情報理論研究会(IT)  若手研究者のための講演会 IT 1 2 1 2 27 11 24 15:20 16:05 ( ) 27 11 24 1 / 49 1 1940 Witsenhausen 2 3 ( ) 27 11 24 2 / 49 1940 2 gun director Warren Weaver, NDRC (National Defence Research Committee) Final report D-2 project #2,

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO and Masaru KOBAYASHI Chassis Engineering Management

More information

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2 7 1995, 2017 7 21 1 2 2 3 3 4 4 6 (1).................................... 6 (2)..................................... 6 (3) t................. 9 5 11 (1)......................................... 11 (2)

More information

H 975 [8] [9] 4 H [10] H [11] [15] H I H II H Fig. 2 H [16] [18] [19] H [8] Fig. 3 3 b, β, δ d Double U Joint [20] a e A G β 2 z C B

H 975 [8] [9] 4 H [10] H [11] [15] H I H II H Fig. 2 H [16] [18] [19] H [8] Fig. 3 3 b, β, δ d Double U Joint [20] a e A G β 2 z C B 974 Vol. 19 No. 8, pp.974 982, 2001 H 1 1 2 3 H Design of Hybrid Compliance using Upper/Lower Bound in the Frequency Domain Shaping and Control of Dynamic Compliance of Humanoid Shoulder Mechanisms Masafumi

More information

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake supplied to the engine, and as such are critical elements

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

2012専門分科会_new_4.pptx

2012専門分科会_new_4.pptx d dt L L = 0 q i q i d dt L L = 0 r i i r i r r + Δr Δr δl = 0 dl dt = d dt i L L q i q i + q i i q i = q d L L i + q i i dt q i i q i = i L L q i L = 0, H = q q i L = E i q i i d dt L q q i i L = L(q

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( )

( ) NAIST-IS-MT1051071 2012 3 16 ( ) Pustejovsky 2 2,,,,,,, NAIST-IS- MT1051071, 2012 3 16. i Automatic Acquisition of Qualia Structure of Generative Lexicon in Japanese Using Learning to Rank Takahiro Tsuneyoshi

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsushi UMEMURA, Yoshiharu KANESHIMA, Hiroki MURAKAMI(IHI

More information

Fig. 3: A ball-beam system with the palm circle task. Fig. 5: beam. Geometric parameters of the ball and the Fig. 4: Butterfly task of Cotnact jugglin

Fig. 3: A ball-beam system with the palm circle task. Fig. 5: beam. Geometric parameters of the ball and the Fig. 4: Butterfly task of Cotnact jugglin A Control Method of Juggling Task for Ball-beam System Akira Nakashima (Nanzan University) Abstract This paper deals with the realization of Palm circle task for a ball-beam system in a 2- dimensional

More information

RIMS98R2.dvi

RIMS98R2.dvi RIMS Kokyuroku, vol.084, (999), 45 59. Euler Fourier Euler Fourier S = ( ) n f(n) = e in f(n) (.) I = 0 e ix f(x) dx (.2) Euler Fourier Fourier Euler Euler Fourier Euler Euler Fourier Fourier [5], [6]

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

鉄鋼協会プレゼン

鉄鋼協会プレゼン NN :~:, 8 Nov., Adaptive H Control for Linear Slider with Friction Compensation positioning mechanism moving table stand manipulator Point to Point Control [G] Continuous Path Control ground Fig. Positoining

More information

Gmech08.dvi

Gmech08.dvi 145 13 13.1 13.1.1 0 m mg S 13.1 F 13.1 F /m S F F 13.1 F mg S F F mg 13.1: m d2 r 2 = F + F = 0 (13.1) 146 13 F = F (13.2) S S S S S P r S P r r = r 0 + r (13.3) r 0 S S m d2 r 2 = F (13.4) (13.3) d 2

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( ) 81 4 2 4.1, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. 82 4.2. ζ t + V (ζ + βy) = 0 (4.2.1), V = 0 (4.2.2). (4.2.1), (3.3.66) R 1 Φ / Z, Γ., F 1 ( 3.2 ). 7,., ( )., (4.2.1) 500 hpa., 500 hpa (4.2.1) 1949,.,

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

人文学部研究年報12号.indb

人文学部研究年報12号.indb 制御理論を用いた在庫管理モデルの一解析 * リードタイムが変動する場合 西平直史 1 [1, 2, 3, 4] [1] [2, 3, 4] 1 1 3 2 [2] = +w(k) d(k) (1) 2014 12 1 1 制御理論を用いた在庫管理モデルの一解析 西平 k w(k) d(k) L k u(k) (2) (1) 2 w(k) =u(k L) (2) = +u(k L) d(k) (3)

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter ,a),2,3 3,4 CG 2 2 2 An Interpolation Method of Different Flow Fields using Polar Interpolation Syuhei Sato,a) Yoshinori Dobashi,2,3 Tsuyoshi Yamamoto Tomoyuki Nishita 3,4 Abstract: Recently, realistic

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

report.dvi

report.dvi 998 Technical Report Driftless [9] driftless ( ) driftless, P θ η P dη/ R l, R r W ω l, ω r P θ P dη/ 5-855 -- d/, d/ d = dη d cos θ, = dη sin θ () d = d tan θ () u, u dη/ dθ/ u = dη u = dθ = R lω l +

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 = 5 5. 5.. A II f() f() F () f() F () = f() C (F () + C) = F () = f() F () + C f() F () G() f() G () = F () 39 G() = F () + C C f() F () f() F () + C C f() f() d f() f() C f() f() F () = f() f() f() d =

More information

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability

19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability 19 Systematization of Problem Solving Strategy in High School Mathematics for Improving Metacognitive Ability 1105402 2008 2 4 2,, i Abstract Systematization of Problem Solving Strategy in High School

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

untitled

untitled 1 SS 2 2 (DS) 3 2.1 DS................................ 3 2.2 DS................................ 4 2.3.................................. 4 2.4 (channel papacity)............................ 6 2.5........................................

More information

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d 1 13 Fall Semester N. Yamada Version:13.9.3 Chapter. Preliminalies (1 3) Chapter 1. (4 16) Chapter. (17 9) Chapter 3. (3 49) Chapter 4. (5 63) Chapter 5. (64 7) Chapter 6. (71 8) 11, ISBN 978-4-535-618-4.

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q x-means 1 2 2 x-means, x-means k-means Bayesian Information Criterion BIC Watershed x-means Moving Object Extraction Using the Number of Clusters Determined by X-means Clustering Naoki Kubo, 1 Kousuke

More information

2 0.1 Introduction NMR 70% 1/2

2 0.1 Introduction NMR 70% 1/2 Y. Kondo 2010 1 22 2 0.1 Introduction NMR 70% 1/2 3 0.1 Introduction......................... 2 1 7 1.1.................... 7 1.2............................ 11 1.3................... 12 1.4..........................

More information