Size: px
Start display at page:

Download ""

Transcription

1 ( )

2 i

3 CV F CV F CV F CV F CV F CV F CV F CV F ii

4 iii

5 ( 2 ) CV F CV F CV F ( ) CV F ( ) CV F CV F CV F ( 1 ) iv

6 p = p = p = p = p = p = p = p = p = p = ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 3.11 ) ( 3.12 ) l =2.1R l =2.5R l =3.0R l =3.5R v

7 4.17 l =3.9R vi

8 ( 1 ) vii

9 [ (1982)]

10 1.1: :

11

12 ( 2 ) χ θ([ (1998)]) CV F([ (1998)]) ( 3 ) 104 CV F CV F CV F CV F ( 4 ) 1.3: 4

13 [, (1956)] 1 3 ([, (1956)]) ( ) ( ) 2 5

14 2.1.2 [ (1998)] 4 6

15 2.2 1) 2) 3) [ (1974)] p R(p) R(p) =0 (p<p c ) R(p) > 0 (p>p c ) p c R(p) p c 0 <p c < 1 2 7

16 [ (1974)] R(p) 3 R(p) p c [ (1973)] 2 1 ( ) % 4 55% 1/5 2/5 2 1/ [ (1982)] % 8

17 % 1% % 1% 70% ([ (1998)] [, (1999)] [,, (1999)] [,, (2000)]) [ (1998)] p c p c 1 ( ) 1 ( ) ρ d p CV F(Covering Volume Fraction) CV F CV F ρ d /2 CV F =1 exp (πρp c (d /2) 2 ) (2.1) CV F 9

18 2.2.5 [ (1999)] (2.2.3 ) d ( ) 1 S e S S w n w d = Se S w /S S w nw (2.2) D D =9.5x +8.0y +5.2z +4.0p (2.3) x y z p (1) d/d < 1.0 (2) 55% (2.2.4 ) 55% 10

19 20% 16% 9.5% 55% (3) d<5.2 D =5.2 d/d < [ (1993)] 4 250m 1) 2) 250m 250m 9 3) 60 [ (1985)] m ) 2) 2 11

20 2 V = δ r(w) g(h) (1 c ) δ = a a Vw+b Vm a +b +d V d a+d r(w) = w (2.4) g(h) = h a d a b c w h V d V w V m (m) (m) (m/sec) (%) ( 0.45m/min 0.33m/min 0.38m/min) (0.87m/min) (0.71m/min) δ [ (1999)] 2 α S s 1 s 2 s 3 s 4 k 1 =0.36 k 2 =0.64 k 3 =

21 k 4 =1.00 α = 4i=1 k i s i S β β 0 n S S 0 β 0 = S0 S n 1 a b c d p i l 1 =2.25 l 2 =2.16 l 3 =2.08 l 4 = β = β 0 l i p i (2.5) i=1 p 1 = a n, p 2 = b n, p 3 = c n, p 4 = d n (2.6) 1 y α β y = a 0 + a 1 α + a 2 e bβ a 0 = a 1 = a 2 = b = α : t =4.05 β : t =13.73 R 2 =

22 : 2.1: [ (1974)] [ (1974)] [ (1974)] [ (1973)] [ (1998)] 1 2 [ (1999)]

23

24 ([ (1998)]) [, (1956)] θ t 200 C θ(t) =6200(e 10t e 15t )+200 (2.7) 1 θ 1 (t) =θ(t) C 1 θ 1 (t) = θ(t) 1110 C 2 θ 2 (t) = 3 4 θ 1(t) 833 C 3 θ 3 (t) = 1 2 θ 1(t) 550 C 4 θ 4 (t) = θ 1(t) 260 C d h h = pd 2 (p ) ( ) p 10m 1 2 d =0 (2.8) 2 3 h =0.82d 2 (2.9) 3 4 h =0.15d 2 (2.10) 4 h =0.04d 2 (2.11) 16

25 θ(t) θ 1 (t) θ 2 (t) θ 3 (t) θ 4 (t) t 2.2: [, (1956)] h d =0 h =0.82d 2 h =0.15d 2 h =0.04d 2 d 2.3: [, (1956)] 17

26 2.3.2 a d t V =(a + d)/t ( ) ([ (1997)]) 2.2: t(min) V (m/min) D(m) t 0 = a + 8d D i (1 ) 1+0.1ν t i = a + 8d D i α( ν ν 2 ) α =1.6 t t V = n α(a + d)( ν ν2 ) a + 8d D i n = (a + b ) (1 c ) a + b 0.6 t = a + 8d D ν 2 V = n (a + d)( ν2 ) a + 8d D t = a + 8d D ν 2 V = n (a + d)( ν2 ) a + 8d D a (m) d (m) ν (m/sec) a b c D 0 =1.15( ν) D i = β i D 0 β i D =1.15( ν) D =1.15( ν) [ (1997)] ν 18

27 2.3.3 [ (1972)] =D/2( D ) τ τ 0 = a + 8d δ (1 ) 1+0.1ν τ 1 = a + 8d δ α( ν ν 2 ) α = 1.6 τ +14 τ +25 T t( 2.2) τ x K ( ) a K = 2 + d +(x T 0 ) 1 (a + d) T 1 ( ) a x x T 0 K = 2 + d T ( ) 0 a K = 2 + d +(x T ) 1 (a + d) T ( ) a x x T K = 2 + d T ( ) a K = 2 + d +(x T ) 1 (a + d) T ( ) a x x T K = 2 + d T 19

28 2.3.4 [ (1982)] PC t 0 = x + x 8 a + 8d D i 1+0.1ν (2.12) d =0 a =8 ν =1.5 t 0 =17.5 x =10 D m D k h 4 h =0.04D m 2 h =0.82D k 2 ((2.11) ) ((2.9) ) D k = D m /4 t k0 D 1k t k0 = a + 10d D 1k 1+0.1ν D 1k = D m 4 (2.13) (2.14) m 3 20

29 [, (1983)] m n 2 1 ( ) r 1 r 2 Z E(Z) V (Z) r (2) 1 r 2 r (4) 1 r 2 E(Z) = A 1 b (3) A 2 b (5) r (3) 1 r (2) 2 r 1 V (Z) = 2B 1 b (5) +2B 2 (4) r 2 (2) b (6) 2F 1 r 1 (5) r 2 (2) b (7) +2(D 2 F 2 ) r 1 r (7) 1 r (2) 2 r 1 +2D 1 b (9) +2D 3 (6) r 2 (2) b (8) (8) r (2) 2 b (10) +E(X) E(Y ) {E(X)+E(Y )} 2 X = ( )+( ) Y = ( ) A 1 = 2(b a) A 2 = b 2a +4 B 1 = 6b 12a +16 B 2 = A 1 2 D 1 = 2b 6a +16 (A 2 + B 1 +6b 11a + 16) 21

30 D 2 = 2b 6a +18 D 3 = A 2 2 F 1 = 12b 32a +80 (D 1 + D 2 +2b 5a + 12) F 2 = A 1 A 2 (F 1 +10b 22a + 48) r i (k) = r i (r i 1) (r i k +1) b (k) = b(b 1) (b k +1) a = m + n b = mn [ (1988)] [, (1989)] [, (1989)] ζ r C ρ ˆζ = C +4r Cρ + ρπr 2 (2.15) 22

31 r 0 C + η (r r 0 ) ˆζ = (2.16) 1 (1 C η 0 )exp( (η η 0 )) (r >r 0 ) η =4r Cρ + ρπr 2 η 0 =4r 0 Cρ + ρπr0 2 1 s C = sρ s = α ρ (2.17) [ (1998)] CV F [, (1989)] [ (1998)] [ (1998)] p c [ (1974)] R χ 1 N k i 23

32 n i i i n i χ = ki=1 n i 2 N (2.18) θ 1 θ = 1 N max {n i i =1,..., k} χ VA χ i 1 s i (2.18) n i s i χ A χ A = ki=1 n i s i N S 0 χ VA = ki=1 n i s i S 0 N (2.19) [ (1998)] CV F CV F (1) 3 (2) (1) (2.1) CV F 3 (2) (2.1) ([, (1989)] (2.16) 24

33 (2.1) p c =1 CV F =1 exp (πρ(d /2) 2 ) (2.20) (2.16) C =0 r r 0 =0 ˆζ =1 exp ( (ρπr 2 )) (2.21) [ (1986)] (2.16) [ (1986)] (2.16) r

34 3 3.1 [ (1998)] CV F CV F CV F CV F CV F CV F 3.2 CV F CV F 6 ( ) ( ) 6 40m 26

35 40m 3000m 2 2% 104 (3.1) CV F [ (2001)] [ (2001)] 2 ( 6m) (1) (a) (b) (c) (2) CV F 2.3 ( ) :( ) :( ) =4:2:1 10m 4 (2.11) h =0.04d 2 2 6m h =6 d =5 6=12.25(m) d 10m 2 10m D 10 D10 w = 12(m) D10 b = 6(m) D10 k = 3(m) 27

36 3.1:

37 6m a D a D 10 a ( 10m D 10 ) =( a D a ) a D a Da w = 12 ( a ) = 4.34 a Da b = 6 ( a ) = 2.86 a Da k = 3 ( a ) = 1.98 a D t a = 0 (3.1) a A a = A CV F CV F ([, (1989)] ) CV F

38 1 3.2: ( 2 ) 30

39 (2.19) χ VA χ VA = ki=1 n i s i S 0 N 3.3 CV F CV F 3.3 CV F 0.05 CV F CV F 3.3: CV F CV F 3.1 CV F ([, (1989)]) ([ (1988)]) CV F [ (1999)] (2.2.7 (2.6) ) 31

40 CV F [ (1999)] β 3.4 β CV F β β CV F CV F β 3.4: CV F CV F 3.5 CV F χ VA CV F 0.6 χ VA 0.1 CV F 0.6 χ VA 3.6 CV F χ VA CV F 0.6 χ VA CV F 0.6 χ VA CV F CV F CV F 32

41 χ VA CV F 3.5: CV F ( ) χ VA CV F 3.6: CV F ( ) 33

42 3.4 CV F CV F CV F L 3.7 (a) (b) 3.7: (a) (b) 3.8 L/S 0 χ VA L/S 0 34

43 χ VA L/S 0 3.8: L/S CV F 3.9: CV F 35

44 CV F L/S 0 CV F L/S L/S 0 CV F χ VA CV F CV F L/S 0 χ VA 3.10 CV F L/S 0 χ VA L/S 0 CV F 3.10: CV F χ VA CV F CV F L/S 0 CV F ( ) L/S 0 L/S 0 χ VA CV F L/S 0 CV F L/S 0 ([ (1986)]) 36

45 3.4.2 CV F [ (1999)] β CV F CV F β (2.2.7 ) CV F [ (1998)] 4 (2.2.4 ) 3 χ VA CV F χ VA CV F χ VA : S 0 L/S 0 β CVF (m 2 ) ( /ha) (m/ha) (m) χ VA

46 3.11: 2 38

47 3.12: 5 39

48 3.13: 1 40

49 3.14: 2 41

50 0.1 ( 2 5 ) 0.2 ( 1 2 ) 2 1) 2)

51 3.5 CV F CV F CV F CV F ) 2) 3.15 ([ (1999)]) (1)

52 3.15: 44

53 3.5.3 ( ) 1 6m ( 3.16) CV F χ VA : ( 1 ) CV F χ VA a b /2 2 2 (3.4.2 ) CV F

54 3.16: 46

55 ( ) : 47

56 : 48

57 χ VA CV F 3.18: CV F ( 1 ) 0.02 CV F a. b CV F χ VA χ VA

58 3.19:

59 3.20: 51

60 a b 3.21: 1 52

61 3.5.6 [ (1998)] p c CV F CV F 3.5 CV F CV F CV F CV F CV F 3.5 1) 2) 5 5 3) 2 4) p χ N θ (2.5.1 ) p 13 1 p 21 53

62 p : p = : p =14 54

63 3.24: p = : p = : p = : p =17 55

64 3.28: p = : p = : p = : p =19 56

65 p χ θ χ θ p =20 p : 3.33: 57

66 p =13 p =15 p =15 60% ([ (1998)]) CV F (3.3 ) CV F p =3 p =19 p =5 p =9 p =17 p =13 p = : 58

67 3.7 CV F CV F CV F CV F 59

68 4 4.1 ( ) ((3.1) ) ( 3 ) 2 2 ( 4.2) 60

69 4.1: ( 1 ) 61

70 4.2: ) 1 2) 1 3)

71 2 2 63

72 4.3: 1 ( 1 ) 64

73 4.4: 1 ( 1 ) 65

74 4.5: 1 ( 1 ) 66

75 ) 2) 1) 2) (1) (2) 1 (3.5.1 ) 67

76 ) 2) 3) 4) 5) 6) 68

77 C 1 m (m +1) C 1 C 1 n x 1,..., x n ( 0 <x 1 < <x n ) x 1,..., x n g 1,..., g n 2 g i 1 g i A i A i = xi x i 1 C 1 dx A 1 = = A m+1 x 1,..., x m C 1 (m+1) ( 4.6) 4.4 x 1 x 2 x 3 O 4.6: 69

78 1 2 C 2 m 2m C 2 (m 1) m 1 2 C 2 2m ( 4.7) 4.7: 70

79 m 2m (i + j) (i +1)(j +1) 3 (i + j) (i +1)(j +1) ABC A BC i X 1,..., X i i BC j 1 j ABC (i +1)(j +1) ( 4.8) A B X 1 X 2 X 3 C 4.8: BC j 1 1 (i + j) (i +1)(j +1) 71

80 4 (i + j) (i +1)(j +1) ABCD AB i (i +1) ABCD AD j (j +1) ABCD (i +1)(j +1) ( 4.9) A D B C 4.9: ( 4.10) 5 ( 4.11) 72

81 4.10: 2 ( 3.11 ) 73

82 4.11: 5 ( 3.12 ) 74

83 l 2 g 1 g 2 g 1 l 1 ( 0 <l 1 <l/2) g 1 Y 1 Y 1 g 2 Y 2 Y 2 g 1 g 2 M 1 M 2 ( 4.12) g 1 Y 1 g 2 X Y 2 M 2 Y 2 O M 1 Y : 2 g 1 2 S 1 A 1 A 1 = R 2 sin 1 l 1 2R 1 2 l 1 R 2 l g 2 2 S 2 A 2 A 2 = R 2 sin 1 l l 1 2R 1 2 (l l 1) R 2 (l l 1) 2 4 S 1 S 2 A 12 2 χ 2 χ 2 = A (A 1 A 12 ) 2 +(A 2 A 12 ) 2 +(πr 2 A 1 A 2 + A 12 ) 2 = 4A (πR 2 2A 1 2A 2 )A 12 +2A A A 1 A 2 2πR 2 (A 1 + A 2 )+π 2 R 4 75

84 S 1 S 2 A 12 g 1 OM 1 g 2 OM 2 θ 12 (0 <θ 12 <π) i) 0 <θ 12 < sin 1 l l 1 2R sin 1 l 1 2R A 1 A 2 A 12 = A 1 ii) sin 1 l l 1 2R sin 1 l 1 2R <θ 12 < sin 1 l l 1 2R +sin 1 l 1 2R g 1 g 2 A 12 2 g 1 g 2 X A 12 =( OY 2 Y 1 ) ( OXY 1 ) ( OXY 2 ) ( OY 2 Y 1 ) = 1 ( 2 R2 sin 1 l 1 l l ) 2R +sin 1 1 2R θ 12 ( OXY 1 ) = 1 ( ) l1 2 2 v 1 p 1 ( OXY 2 ) = 1 ( v 2 + l l ) 1 p p 1 = R 2 l p 2 = R 2 (l l 1) 2 4 v 1 = p 2 sin θ 12 + v 2 cos θ 12 v 2 = p 2 cos θ 12 p 1 sin θ 12 A 12 = p 1p 2 p p sin θ 12 2tanθ 12 2 R2 θ 12 + C C = 1 ( 2 R2 sin 1 l 1 l l ) 2R +sin R 4 {(p 1 p 2 )l 1 + lp 2 } iii) sin 1 l l 1 2R +sin 1 l 1 2R <θ 12 <π A 1 A 2 A 12 =0 l 2.1R 2.5R 3.0R 3.5R 3.9R l 1 θ l 1 = l 2R θ 12 = π/2 1) 2R g 2 76

85 2) g 2 1 g θ 12 l χ/(πr 2 ) l 1 θ : l =2.1R χ/(πr 2 ) l 1 θ : l =2.5R 77

86 χ/(πr 2 ) l 1 θ : l =3.0R χ/(πr 2 ) l 1 θ : l =3.5R 78

87 χ/(πr 2 ) l 1 θ : l =3.9R

88

89 5 5.1 CV F CV F CV F CV F 81

90 5.2 [ (1998)] ([ (1982)]) 70% CV F (1) (1a) CV F (1b) (1c) (1d) (1a) CV F CV F 82

91 CV F (1b) (1c) (1d) (1a) (2) 1 (2a) (2b) (2c) (2d) (2a) (2b) (2c) ( ) (2d) 83

92 [ (1998)] :,, [,, (1999)],,,, : ( 2)- -, 525, , [,, (2000)],,, : ( 3)- -, 534, , [, (1999)], : - -, 516, , [ (1982)] :, [ (2001)] :, [ (1986)] :, OR , [ (1988)] :, 23, 19 24, [, (1989)], :, 24, , [, (1983)], :, 18, 37 42,

93 [ (1999)] :, [ (1999)] :,, [ (1973)] : - -, 91, 18 19, [ (1985)] :, [ (1993)] : ( 3 ), [ (1997)] :,, 3, [ (1999)] : - -,, [, (1956)], :, 21., [ (1974)] :, 132, 45 52, [ (1972)] :,, [ (1982)] :, 22, ,

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

2

2 1 2 3 4 5 6 7 8 9 10 I II III 11 IV 12 V 13 VI VII 14 VIII. 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 _ 33 _ 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VII 51 52 53 54 55 56 57 58 59

More information

untitled

untitled i ii iii iv v 43 43 vi 43 vii T+1 T+2 1 viii 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 a) ( ) b) ( ) 51

More information

エクセルカバー入稿用.indd

エクセルカバー入稿用.indd i 1 1 2 3 5 5 6 7 7 8 9 9 10 11 11 11 12 2 13 13 14 15 15 16 17 17 ii CONTENTS 18 18 21 22 22 24 25 26 27 27 28 29 30 31 32 36 37 40 40 42 43 44 44 46 47 48 iii 48 50 51 52 54 55 59 61 62 64 65 66 67 68

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

01_.g.r..

01_.g.r.. I II III IV V VI VII VIII IX X XI I II III IV V I I I II II II I I YS-1 I YS-2 I YS-3 I YS-4 I YS-5 I YS-6 I YS-7 II II YS-1 II YS-2 II YS-3 II YS-4 II YS-5 II YS-6 II YS-7 III III YS-1 III YS-2

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

困ったときのQ&A

困ったときのQ&A ii iii iv NEC Corporation 1997 v P A R T 1 vi vii P A R T 2 viii P A R T 3 ix x xi 1P A R T 2 1 3 4 1 5 6 1 7 8 1 9 1 2 3 4 10 1 11 12 1 13 14 1 1 2 15 16 1 2 1 1 2 3 4 5 17 18 1 2 3 1 19 20 1 21 22 1

More information

入門ガイド

入門ガイド ii iii iv NEC Corporation 1998 v P A R 1 P A R 2 P A R 3 T T T vi P A R T 4 P A R T 5 P A R T 6 P A R T 7 vii 1P A R T 1 2 2 1 3 1 4 1 1 5 2 3 6 4 1 7 1 2 3 8 1 1 2 3 9 1 2 10 1 1 2 11 3 12 1 2 1 3 4 13

More information

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>

<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D> i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

More information

SC-85X2取説

SC-85X2取説 I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11

More information

ÿþ

ÿþ I O 01 II O III IV 02 II O 03 II O III IV III IV 04 II O III IV III IV 05 II O III IV 06 III O 07 III O 08 III 09 O III O 10 IV O 11 IV O 12 V O 13 V O 14 V O 15 O ( - ) ( - ) 16 本 校 志 望 の 理 由 入 学 後 の

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

パソコン機能ガイド

パソコン機能ガイド PART12 ii iii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 3 1 4 5 1 6 1 1 2 7 1 2 8 1 9 10 1 11 12 1 13 1 2 3 4 14 1 15 1 2 3 16 4 1 1 2 3 17 18 1 19 20 1 1

More information

パソコン機能ガイド

パソコン機能ガイド PART2 iii ii iv v 1 2 3 4 5 vi vii viii ix P A R T 1 x P A R T 2 xi P A R T 3 xii xiii P A R T 1 2 1 3 4 1 5 6 1 2 1 1 2 7 8 9 1 10 1 11 12 1 13 1 2 3 14 4 1 1 2 3 15 16 1 17 1 18 1 1 2 19 20 1 21 1 22

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o 78 2 78... 2 22201011... 4... 9... 7... 29 1 1214 2 7 1 8 2 2 3 1 2 1o 2o 3o 3 1. I 1124 4o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o 72 1. I 2o 3o 4o 5o 6o 7o 2197/6 9. 9 8o 1o 1 1o 2o / 3o 4o 5o 6o

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3

1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22 8... 22 3... 22 1... 22 2... 23 3... 23 4... 24 5... 24 6... 25 7... 31 8... 32 9... 3 3 2620149 3 6 3 2 198812 21/ 198812 21 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 2... 1 1... 1 2... 2 3... 2 4... 4 5... 4 6... 4 7... 22

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

これわかWord2010_第1部_100710.indd

これわかWord2010_第1部_100710.indd i 1 1 2 3 6 6 7 8 10 10 11 12 12 12 13 2 15 15 16 17 17 18 19 20 20 21 ii CONTENTS 25 26 26 28 28 29 30 30 31 32 35 35 35 36 37 40 42 44 44 45 46 49 50 50 51 iii 52 52 52 53 55 56 56 57 58 58 60 60 iv

More information

パワポカバー入稿用.indd

パワポカバー入稿用.indd i 1 1 2 2 3 3 4 4 4 5 7 8 8 9 9 10 11 13 14 15 16 17 19 ii CONTENTS 2 21 21 22 25 26 32 37 38 39 39 41 41 43 43 43 44 45 46 47 47 49 52 54 56 56 iii 57 59 62 64 64 66 67 68 71 72 72 73 74 74 77 79 81 84

More information

これでわかるAccess2010

これでわかるAccess2010 i 1 1 1 2 2 2 3 4 4 5 6 7 7 9 10 11 12 13 14 15 17 ii CONTENTS 2 19 19 20 23 24 25 25 26 29 29 31 31 33 35 36 36 39 39 41 44 45 46 48 iii 50 50 52 54 55 57 57 59 61 63 64 66 66 67 70 70 73 74 74 77 77

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

平成18年版 男女共同参画白書

平成18年版 男女共同参画白書 i ii iii iv v vi vii viii ix 3 4 5 6 7 8 9 Column 10 11 12 13 14 15 Column 16 17 18 19 20 21 22 23 24 25 26 Column 27 28 29 30 Column 31 32 33 34 35 36 Column 37 Column 38 39 40 Column 41 42 43 44 45

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30

1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 2420128 1 6 3 2 199103 189/1 1991031891 3 4 5 JISJIS X 0208, 1997 1 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 3 2... 4... 4... 4... 4... 4... 6... 10... 11... 15... 30 1 3 5 7 6 7

More information

™…

™… i 1 1 1 2 3 5 5 6 7 9 10 11 13 13 14 15 15 16 17 18 20 20 20 21 22 ii CONTENTS 23 24 26 27 2 31 31 32 32 33 34 37 37 38 39 39 40 42 42 43 44 45 48 50 51 51 iii 54 57 58 60 60 62 64 64 67 69 70 iv 70 71

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

活用ガイド (ハードウェア編)

活用ガイド (ハードウェア編) (Windows 98) 808-877675-122-A ii iii iv NEC Corporation 1999 v vi PART 1 vii viii PART 2 PART 3 ix x xi xii P A R T 1 2 1 3 4 1 5 6 1 7 8 1 9 10 11 1 12 1 1 2 3 13 1 2 3 14 4 5 1 15 1 1 16 1 17 18 1 19

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

III

III III 1 1 2 1 2 3 1 3 4 1 3 1 4 1 3 2 4 1 3 3 6 1 4 6 1 4 1 6 1 4 2 8 1 4 3 9 1 5 10 1 5 1 10 1 5 2 12 1 5 3 12 1 5 4 13 1 6 15 2 1 18 2 1 1 18 2 1 2 19 2 2 20 2 3 22 2 3 1 22 2 3 2 24 2 4 25 2 4 1 25 2

More information

iii iv v vi vii viii ix 1 1-1 1-2 1-3 2 2-1 3 3-1 3-2 3-3 3-4 4 4-1 4-2 5 5-1 5-2 5-3 5-4 5-5 5-6 5-7 6 6-1 6-2 6-3 6-4 6-5 6 6-1 6-2 6-3 6-4 6-5 7 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 8 8-1

More information

1... 1 1... 1 2... 1 3... 1 4... 4 5... 7 6... 7 7... 12 8... 12 9... 13 10... 13 11... 13 12... 14 2... 14 1... 14 2... 16 3... 18 4... 19 5... 19 6.

1... 1 1... 1 2... 1 3... 1 4... 4 5... 7 6... 7 7... 12 8... 12 9... 13 10... 13 11... 13 12... 14 2... 14 1... 14 2... 16 3... 18 4... 19 5... 19 6. 3 2620149 1 3 8 3 2 198809 1/1 198809 1 1 3 4 5 JISJIS X 0208 : 1997 JIS 4 JIS X 0213:2004 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1 1... 1 2... 1 3... 1 4... 4 5... 7 6... 7 7... 12 8... 12

More information

7 i 7 1 2 3 4 5 6 ii 7 8 9 10 11 1 12 13 14 iii.......................................... iv................................................ 21... 1 v 3 6 7 3 vi vii viii ix x xi xii xiii xiv xv 26 27

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

1 10 200 15 20 50 (1) (2) 45 A4 JICA 15 WS 1 [] a. b. 10 A 30 15 15 NGO PC 5 15 15 15 15 NGO 1948 1970 10 NGO 90 AB 40 40 WS 1 NGO 40 WS Q 43 63 73 15 9 8 5 5 4 63 17 9 8 6 6 4 2000 14 15 100 2000 1

More information

i ii iii iv v vi vii viii ix x xi xii xiii xiv xv xvi 2 3 4 5 6 7 $ 8 9 10 11 12 13 14 15 16 17 $ $ $ 18 19 $ 20 21 22 23 24 25 26 27 $$ 28 29 30 31 $ $ $ 32 33 34 $ 35 $ 36 $ 37 38 39 40 $ 41 42 43 44

More information

ii iii iv CON T E N T S iii iv v Chapter1 Chapter2 Chapter 1 002 1.1 004 1.2 004 1.2.1 007 1.2.2 009 1.3 009 1.3.1 010 1.3.2 012 1.4 012 1.4.1 014 1.4.2 015 1.5 Chapter3 Chapter4 Chapter5 Chapter6 Chapter7

More information

untitled

untitled I...1 II...2...2 III...3...3...7 IV...15...15...20 V...23...23...24...25 VI...31...31...32...33...40...47 VII...62...62...67 VIII...70 1 2 3 4 m 3 m 3 m 3 m 3 m 3 m 3 5 6 () 17 18 7 () 17 () 17 8 9 ()

More information

AccessflÌfl—−ÇŠš1

AccessflÌfl—−ÇŠš1 ACCESS ACCESS i ii ACCESS iii iv ACCESS v vi ACCESS CONTENTS ACCESS CONTENTS ACCESS 1 ACCESS 1 2 ACCESS 3 1 4 ACCESS 5 1 6 ACCESS 7 1 8 9 ACCESS 10 1 ACCESS 11 1 12 ACCESS 13 1 14 ACCESS 15 1 v 16 ACCESS

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

広域防災拠点検討会報告書030723表紙_0829_.PDF

広域防災拠点検討会報告書030723表紙_0829_.PDF 15 3 i 15 3 ii iii iv ( ) ( ) ( ) ... i...iii... 1.... 1.... 1..... 1..... 2.... 3... 5.... 5..... 5..... 5.... 6..... 6..... 6.... 7..... 7..... 8... 12... 13.... 13..... 13..... 16..... 16.... 17....

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

新たな基礎年金制度の構築に向けて

新たな基礎年金制度の構築に向けて [ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9

More information

M41 JP Manual.indd

M41 JP Manual.indd i ii iii iv v vi vii 1 No / A-B EQ 2 MIC REC REC00001.WAV Stereo CH:01 0:00:00 1:50:00 3 4 5 6 7 8 9 10 11 12 1 1 F F A A 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Φ 35 36 37 38

More information

86 7 I ( 13 ) II ( )

86 7 I ( 13 ) II ( ) 10 I 86 II 86 III 89 IV 92 V 2001 93 VI 95 86 7 I 2001 6 12 10 2001 ( 13 ) 10 66 2000 2001 4 100 1 3000 II 1988 1990 1991 ( ) 500 1994 2 87 1 1994 2 1000 1000 1000 2 1994 12 21 1000 700 5 800 ( 97 ) 1000

More information

(報告書まとめ 2004/03/  )

(報告書まとめ 2004/03/  ) - i - ii iii iv v vi vii viii ix x xi 1 Shock G( Invention) (Property rule) (Liability rule) Impact flow 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 (

More information

CRS4

CRS4 I... 1 II... 1 A... 1 B... 1 C... 1 D... 2 E... 3 III... 3 A... 3 B... 4 C... 5 IV... 8 A... 8 B... 8 C... 9 D... 10 V... 11 A... 11 B... 11 C... 12 VI... 12 A... 12 B... 12 C... 12 VII... 13 ii I II A

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8... 取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

活用ガイド (ソフトウェア編)

活用ガイド (ソフトウェア編) ii iii iv NEC Corporation 1998 v vi PA RT 1 vii PA RT 2 viii PA RT 3 PA RT 4 ix P A R T 1 2 3 1 4 5 1 1 2 1 2 3 4 6 1 2 3 4 5 7 1 6 7 8 1 9 1 10 1 2 3 4 5 6 7 8 9 10 11 11 1 12 12 1 13 1 1 14 2 3 4 5 1

More information

()

() () vii viii 1 3 3 3 4 5 5 5 6 7 7 8 10 10 10 11 11 11 11 11 11 12 12 12 15 15 15 ii 16 16 17 17 17 17 17 19 19 19 20 21 21 23 23 24 25 25 26 26 26 26 27 27 27 27 27 28 28 28 28 28 29 29 29 29 30 30 30

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

untitled

untitled 23 12 10 12:55 ~ 18:45 KKR Tel0557-85-2000 FAX0557-85-6604 12:55~13:00 13:00~13:38 I 1) 13:00~13:12 2) 13:13~13:25 3) 13:26~13:38 13:39~14:17 II 4) 13:39~13:51 5) 13:52 ~ 14:04 6) 14:05 ~ 14:17 14:18 ~

More information

I

I I II III IV V VI VII VIII IX X XI XII XIII XIV 1. 2 3 4 5 2. 6 7 8 3. 1 2 3 9 4 5 10 6 11 4. 1 2 3 1 2 12 1 2 3 1 2 3 13 14 1 2 1 15 16 1. 20 1 21 1 22 23 1 2 3 4 24 1 2 ok 25 1 2 26 1 2 3 27 2. 28

More information