量子力学A

Size: px
Start display at page:

Download "量子力学A"

Transcription

1 c S

2

3 S S, t = t = 0, S S x v S t, x, y, z, S t, x, y, z x, y, z, t x, y, z, t x = x vt, y = y, z = z, t = t x = x + vt, y = y, z = z, t = t, S c S c v,, x = α x vt, y = y, z = z 1.1 x = α x + vt, y = y, z = z 1., α t = t = 0 x S c, S c t x = ct S, t x = c t x = ct, x = c t c t = αct vt = αc vt, ct = αc t + vt = αc + vt cc tt = α c vc + vtt v = 0 α = 1 > 0 cc α = c vc + v c = c v α = 1, c = c c α = c vc + v = v /c 1.1 x 1. x = α αx vt + vt = α x α vt + αvt, t = α t + 1 α α v x α = 1 t = t, 1.3 t = t vx/c 1 v /c 1.4

4 1, S S x, y, z, t t = t vx/c 1 v /c, x vt x = 1 v /c, y = y, z = z, t ct ct = ct v/c x 1 v /c, x = x v/c ct 1 v /c, y = y, z = z ct x y z = ct x y z 1.6 x 0 = ct, x 1 = x, x = y, x 3 = z x µ µ 0, 1,, 3 1 0, 1,, 3, 1,, 3 x µ = x 0, x k = x 0, x 1, x, x 3, 0 3, 1 3, 1, µ = ν = 0 g µν = 1, µ = ν = 1,, 3 0, µ ν 1.7, 1.6 g µν x µ x ν = g µν x µ x ν 1.8, µ, ν g µν x µ x ν = g µν x µ x ν µ=0 ν=0 µ=0 ν=0, 1.5 x µ = a µ ν x ν a µ ν xµ, g σρ x σ x ρ = g σρ a σ µx µ a ρ νx ν = g σρ a σ µ a ρ ν x µ x ν = g µν x µ x ν g σρ a σ µ a ρ ν = g µν 1.10

5 1 3 µ, ν, µ = ν 4 µ ν 16 4/ = 6 10, 16 a µ ν 6, 1.8 a µν a µν a µ ν,,, a µ ν 4 4 A, A µν = a µ ν A Ã 1.10 Ã µν = A νµ = a ν µ 1.11 Ã µσ g σρ A ρν = ÃGA µν = G µν, 4 4 G G µν = g µν detã = deta detãga = detg deta = detg deta = deta µ ν = ± µ = ν = 0 3 a 0 0 a k 0 = 1, a 0 0 = ± 1 + k=1 1/ 3 a k 0 deta µ ν a 0 0 detaµ ν = 1, a proper Lorentz transformation 1.5 a 0 0 = a 1 1 = 1 1 v /c, a0 1 = a 1 0 = k=1 v/c 1 v /c, a = a 3 3 = 1, = 0 1.1, deta µ ν = 1, a deta µ ν = 1, a x 4 = ix x 1 = 1 1 v /c x1 + iv/c 1 v /c x4, x 4 = 1 1 v /c x4 iv/c 1 v /c x1 1 iv/c + = 1 1 v /c 1 v /c cos φ = 1 1 v /c, sin φ = iv/c 1 v /c φ x 1 = x 1 cos φ + x 4 sin φ, x 4 = x 4 cos φ x 1 sin φ x φ θ φ = i θ cos φ = cosh θ, sin φ = i sinh θ x 1 = x 1 cosh θ x 0 sinh θ, x 0 = x 0 cosh θ x 1 sinh θ 1.13 cosh θ = 1 1 v /c, sinh θ = v/c 1 v /c

6 1 4 1., 0 S F x 0, x 1, x, x 3 F x S, x µ = a µ νx ν F x F x = F x, F x F x = g µν x µ x ν 1 4 V µ x, x µ V µ x = a µ νv ν x 1.14 V µ x contravariant vector, V µ g µν V ν, V 0 = V 0, V k = V k V µ covariant vector, V µ V µ V µ = g µν V ν, g µν g µν V µ V µ,, 3, g µν, g µν V µ V µ = g µσ V σ = g µσ a σ ρv ρ = g µσ a σ ρ g ρν V ν = a ν µ V ν, a ν µ = g µσ a σ ρ g ρν , a ν µ µ aσ ρ σ g µσ ρ ν 1.10 g σρ a σ µ a ρ λ gλν = g µλ g λν a σ µ a ν σ = δ ν µ, δ ν µ = g µλ g λν = { 1, µ = ν 0, µ ν 1.16 δ ν µ 1.14, V µ aµ σ = a µ νaµ σ V ν = δν σ V ν = V σ, V µ a µ σ = a µ σaµ ν V ν = δσ ν V ν = V σ V µ = V ν a µ ν, V µ = V ν a ν µ 1.17

7 1 5 A µ, B µ A B A B = A µ B µ = A µ B µ = A 0 B 0 A k B k = A 0 B 0 A B A µ B µ = a µ σ a ρ µ A σ B ρ = δ ρ σ A σ B ρ = A σ B σ,,, A µ A A A : A = A 0 A A A > 0, time like vector, A < 0 space like vector, A = 0 null vector A, 3 x µ / x µ µ µ = 1 x µ = c t, 1.18 µ = xν = x µ x µ x ν 1.17 x ν = x µ aµ ν xν / x µ = aµ ν µ = aµ ν ν, µ µ µ = g µν ν = 1 c t, 1 c t = µ µ 1.19 µ µ = µ µ 1.18, 1.19 A µ = A 0, A, A µ = A 0, A T µν x = V µ xu ν x T µν x = V µ x U ν x = a µ σ a ν ρv σ xu ρ x = a µ σ a ν ρ T σρ x, T µν x = a µ σ a ν ρ T σρ x 1.0, T µν x, T ν µ x T µν λσ

8 1 6 contraction 1, contraction, T µ ν = A µ B ν 0 T µ µ = A µ B µ 1.3, 1.1 B = 0, E = 1 ε 0 ρ, B t B = A, 1. 1 c t A = A A 1 c t + E = B 1 c E t = µ 0j, c = 1 µ0 ε 0 1. E = A t φ 1.3 φ 1 φ t c t + A = 1 ρ 1.4 ε 0 A + 1 φ c t + A = µ 0 j 1.5 A 0 = 1 c φ, A1 = A x, A = A y, A 3 = A z A 0 j 0 = cρ, j 1 = j x, j = j y, j 3 = j z 1 φ A0 c + A = t x 0 + Ak x k = νa ν x 0 νa ν = A 0 0 ν A ν = 1 ε 0 c ρ = µ 0 cρ = µ 0 j A k + 1.6, k = = x k x k x k νa ν = A k k ν A ν = µ 0 j k 1.7 A µ µ ν A ν = µ 0 j µ 1.8, 1.

9 µ µ 0 µ j µ = µ A µ ν A ν = 0, µ j µ = ρ t + j = 0 j µ x, µ j µ, µ j µ = 0 µ j µ = 0, µ = a ν µ ν µ j µ x = a ν µ ν j µ x j µ x = a µ λ jλ x µ j µ x = a ν µ a µ λ νj λ x = δ ν λ ν j λ x = µ j µ x = 0 j µ x, µ j µ x = 0 µ j µ x = 0, j µ x ρ j cρ, j 1, φ A A µ, j µ, =, νa ν = ν A ν A µ µ νa ν µ 0 j µ = a µ λ A λ λ ν A ν µ 0 j λ, S 1.8 S,, ν ν A µ ν µ A ν = ν ν A µ µ A ν ν F νµ = µ 0 j µ, F µν = µ A ν ν A µ = F νµ F µν E B k = / x k = / x k B x = A z y A y z = A A = F 3, B y = F 13, B z = F 1 E x = A x t φ x = c 1 A 0 0 A 1 = cf 10, E y = cf 0, E z = cf 30 0 E x /c E y /c E z /c E F µν = x /c 0 B z B y E y /c B z 0 B x E z /c B y B x 0 E, B, F µν E B E B, F µν A µ χx Ā µ = A µ µ χ, φ = φ χ, Ā = A + χ 1.9 t

10 1 8 Āµ F µν F µν = µ Ā ν ν Ā µ = µ A ν ν A µ µ ν χ + ν µ χ = µ A ν ν A µ = F µν Āµ A µ Āµ µ ν Ā ν = A µ µ ν A ν µ χ + µ ν ν χ = A µ µ ν A ν, Ā µ A µ A µ,, µ A µ = 0 µ A µ 0 µ Ā µ = µ A µ χ χ = µ A µ χx 1.8 A µ = µ 0 j µ F µν, A F = AF Ã A 1.1 b 0 1 A =, b = β 1 β β 1, β = v c 0, 1,, F 4 E x = E x, E y = E y vb z, 1 β E z = E z + vb y 1 β 1.30 B x = B x, B y = B y + ve z /c 1 β, B z = B z ve y /c 1 β 1.31 S, B e, S, B x v,, E = 0 E = v B 1 β, B = B 1 β v B v 1 β v, v = v, 0, 0 S V, F F = ee + ev B = e v + V B 1 v B V v + e 1 1 β 1 β v

11 1 9 V = v F = 0 S, e v B ee, S, e v x, S E x = e x 4πε 0 r 3, E y = e y 4πε 0 r 3, E z = e z 4πε 0 r 3, B = 0, r = x + y + z S S x v 1.30, 1.31 v v, E, B E, B E x = e x 4πε 0 r 3, E y = e y 1 4πε 0 r 3, E z = e z 1 1 β 4πε 0 r 3 1 β B x = 0, B y = v c e 4πε 0 z r β, B z = v c e 4πε 0 y r β x = x vt/ 1 β, y = y, z = z E = 1 e x vt 1 β 4πε 0 r 3, B = 1 c v E, x vt r = 1 β + y + z 1.3 v = v, 0, 0 A µ A 0 = φ c = A 0 + βa x, A x = A x + βa 0, A y = A 1 β 1 β y, A z = A z φ = φ = e 4πε 0 r, A = 0 1 e 1 β 4πε 0 r, A = 1 µ 0 ev 1 β 4π r φx = r = x vt 1 β + y + z =, vt, 0, 0 x 1 β β 0 E e x vt 4πε 0 r 3, B µ 0 ev x vt 4π r 3, r = x vt + y + z 1/ E vt, 0, 0 e, B e v δx vt , 1.31 x = 0, y, β 1 v c,, E B

12 10, m v, E p p = mv 1 v /c, E = mc 1 v /c = c p + mc p µ = E/c, p p µ,, p 0 = E c i c p = p µ p µ = p 0 p = m c t = i x 0, pk i x k = + i x k = i k, p µ ˆp µ i µ.1 [ x k, ˆp l ] = i δ kl, [ x 0, ˆp 0 ] = i, [ x µ, ˆp ν ] = i g µν.1,, N ψ 1 t, x ψ t, x ψt, x =., x ρt, x ψ N t, x ρt, x = ψ t, x ψt, x = N ψ a t, x., ψt, x H a=1 i ψ t = Hψ, i ψ a = t N H ab ψ b.3 b=1, ψ, ϕ d 3 r ψ Hϕ = d 3 r ϕ Hψ, d 3 r ψah ab ϕ b = ab ab d 3 r ϕ a H ab ψ b i d d 3 r ψ ψ = d 3 r i ψ a dt t ψ a + ψa i ψ a = t a d 3 r ab ψ a H ab ψ b + ψ ah ab ψ b

13 11 H d 3 r ab ψ a H ab ψ b = d 3 r ab ψ ah ab ψ b d d 3 r ψ ψ = 0.4 dt..3.3,.3,, 1, H = c α ˆp + mc β = i c α + mc β.5 α = α x, α y, α z β N N H d 3 r ψa β ab ϕ b = d 3 r ϕ a β ab ψ b = d 3 r ψaβ baϕ a ab ab ab β ab = βba = β ab, β i d 3 r ψa α ab ϕ b = d 3 r ϕ a i α ab ψ b ab ab d 3 r ϕ a i α ab ψ b = i ab ab d 3 r ψ b α ab ϕ a = i ab d 3 r ψ a α ba ϕ b α p µ p µ m c = 0 ψ p µ ˆp µ ˆp µ ˆp µ m c ψ = c t + m c ψ = ψ t = Hi ψ t = H ψ.7 H = c + mc α 1 = α x, α = α y, α 3 = α z,.5 H = c α α i m c 3 α β + βα + mc β = c 3 k,l=1.8 α k α l + α l α k x k i m c3 xl 3 α k β + βα k x k + mc β k=1 α k α l + α l α k = δ kl, α k β + βα k = 0, β = α k, β,, α k = β = 1,,,

14 1, N α k = β = 1 α k, β ± 1 β α k α k + βα k β = 0, β + α k βα k = 0, k, TrAB = TrBA Trα k = Trβα k β = Trα k β = Trα k = 0, Trβ = 0, β U b b 0 U 1 βu = 0 0 b 3, b k = β = ± n +, 1 n n + + n = N Trβ = TrU 1 βu = k b k = n + n = 0 N = n + = N N =, 4 N N = 4, 0 σ 1 0 α =, β =.10 σ σ σ = σ x =, σ = σ y = i i 0, σ 3 = σ z = , , 0 1, β N = ψ 4 ψ 1 t, x ψ t, x ψt, x = ψ 3 t, x ψ 4 t, x.11 i ψ t = Hψ, H = c α ˆp + mc β, ˆp = i.1 α β ,

15 13 A µ = φ/c, A, p µ p µ qa µ, q = < 0 ˆp µ ˆp µ qa µ, i t i qφ, ˆp ˆp qa t.1 i ψ t = Hψ, H = qφ + c α ˆp qa + mc β ψt, x = e iet/ ϕx, mc, E = mc + ε,.13 Hϕx = mc + ε ϕx.14 4 ϕx F x, Gx F x ϕx = Gx,.10 H mc V 0 c σ ˆπ ϕ = c σ ˆπ V 0 mc F G, V 0 x = qφx, ˆπ = ˆp qa.14 V 0 F + c σ ˆπ G = εf, V0 mc G + c σ ˆπF = εg.15 mc, mc V 0, ε c G = mc σ ˆπF = 1 1 ε V 0 + ε V 0 mc mc + σ ˆπ σ ˆπF mc F H NR F = εf, H NR = σ ˆπ σ ˆπ m + V 0 σ a σ b = a b + iσ a b

16 14 σ ˆπ σ ˆπ = ˆπ + iσ ˆπ ˆπ ˆπ ˆπ ˆπ = q ˆp A + A ˆp = i q A = i q B, H NR = 1 q ˆp qa g m m S B + V 0, S = σ, g = S,,,, g =.003 1/ 1, g g =,., A = 0 V 0 r = x.16 1 G 1 mc 1 ε V 0 mc σ ˆpF H NR + H F = εf H 1 4m c r dv 0 dr σ L L = x ˆp β/c γ µ = γ 0, γ, γ 0 = β, γ = βα i γ 0 ψ x 0 = qγ 0 A 0 + γ 0 α ˆp qa + mc ψ [ γ 0 i 0 qa 0 ] γ ˆp qa mc ψ = 0 γ µ i µ qa µ = γ 0 i 0 qa 0 γ k i k qa k = γ 0 i 0 qa 0 γ ˆp qa,.13 [ γ µ ] i µ qa µ mc ψ = 0.17

17 15, /a γ µ a µ = γ 0 a 0 γ a.18 i / q /A mc ψ = 0.9 γ µ α k = γ 0 γ k γ 0 γ k γ 0 γ l + γ 0 γ l γ 0 γ k = δ kl, γ 0 γ k γ 0 + γ 0 γ k = 0, γ 0 = 1 γ 0 γ 0 γ k + γ k γ 0 = 0 γ k γ 0, 1 γ k γ l + γ l γ k = δ kl 3 1 γ µ γ ν + γ ν γ µ = g µν, β γ 0 = γ 0 α k γ 0 γ k = γ k γ 0 = γ k γ 0 = γ 0 γ k γ k = γ 0 γ k γ 0 = γ k γ k γ 0 = γ 0 γ µ = γ 0 γ µ γ 0 γ µ γ ν + γ ν γ µ = g µν, γ µ = γ 0 γ µ γ 0.19 γ µ γ µ = g µν γ ν, γ 0 = γ 0, γ k = γ k γ 0 γ 0 = γ 0 = 1, γ k γ k = γ k = 1, k γ µ γ µ, γ 5 = γ 5 iγ 0 γ 1 γ γ 3.0 γ 5 γ 5 = 1, γ 5 = γ 5 γ 5 γ µ + γ µ γ 5 = σ γ =, γ 0 = σ , γ 5 = /a = a, γ µ /aγ µ = /a, γ µ /a/bγ µ = 4 a b

18 16.4 H.13 ψ t = c α ψ + 1 qφ cqα A + mc β ψ i ψ t = c ψ α 1 i ψ qφ cqα A + mc β, ρ = ψ ψ ρ t = ψ ψ ψ + ψ t t = c ψ α ψ c ψ α ψ = c ψ αψ ρ t + j = 0, j = c ψ αψ j ψ ψ γ 0. ρ = ψγ 0 ψ, j = c ψ γ 0 αψ = c ψ γψ j µ = cρ, j j µ = c ψγ µ ψ µ j µ = 0 j µ, γ µ ν.19 1 γ ν γ µ = γ ν γ µ γ ν, ν Tr γ µ = Tr γ µ γ ν γ ν = Tr γ µ = 0, Tr γ 5 = 0.3,.19 1 Tr γ µ γ ν = g µν Tr1 = 4 g µν.4 n Tr /a 1 /a n = Tr /a 1 /a n γ 5 γ 5 = Tr γ 5 /a 1 /a n γ 5 γ 5 γ µ γ 5 /a 1 /a n = 1 n /a 1 /a n γ 5.4 n Tr /a 1 /a n = Tr /a 1 /a n = 0.5 Tr /a /b = a µ b ν Tr γ µ γ ν = 4 a b.6 γ µ γ ν = g µν γ ν γ µ /a /b = a b /b /a, 4 /a /b /c /d = a b /b /a /c /d = a b /c/d /b a c /c/a /d = a b /c/d a c /b/d + /b/c a d /d /a

19 17 Tr /b /c /d /a = Tr /a /b /c /d Tr /a /b /c /d = a b Tr /c/d a c Tr /b/d + a d Tr /b/c = 4 a b c d a c b d + a d b c.7 n Tr /a 1 /a n = a 1 a Tr /a 3 /a n a 1 a 3 Tr /a /a 4 /a n + + a 1 a n Tr /a /a n 1.8, n n

20 = c = ,,, a µ ν a µ ν deta µ ν = ± 1, a a deta µ ν = 1, a 0 0 = 1, deta µ ν = 1, a 0 0 1, ω µ ν x µ = x µ + ω µ ν x ν = δ µ ν + ω µ ν x ν, a µ ν = δ µ ν + ω µ ν 3.1 a λ µa ν λ = δ ν µ ω 1 δ λ µ + ω λ µ δ ν λ + ωλ ν = δµ ν + ω ν µ + ωµ ν = δµ ν ω ν µ + ω ν µ = 0, ω µν + ω νµ = ω µν 6,,, x S x z x, x = x, x 3 = x 3, x 0 x 1 x 0 x 1 x = x 0 x 1, x = x 0 x x 0 x 1 = x 0 x 1 + ω 0 0 ω 0 1 ω 1 0 ω 1 1 x 0 x 1 = x 0 x 1 + ω 00 ω 01 ω 10 ω 11 x 0 x 1 3. ω 00 = ω 11 = 0, ω 01 = ω 10 ω 01 = θ 3.3 x = 1 θ ω tx x, ω tx =

21 3 19 θ θ = θ/n ω tx = 1 x = lim N 1 θ ω tx N x = exp θω tx x θ k exp θω tx = k! + ω θ k+1 tx k + 1! k=0 k=0 cosh θ = cosh θ ω tx sinh θ = sinh θ sinh θ cosh θ 3.4 x 0 = x 0 cosh θ x 1 sinh θ, x 1 = x 1 cosh θ x 0 sinh θ 1.13 cosh θ = 1, tanh θ = v v 3.4 a µ ν = cosh θ sinh θ 0 0 sinh θ cosh θ deta µ ν = cosh θ sinh θ = 1, a 0 0 = cosh θ 1 z x 1 x x 1 x x = x 1 x, x = x 1 x x 1 x = x 1 x + ω 1 1 ω 1 ω 1 ω x 1 x = x 1 x 0 ω 1 ω 1 0 x 1 x ω 1 = ω 1 ω 1 = θ x = 1 i θ ω xy x, ω xy =, θ ω xy = 1 x = exp i θ ω xy x 0 i i 0 exp i θω xy = k=0 iθ k k! i ω xy = cos θ i ω xy sin θ = k=0 i k θ k+1 k + 1! cos θ sin θ sin θ cos θ

22 3 0 x = x cos θ + y sin θ, y = x sin θ + y cos θ θ a µ ν = cos θ sin θ 0 0 sin θ cos θ deta µ ν = cos θ + sin θ = 1, a 0 0 = 1 3. S.17 [ γ µ ] i µ qa µ x m ψx = 0 3.6, S 4 ψ x x µ = a µ νx ν x = ax ax µ = a µ νx ν ψx ψ x 4 4 Ra ψ x = ψ ax = Raψx 3.7 ψx = R 1 aψ x 3.6 [ γ µ R 1 ] i µ qa µ x R 1 m ψ x = 0 R [ Rγ µ R 1 ] i µ qa µ x m ψ x = A µ x = A νx a ν µ, µ = ν a ν µ [ ] Rγ µ R 1 a ν µ i ν qa νx m ψ x = 0 a µ ν Rγ µ R 1 a ν µ = γ ν, a ν µγ µ = R 1 γ ν R 3.8 R [ γ µ ] i µ qa µx m ψ x = 0,, R R = 1 i 4 σ µν ω µν 3.9

23 3 1 { σ µν i γ µ γ ν γ ν γ µ = 0, µ = ν iγ µ γ ν, µ ν 3.10 S = σ µν ω µν R = 1 i S/4 1 + i4 S R = 1 + i4 1 S i4 S = 1 + S 16 ω 1 S R 1 = 1 + i S/4 µ = ν ω µν = 0 i Sγ ν γ ν S 4 R 1 γ ν R = γ ν + i 4 Sγ ν γ ν S S = σ αβ ω αβ = iγ α γ β ω αβ i Sγ ν γ ν S = ωαβ 4 4 γ ν γ α γ β γ α γ β γ ν γ ν γ α + γ α γ ν = g αλ γ ν γ λ + γ λ γ ν = g αλ g λν = δ ν α = ωαβ 4 δ ν α γ β γ α γ ν γ β = ωαβ δα ν γ β δβ ν γ α = 1 ω νµ γ µ ω µν γ µ = ω νµ γ µ R 1 γ ν R = γ ν + ω νµ γ µ = δ ν µ + ω ν µ γ µ σ µν = i γ νγ µ γ µγ ν = i γ0 γ µ γ ν γ ν γ µ γ 0 = γ 0 σ µν γ 0 R = 1 + i 4 σ µν ω µν = γ i 4 σ µν ω µν γ 0 = γ 0 R 1 γ 0 γ 0 γ 0 R γ 0 = R , R x R R B ω 10 = ω R B = 1 i σ01 ω 01 + σ 10 ω 10 = 1 i 4 σ 01 ω 01 = 1 i σ 01 θ

24 3 θ, θ 3.5 R B = lim 1 i N N σ θ 01 = exp iθσ 01/ N α x = 1 σ 01 = iγ 0 γ 1 = iγ 0 γ 1 = iα x R B = exp iθσ 01 / = exp θα x / = cosh θ α x sinh θ v = vn, n R B = cosh θ α n sinh θ 3.1 R B R 1 B α n = v R B R 1 B α R B R 1 B = cosh θ + α n sinh θ = cosh θ α n sinh θ = cosh θ sinh θ = 1 R B = R B R 1 B R B R B = 1 + b b α v 1, b = 1 + b 1 v z.1 σ x σ y = iσ z σ 1 = iγ 1 γ = iγ 1 γ 0 σ x 0 σ y = i σ x 0 σ y 0 = σ z 0 0 σ z σ 3 = σ x 0 0 σ x, σ 31 = σ y 0 0 σ y σ 4 4 Σ.0 γ 5 Σ x = σ 3, Σ y = σ 31, Σ z = σ γ 5 γ 0 γ 1 = iγ γ 3 = σ 3, γ 5 γ 0 γ = iγ 3 γ 1 = σ 31, γ 5 γ 0 γ 3 = iγ 1 γ = σ 1

25 3 3 Σ = γ 5 γ 0 γ = γ 5 α 3.14, Σ 3.13 γ µ.19 Σ x Σ y Σ y Σ x = iσ z, Σ x = 1,, Σ σ, Σ A Σ B = A B + i Σ A B 3.15 R R R ω 1 = ω 1 0 θ R R = 1 i σ 1 ω 1 = 1 + i Σ z θ R R = lim 1 + i N N Σ θ z = exp iθσ z / N, θ z, n R R = exp iθσ n/ S, n ψ x = exp iθs n ψx ψ x = ψx,, 1/ 3.15 Σ n = n n = 1 S = 1 Σ R R = cos θ + iσ n sin θ 3.16 R R π = 1, 1, 1, ψ.19 Σ x = iγ 1 γ = iγ γ 1 = iγ 0γ γ 1 γ 0 = iγ γ 1 = iγ 1 γ = Σ x, Σ R R = exp iθσ n/ = R 1 R R R R B 3 R R x 0 = x 0, x k = x k, a µ ν = g µν

26 3 4 det a µ ν = 1 R P 3.8 a µ ν = g µν γ 0 = P 1 γ 0 P, γ k = P 1 γ k P P γ 0 γ k P = γ R B, 3.16 R R P ψ ψ = ψ γ 0 biliear form ψxγ ψx, Γ = 4 4 ψ x = Rψx 3.11 ψ x = ψ x γ 0 = ψ xr γ 0 = ψxγ 0 R γ 0 = ψxr 1 ψ x Γ ψ x = ψxr 1 Γ R ψx Γ = 1 ψ x ψ x = ψxψx ψxψx V µ x = ψxγ µ ψx 3.8 R 1 γ µ R = a µ νγ ν V µ x = ψ x γ µ ψ x = a µ νψxγ ν ψx = a µ νv ν x V µ x j µ = c ψγ µ ψ, µ j µ = 0 T µν x = ψxσ µν ψx, T µν x = a µ ρa ν λt ρλ x Sx = ψxγ 5 ψx, R 3.1, 3.16 γ 5 γ µ α = γ 0 γ Σ = γ 5 α R 1 B γ5 R B = cosh θ α n sinh θ γ 5 = cosh θ θ sinh γ 5 = γ 5 R 1 R γ5 R R = cos θ + Σ n sin θ γ 5 = cos θ + sin θ γ 5 = γ 5

27 3 5 S x = ψxr 1 γ 5 R ψx = ψxγ 5 ψx = Sx R = γ 0 R 1 γ 5 R = γ 5 S x = ψxr 1 γ 5 R ψx = Sx, pseudoscalar det a µ ν = 1 det a µ ν = 1 R 1 γ 5 R = det a µ ν γ 5, S x = det a µ ν Sx 3.3 V µ x = ψxγ 5 γ µ ψx V µ x = det a µ ν a µ νv ν x V µ x 3.4,,, S S S ψ L θ ψ θ ψ x x S ψx ψ L x, ψx x v,, z ψ L x S S x µ = a µ ν x ν, x = a x S ψx ψ x x x ψx = ψ L x ψx ψ x 3.7, 3.7 x x, x x, ψx ψ x, ψ x ψx

28 3 6 : ψx = Ra ψ x ψ L x = ψ x = Ra 1 ψx = Ra 1 ψa x ψ L x = Ra 1 ψax ψ x = Raψx = Raψa 1 x, a 1 x µ = x ν a µ ν 3.18 ψ L x = Ua ψx ψ L x = Ra 1 ψax = 1 + i4 σ µν ω µν ψx µ + ω µ νx ν ψx µ + ω µ νx ν = ψx + ω µ νx ν x µ ψx = ψx + ωµ νx ν µ ψx = ψx + ω µν x ν µ ψx ω µν ω µν = ω νµ ω µν x ν µ ψx = 1 ω µν x ν µ ω νµ x ν µ ψx = 1 ωµν x ν µ x µ ν ψx L µν = i x µ ν x ν µ = x µ ˆp ν x ν ˆp µ, ˆp µ = + i µ ψx µ + ω µ νx ν = 1 + i ωµν L µν ψx, ω µν 1 ψ L x = 1 + i4 σ µν ω 1 µν + i ωµν L µν ψx = 1 + i ωµν J µν ψx, J µν = L µν + 1 σ µν z ω 1 = ω 1 = θ 0 ψ L x = 1 i θj 1 ψx 3.13 x 1 = x 1 = x, x = y, x 3 = z L z = L 1 = i x 1 x 1 = i x y y x L y = L 31 = i z x x, L x = L 3 = i z y z z y

29 3 7 ψ L x = 1 i θj z ψx, J = L + 1 Σ n ψ L x = 1 i θ n J ψx, θ ψ L x = Uψx, U = exp iθ n J 4 J, L S = Σ/ 3.18 R = γ 0 P 0 ψ L x = γ 0 ψax, ax µ = x 0, x P 0 ψt, x = ψt, x ψ L x = P ψx, P = γ 0 P 0 P 0 ψx = ψx P 0 = 1 P P = γ 0 P 0 = 1 P ± 1 P P η η = 1 η = 1 ψ η x : P ψ η x = η ψ η x ψ η x F η x, G η x F η x ψ η x = G η x P ψ η x = γ 0 P 0 ψ η x = P 0 F η x P 0 G η x = P 0 F η x P 0 G η x P 0 F η x = η F η x, P 0 G η x = η G η x, P 0,, F η G η 1, F η x x, G η x, b µ x µ = x µ + b µ

30 3 8, ψx b µ ψ L x ψ L x = ψx b b µ b µ ψ L x = ψx b µ x µ ψx = 1 + i b µ ˆp µ ψx ψ L x = Uψx, U = exp i b µ ˆp µ b µ = 0, b U = exp ib ˆp, ˆp = i

31 i ψ t ˆp = Hψ, H = α ˆp + mβ, ˆp = i 4.1 ψt, x = exp ip x wp, p x = p µ x µ = p 0 x 0 p x = Et p x wp 4 ψt, x H D wp = E wp, H D = α p + mβ 4..9 HD = p + m HD w = E w E = ± E p, E p = p + m E p, E p 4 w χ ζ χp wp = ζp, α β m σ p χ = E σ p m ζ χ ζ E = ± E p ζ = χ = σ p E + m χ 4.3 σ p E m ζ 4.4 σ p σ p E + m E m = p E m = , p = 0 E = m ζ = 0, E = m χ = 0 E = E p 4.3, E = E p 4.4 E = ± E p w ± p χ w + p = N σ p E p + m χ, w p = N σ p E p + m χ χ N w w = wγ 0 w wγ µ w, w w w w w w 1, w w w ± w ± = ± N χ χ χ σ p E p + m χ = ± 1

32 4 30 σ p E p + m = p E p + m = E p m E p + m = E p m E p + m N m E p + m χ χ = 1 N = E p + m/m, χ s w + Ep + m p, s = m σ p E p + m χ 4.6 s w Ep + m p, s = σ p E p + m χ s m,, s = ± 1 : χ s χ s χ s = δ ss χ s w ± p, s H D χ s, E = E p E = E p Bjorken & Drell, up, s, vp, s 4.1 ψ + ps t, x = exp ie p t + ip x up, s = e ip x up, s, up, s = w + p, s 4.8 ψ ps t, x = exp ie p t ip x vp, s = e ip x vp, s, vp, s = w p, s 4.9, p 0 = E p > 0, χ s, σ z σ z χ s = s χ s, s = ± 1, w ± p, s p z Σ z w ± p, s = s w ± σ z 0 p, s, Σ z = 0 σ z, w ± p, s Σ z, s,, 3.14 Σ ph D H D Σ p = γ 5 α p α p α p γ 5 α p + m γ 5 α p β βγ 5 α p γ 5 γ µ α = γ 0 γ 1 0 β α γ 5 0, Σ p = Σ p p H D w, s = ± 1 H D σ p 0 Σ p =, σ p = σ p 0 σ p p

33 4 31 σ p χ s = s χ s, s = ± 1 χ s α p + mβ up, s = E p up, s, α p + mβ vp, s = E p vp, s γ 0 γ 0 E p γ p m up, s = 0, γ 0 E p γ p + m vp, s = 0 γ µ p µ m up, s = 0, γ µ p µ + m vp, s = 0 p 0 = p 0 = E p = p + m, p = p µ p µ = p 0 p = m.18 /p m up, s = 0, /p + m vp, s = u p, s /p m = 0, v p, s /p + m = 0 γ µ = γ 0 γ µ γ 0 /p = γ 0 /pγ 0 4.6, 4.7 up, s /p m = 0, vp, s /p + m = up, sup, s = δ ss, vp, svp, s = δ ss, up, svp, s = s s, u p, s p 0 u p, sγ 0 up, s p u p, sγup, s m u p, sup, s = 0 s s p 0 u p, sγ 0 up, s + p u p, sγup, s m u p, sup, s = 0 u p, s up, s = p0 m up, sup, s = E p m δ ss u p, s up, s = E p m δ ss, v p, s vp, s = E p m δ ss, u p, s v p, s =

34 4 3 Up, s = m m up, s, V p, s = vp, s 4.14 E p E p U p, s Up, s = δ ss, V p, s V p, s = δ ss, U p, s V p, s = up, sγ up, s, s vp, sγ vp, s, s Γ = 4 4 Λ + p αβ = s u α p, su β p, s, Λ p αβ = s v α p, sv β p, s Λ ± up, sγ up, s = s s u α p, s Γ αβ u β p, s = αβ αβ Γ αβ Λ + βα = Tr Γ Λ +.1 /p + m = E p γ 0 p γ + m = E p + m σ p σ p E p + m /p + m χ s 0 = E p + m χ s σ p χ s = E p + m χ s σ p E p + m χ s 4.6 up, s = w + /p + m p, s = m E p + m χ s 0, p 0 = E p Λ 0 = s χ s 0 χ s 0 Λ + = s up, s u p, sγ 0 = = 1 m E p + m /p + m Λ 0 /p + m γ 0 1 m E p + m /p + m Λ 0γ 0 /p + m

35 4 33 s χ s χ s = 1 Λ 0 = s χ s χ s = = 1 + γ0 Λ + = γ0 /p + m /p + m m E p + m γ 0 γ µ + γ µ γ 0 = g µ0 γ 0 /p = p 0 /p γ γ 0 /p + m = p 0 + m + /p m 1 γ0 Λ + = /p + m m /p + m /p m 1 γ 0 + m E p + m /p = p = m /p + m /p m = /p m = 0 Λ + p = s up, s up, s = /p + m m 4.16 vp, s = w /p + m p, s = m E p + m 0 χ s 4.17 Λ p = s vp, s vp, s = /p + m m 4.18 Λ ± Λ ± = Λ ±, Λ + Λ = Λ Λ + = 0, Λ + + Λ = ψ a s, b s ψ = ψ + + ψ, ψ + = s a s up, s, ψ = s b s vp, s Λ + ψ + = ss a s up, s up, s up, s = ss a s up, s δ ss = ψ + Λ ψ + = ss a s vp, s vp, s up, s = 0 Λ + ψ = 0, Λ ψ = ψ Λ ± ψ = ψ ± Λ + 4, Λ , 4.18, 4.19 Λ + + Λ = s up, sup, s vp, svp, s = 1 4.0

36 4 34, 4 ψ ψ = a s up, s + b s vp, s, a s = up, sψ, b s = vp, sψ s, 4.16, 4.18 s s up, su p, s = /p + m m γ0 = 1 E p p γ γ 0 + mγ 0 m vp, sv p, s = /p + m m γ0 = 1 E p p γ γ 0 mγ 0 m up, su p, s + v p, sv p, s s = E p m 4.14 U, V Up, su p, s + V p, sv p, s = s ψx p = mv 1 v, v = p E p v ψ L x p 3.18 Ra ψ L x = Ra 1 ψax 4. cosh θ = 1 1 v = E p m cosh θ = Ep + m m, sinh θ = Ep m m = p Ep + m E p + m m R 1 = cosh θ + α n sinh θ = Ep + m m ψ L x = Ep + m m 0 ψx 4.8, 4.9 p = p α E p + m 1 + p α ψax E p + m ψx = e iet w ± E = m : w + 0 = χ 0, E = m : w 0 = 0 χ

37 x µ a µ νx ν 4.3 t = x 0 a 0 µx µ ψ ± L x = Ep + m 1 + p α w ± 0 exp i m a 0 m E p + m µx µ x m a 0 µx µ = m 1 v x0 mv 1 v x1 = E p t p x x, m a 0 µx µ = E p t p x = p x, p 0 = E p ψ ± L x = e ip x Ep + m 1 + p α w ± 0 = m E p + m e ip x up, s, + e ip x vp, s, , ψ 1 x ψ x, ψ γ µ i γ ν ν m ψ 1 = 0, i γ ν ν m ψ = 0 ψ γ µ ψ 1 = i m ψ γ µ γ ν ν ψ γ 0 0 = i ν ψ γν m ψ γ 0 = i ν ψ γ ν m ψ ψ γ µ ψ 1 = i m νψ γ ν γ µ ψ σ µν = i γµ γ ν γ ν γ µ = i γ µ γ ν g µν = i g µν γ ν γ µ 4.5, 4.6 ψ γ µ ψ 1 = i m ψ µ ψ m ψ σ µν ν ψ 1, ψ γ µ ψ 1 = i m µ ψ ψ m νψ σ µν ψ 1 ψ γ µ ψ 1 = i ψ m µ ψ 1 µ ψ ψ m ν ψ σ µν ψ Gordon decomposition ψ γ µ ψ 1 1

38 4 36 ψ 1, ψ ψ 1 x = e ip x up, s, ψ x = e ip x up, s up, s γ µ up, s = 1 m up, s p + p µ + i σ µν p p ν up, s 4.8 vp, s γ µ vp, s = 1 m vp, s p + p µ + i σ µν p p ν vp, s 4.9 vp, s γ µ up, s = 1 m vp, s p p µ i σ µν p + p ν up, s i / m ψ = 0,, ψx = ψ + x + ψ x ψ + x = s ψ x = s d 3 p m π 3 ap, s up, se ip x E p d 3 p m π 3 b p, s vp, se ip x E p ap, s, b p, s ψ ± x J µ t = d 3 x ψxγ µ ψx = J +t µ + J t µ + K µ t J ±t µ = d 3 x ψ ± xγ µ ψ ± x K µ t = d 3 x = ψ + xγ µ ψ x + ψ xγ µ ψ + x d 3 x ψ xγ µ ψ x + + ψ xγ µ ψ + x = Re d 3 x ψ xγ µ ψ + x Re J µ +t = ss d 3 p d 3 p π 6 m a p, s ap, s up, s γ µ up, s e iep E p t d 3 x e ip p x Ep E p = ss d 3 p π 3 m E p a p, s ap, s up, s γ µ up, s

39 , p = p σ µν 0 J µ +t = ss d 3 p π 3 m E p a p, s ap, s pµ m up, s up, s = s d 3 p pµ ap, s π 3 E p J µ t = s d 3 p pµ bp, s π 3 E p d 3 x ψ xγ µ ψ + x = ss d 3 p π 3 m E p ap, sb p, s v p, s γ µ up, s e ie pt = d 3 p ap, sb p, s π 3 E p ss v p, s p p µ i σ µν p + p ν up, s e iept p µ = E p, p µ = 0 µ = k p p 0 i σ 0ν p + p ν = E p E p i σ 0k p k + p k = 0 p p k i σ kν p + p ν = p k i σ k0 p 0 + p 0 = p k ie p σ k0 = p k E p α k K 0 = 0, K = Re d 3 p p π 3 ap, sb p, s v p, s α up, s e ie pt E p ss J 0 t = d 3 x ψ xψx = s Jt = s d 3 p π 3 ap, s + bp, s d 3 p π 3 ap, s + bp, s p + Kt E p J 0 t = 1 J 0 t = d 3 x ψ xψx = s d 3 p π 3 ap, s = 1, Jt = s d 3 p π 3 ap, s p E p J p/e p,,, Kt e ie pt, π E p < π m 10 1 sec Zitterbewegung Kt, t = 0 d ψ0, x = 1 /d πd e x w, w = 3/4 χ 0

40 4 38 χ x ψx a, b ψ0, x d 3 x π 3 eip p x = e ie p E p t d 3 x d 3 x π 3 eip+p x = e iept δp + p d 3 x e ip x u p, sψx = s u, v 4.13 t = 0 ap, s = = b p, s = = m d 3 p E p π 3 e ip p x = e ie p E p t δp p = δp p d 3 x π 3 ap, s u p, sup, s e ip p x + b p, s u p, svp, s e ip+p x m ap, s u p, sup, s + b p, s u p, sv p, s e iept E p s m m E p E p d 3 x e ip x u p, sψx = ap, s 4.31 d 3 x e ip x v p, sψx = b p, s 4.3 m 1 E p πd 3/4 u p, sw d 3 x e x /d ip x m 4πd 3/4 e p d / u p, sw = E p m 4πd 3/4 e p d / v p, sw = E p b p, s ap, s p E p + m E p + m 4πd 3/4 e p d / χ E sχ p E p + m 4πd 3/4 e p d / χ s E p σ p E p + m χ p m bp, s ap, s, e p d / a, b p p 1/d, m 1/d, d 1/m /mc m,,, m, m,,, hole theory E = E p > 0, p, s ψ + ps t, x = e ip x up, s

41 E = E p < 0, p, s ψ ps t, x = e ip x vp, s,,,,,, Dirac sea 1,,,,,,,, +,,, ψ ps hole e > 0, E p = E p > 0, p = p, s = s, anti-particle ψ ps E p > 0, p, s, mc,, 1 1, pair creation,, pair annihilation, 1,, 1,,,,,,

42 α x p x + mβ + V x E ψx = 0, α x p x + mβ + V x E = m + V x E σ x p x p x = i d dx σ x p x m + V x E ψx = ϕ u x ϕ d x dϕ d m + V x E ϕ u x iσ x dx = 0, 1 ϕ d x = d 1 dx m V x + E iσ dϕ u x dx m V x + E ϕ d x = 0 iσ x dϕ u m V x + E dx dϕ u dx m + V x E ϕ u x = 0, ϕ u x x a ϕ u x = F x χ u χ u =, a, b = b d 1 dx m V x + E ϕ d x = Gx χ d, Gx = V x df dx m + V x E F x = d F dx + E V m F = 0 i df m V x + E dx, χ d = σ x χ u V x = { 0, x < 0 V 0, x > 0, V 0 x < 0 k = E m d F dx = k F, Gx = i df m + E dx

43 A, B F x = Ae ikx + Be ikx, Gx = x > 0 K = E V 0 m F x = Ce ikx + De ikx, Gx = k Ae ikx Be ikx m + E K Ce ikx De ikx m + E V 0 E > m k, x < 0 x > 0 K x e ikx, K K K = ik e ±ikx = e K x, x F, G e ikx = e K x D = 0 x = 0 F x Gx A + B = C, k K A B = C m + E m + E V 0 B A = 1 f 1 + f, C A = 1 + f, f = K k ψ α x ψ = F χ u G χ d χ d = σ x χ u, χ uχ u = 1 0 σ x σ x 0 F χ u Gχ d ψ α x ψ = F G + G F = Re F G J i F = Ae ikx, G = kae ikx /m + E J i = m + E m + E V = F Gχ uσ x χ d + G F χ d σ xχ u k m + E A 5.4 J r K J r = k m + E B F x = Ce ikx = C e ik x, Gx = F G = K C e ik K x m + E V 0 K m + E V 0 Ce ikx K e ik K x = e ikx F G, J t J t = k m + E f C, K 0, K 5.5

44 5 1 4, R T R = J r J i = B A = 1 f 1 + f, T = J t J i = f 1 + f, K 0, K 5.6, E m V 0 E > V 0 + m, K f 0 < R < 1 1 f 4f R = = f 1 + f = 1 T R + T = 1 E = m + ε, m ε > V 0 E + me V 0 m f = E me V 0 + m = m + εε V 0 ε V0 εm + ε V 0 ε R = ε ε V0 ε + ε V0,, E < V 0 + m, E m, R = 1, T = 0, K f, 5.6 R = 1, T = 0 K E V 0 m < 0, V 0 m < E < V 0 + m V 0 m < m, E > m m < E < V 0 + m, V 0 > m, m < V 0 m < E < V 0 + m R = 1, T = 0, m < E < V 0 m K, m+e V 0 < 0 f, J t < 0,, R > 1 E K E ± = V 0 ± K + m +, V 0 > m, m < E < V 0 m x < 0 m < k + m = V 0 K + m < V 0 m m V 0 + m V 0 V 0 m E + E,, x < 0 x > 0 0 m E d 1 dx D x df 1 dx D +xf 1 x = 0, d 1 dx D x df dx D +xf x = 0

45 D ± x = m ± V x E d F df 1 dx D dx = 1 df df 1 D dx dx + F d 1 df 1 dx D dx = 1 df D dx df 1 dx + D +F 1 F 1 d dx F df 1 D dx F 1 df D dx = 0, F D df 1 dx F 1 D df dx = x F 0 = 0 df 1 F dx F df 1 dx = 0 F F 1,, 1 V x = V x 5.1 F x F x F x = cf x F x = cf x = c F x c = ± 1, V x = V x, F x 5. F x Gx F x Gx 5. ϕ d x = i Gx χ d Gx = 1 df m V x + E dx, χ d = σ x χ u F x, Gx 0, x > a V x = V 0, x < a, V 0 > V x = V x, F x, Gx, x 0 x < a 5.1 d F dx + E + V 0 m F = 0 F x = A sinkx + B coskx, Gx = K A coskx B sinkx E + V 0 + m K = E + V 0 m x > a V 0 = 0 F x = Ce qx a + De qx a, Gx = q Ce qx a De qx a m + E q = m E x F 0 q D = 0 F x = Ce qx a, Gx = q m + E Ce qx a, E < m

46 x = a F x Gx K A sinka + B coska = C, A coska B sinka = q m + E + V 0 m + E C, A = 0 B coska = C, K q B sinka = m + E + V 0 m + E C tanka = q K m + E + V 0 m + E = m EE + V 0 + m m + EE + V 0 m 5.8 B = 0 cotka = q K m + E + V 0 m + E = m EE + V 0 + m m + EE + V 0 m 5.9 K K K = ik m < E < m K tanka = K 1 ek a 1 + e K a 1 + ek a < 0, K cotka = K 1 e K a < 0 q m + E + V 0 m + E 5.8, 5.9 K > 0 E + V 0 m > 0, E > m V 0 E < m V 0 E > m, m < E < m E > m V 0 0 < V 0 < m m V 0 > m m V 0 < E < m,, V 0 > m m V 0 < m m < E < m m V 0 < E < m, E K m V 0 m 0 m E E 1 E ± = V 0 ± K + m V 0 x < a E + V 0 > m m V 0 E < m E < m V 0 + K + m = m + k k, x > a V 0 > m E > m k E = E, E = E 1

47 , 5.9, E V 0 5.8, 5.9 E V 0,, V 0,, V 0 x < a, E m = V 0 + m nπ, n = 1,, 3, ma, E < m m 0 1 V 0 /m m mr = 5.0, V min < V 0 < V max, V min 5.8 E = m nπ tan a Vmin + mv min = 0, V min = m m + m = a V max E = m tan a Vmax mv max = + n + 1 V max = m + a π + m = m n ma π +, n + 1 V min = m + a n + 1 V max = m + a n = 0, 1,, E = m ε 0 < ε < V 0 m π m = 1 n + 1 m ma π + π + m = m n ma π + K = V 0 εm + V 0 ε mv 0 ε m EE + V 0 + m m + EE + V 0 m = εm + V 0 ε m εv 0 ε ε V 0 ε nπ + ma 5.8, 5.9 β = α tan α, β = α cot α

48 α = ma V 0 ε, β = ma ε, α + β = ma V 0, K B coskx E + V F x = Gx = 0 + m B sinkx Ce qx a q m + E Ce qx a 0 0 dx dx F = B dx G = ab cos Ka = F + G = ab tan Ka = m + EE + V 0 m mv 0 sinka coska a + + cos Ka = ab m + E K q ma m E E + V 0 m m E E + V 0 + m ma m + E m + E ma m E + E + V 0 m E + V 0 + m E m E = m + ε α a B, 1 + α m/v 0 α = ma ε m E = 1 ma m + E tanka + coska 0, coska 1 n α V0 m, Ka n + 1 π, n = 0, 1,, ma V 0 C B = coska α 1n ma V0 m V 0, K E + V 0 + m B V0 m B V 0 q m + E C = K V0 m B sinka 1n B E + V 0 + m V 0 ε 0 B, C 0, C/B α ε C B 0 E m B coskx F x 0 V0 m sinkx, Gx B V 0 1 n+1, x < a, x > a F x x < a, Gx

49 K A sinkx E + V F x = Gx = 0 + m A coskx Ce qx a q m + E Ce qx a 0 0 sin Ka = m + EE + V 0 m mv 0 dx F = aa dx G = aa m + E ma m E E + V 0 m m E E + V 0 + m ma m + E, E m A sinkx V0 m coskx, x < a F x Gx A 0 V 0 1 n+1, x > a F x, Gx a F x, a Gx n = 1, n = 0 V 0 /m =.363 E/m = V 0 /m =.1701 E/m = x/a x/a

50 ,,,, 1 V r, r = x,.13 qφ = V, A = 0 H ψx = E ψx, H = i α + βm + V r H J = L + Σ/ P = γ 0 P 0 L = i x mβ, V r L x = ix 3 + ix 3 [ H, L ] = i [ α, L ] = i α k [ k, L ], k = x k [ k, L x ] = i [ k, x ] 3 + i [ k, x 3 ] = i δ k 3 + i δ k3 [ H, L x ] = α 3 + α 3 = α x [ H, L ] = α 6.1 Σ x = iγ γ 3 = i γ 0 γ γ 0 γ 3 = i α α 3 Σ x mβ, V r [ H, Σ x ] = [ α k, α α 3 ] k α k α l = δ kl α l α k α k α α 3 = δ k α α k α 3 = δ k α 3 α δ k3 α 3 α k = δ k α 3 δ k3 α + α α 3 α k [ H, Σ x ] = α 3 α 3 = α x [ H, Σ ] = α 6. [ H, J ] = 0 H L, Σ J = L + Σ/ P 0 ψx = ψ x, P 0 V rψx = V rψ x HP ψx = i α + βm + V r γ 0 ψ x = γ 0 i α + βm + V r ψ x P Hψx = γ 0 P 0 i α + βm + V r ψx = γ 0 i α + βm + V r ψ x HP P H ψx = 0 H P

51 6 49 H, J, J z, P ψx ϕ u, ϕ d ϕ u x ψx = ϕ d x 6.3 j 0 J =, j = L + σ/, P = γ 0 P 0 = 0 j P P 0 J ψ = jj + 1ψ, J z ψ = m 3 ψ, P ψ = η ψ, η = ± 1 j ϕ u = jj + 1 ϕ u, j z ϕ u = m 3 ϕ u, P 0 ϕ u = η ϕ u j ϕ d = jj + 1 ϕ d, j z ϕ d = m 3 ϕ d, P 0 ϕ d = η ϕ d ϕ u ϕ d j, j z, L Y ljm3 θ, φ : Y ljm3 j Y ljm3 = jj + 1Y ljm3, j z Y ljm3 = m 3 Y ljm3, L Y ljm3 = ll + 1Y ljm3 Y lm j, l l ± = j ± 1/ P 0 Y ljm3 = 1 l Y ljm3 ϕ u x = F + ry l+jm 3 + F ry l jm 3 P 0 ϕ u = 1 l+ F + ry l+ jm l F ry l jm 3 = 1 l+ F + ry l+ jm 3 F ry l jm 3 ϕ u P 0 ϕ u x = F + ry l+jm 3, ϕ u x = F ry l jm 3 ϕ d ϕ u ϕ u x ψx =, ϕ u x = F r Y ljm3, ϕ d x = i Gr Y l jm ϕ d x r r 3 6.4, 1/r i j 1/, l = j + 1/ l 1, l = l = j + 1/, l = j 1/ l + 1, j = l 1/ j = l + 1/ 6.5, l = 0 j = l 1/ F r, Gr ψx J, J z, P ϕ u ϕ d L, ϕ u ϕ d l, ψx L, H L, H L H F r, Gr

52 6 50 H = i α + βm + V r = m + V r i σ i σ m + V r Hψ = E ψ m + V r E ϕ u i σ ϕ d = i σ ϕ u m V r + E ϕ d = σ x σ = x + i σ x = r r σ L = r r + K, K = 1 σ L K j = L + σ/ σ x σ x = r j = L + σ 4 + σ L = L σ L, K = L j 1 4 σ ϕ u x = σ x r σ x σ ϕ ux = σ x r r r + K ϕ u x σ ϕ u x = σ x r KY ljm3 = ϕ u x = F r Y ljm3 θ, φ r df dr Y ljm 3 + F r KY ljm 3 L j 1 Y ljm3 = κ Y ljm3 4 κ = ll + 1 jj = l + 1, l, = 1 j+l+1/ j + 1 j = l + 1 j = l σ ϕ u x = 1 r df dr + κ σ x r F r r Y ljm i df r dr + κ σ x r F r r Y ljm 3 m V r + E ϕ d = 0 σ x Y ljm3 /r r ϕ d x = i Gr σ x r r Y ljm 3

53 6 51 df dr + κ r F r m V r + E Gr = 0, 6.6 F r, Gr m + V r E F r r Y ljm3 σ σ x Gr r Y ljm 3 = 0 σ σ x = x + i σ x = 3 + r r + σ L = r r + 1 K σ σ x Gr d r Y G ljm 3 = dr r + 1 κ r G Y ljm3 = 1 dg r dr κ r G Y ljm3 dg dr κ r Gr m + V r E F r = 0, F r Y ljm3 θ, φ ψx = r i Gr σ x 6.9 r r Y ljm 3 θ, φ, F r Gr df dr = κ r F r + m + E V r Gr 6.10 dg dr = + κ r Gr + m E + V r F r 6.11 σ x r Y ljm 3 = Y l jm 3, E = m + ε 6.10 Gr = 1 d m + ε V r dr + κ F r r 6.11 d dr κ 1 d r m + ε V r dr + κ F r = ε + V r F r r m ε V r 1 m d dr κ d r dr + κ F r ε + V r F r r d dr κ d r dr + κ d κκ + 1 F r = r dr r F r 1 m d κκ dr mr + V r F r εf r

54 6 5 j = l ± 1/ κκ + 1 = ll m d ll dr mr + V r F r εf r, l j V r, j, 6.10, 6.11 κ, j = l + 1/ j = l 1/ , c Y = σ x r Y ljm3 j Y = jj + 1Y, j z Y = m 3 Y, P 0 Y = 1 l+1 Y, N Y = NY l jm 3 N = 1 π dθ π 0 0 dφ sin θ Y ljm 3 Y ljm3 = 1 Y ljm3 N = d 3 x ψ xψx = 0 dr F r + G r 6. V r = Gr = 1 E + m df dr + κ r F r 6.11 d κκ + 1 dr r + E m F r = κκ + 1 = ll + 1 q = E m d ll + 1 dr r + q F r = 0 rj l qr rn l qr, F r = Nrj l qr, N = G = 1 df E + m dr + κ r F = N κ + 1 j l qr + qr j E + m lqr, j lx = dj l dx

55 6 53 j = l 1/ 6.5, 6.8 l = l 1, κ = l j l G = j = l + 1/ l = l + 1, κ = l 1 j l 1 ρ = j lρ + l + 1 ρ j lρ Nq E + m rj l 1qr = Nq E + m rj l qr j l+1 ρ = j lρ + l ρ j lρ G = Nq E + m rj l qr j = l 1/ F r Y ljm3 ψx = r j l qry ljm3 igr = N ± i q Y l r jm 3 E + m j l qr Y l jm 3 z z sin z lπ/ j l z z E < m q j l qr r E m E m E = m + q m q q E + m = q 1 q m 4m + ψx N j l qry ljm3 ± i q m j l qr Y l jm 3 N j l qry ljm E m, q m ψx 6.3 Ze, V r = Ze 4πr = Zα r, α = e 4π = , 6.11 df dr = κ r F + m + E + Zα G, r dg dr = κ r G + m E Zα F r

56 6 54 r m E > 0 df dr = m + E G, d F dr dg dr = m E F = m + EdG dr = m E F F r, Gr e m E r, r, r 0 df dr + κ r F Zα r G = 0, dg dr κ r G + Zα r F = 0 F = c f r λ, G = c g r λ, λ > 0 λ κ c g + Zα c f = 0, λ + κ c f Zα c g = 0, λ = κ Zα Z < 137 Zα Z/137 < 1, κ 0 λ Z > 137 λ κ λ = i λ r λ = e i λ log r = cos λ log r + i sin λ log r r 0 1, λ κ, m Z < 137 dg dρ κ ν ρ G Zα F = 0, ρ ρ dg λ dρ + κ ρ g + ν = ρ = m E r m E m E m E = m + E F = ρ λ e ρ/ f, G = Zα ν ρ f = 0, f 1 = f + g f = f g df dρ + κ 1 ρ F ν + Zα G = 0 ρ m E m + E ρλ e ρ/ g ρ df λ dρ + + κ ρ f Zαν + ρ g = 0 ρ df 1 dρ + λ + ν 1 ρ f 1 + κ + ν f = 0, ρ df dρ + λ ν 1 f + κ ν f 1 = ν 1 = Zα 1 ν ν ZαE = m E, ν = Zα 1 ν + ν Zαm = m E

57 ρ d f dρ + df λ + 1 ρ dρ f 1 = 1 ρ df ν κ dρ + λ ν 1 f λ ν 1 λ κ + ν ν 1 ρ, ν ν 1 = Zα, λ κ = Zα ρ d f dρ + df λ + 1 ρ dρ λ ν 1 f = 0 f = 0, f f ρ d f 1 dρ + df1 λ + 1 ρ dρ λ ν f 1 = 0 z d dz + b z d dz a wz = 0, Ma, b, z Ma, b, z = 1 + a b aa + 1 z z + bb + 1! aa + 1a + z 3 + bb + 1b + 3! + f 1 ρ = C 1 Mλ ν 1 + 1, λ + 1, ρ, f ρ = C Mλ ν 1, λ + 1, ρ 6.1 ρ = 0 λ + ν 1 C 1 + κ + ν C = 0, C 1 = κ + ν λ + ν 1 C 6.13 Ma, b, z a = n, n = 0, 1,, n, a n z Ma, b, z e z r F, G 0 λ ν 1 = λ ZαE m E = n r, n r = 0, 1,, 3, E n r + λ E = m nr + λ + Zα, λ = κ Zα 6.14, λ ν 1 = n r = 0, f 1 ρ = C 1 M 1, λ + 1, ρ C 1 = 0 ν 1 = λ ν = Zα + ν1 = Zα + λ = κ, C 1 = κ + ν C = κ + κ C λ + ν 1 λ, n r = 0 κ < 0 n r + λ E, n r = 0, κ = 1 E = m 1 Zα = m 1 Zα Zα4 8

58 6 56 mzα /, n = n r + κ = n r + j + 1, δ j = κ κ Zα = Zα j Zα4 j Zα 1 1/ E = m 1 + Zα n δ j = m 1 1 Zα n δ j + 3 Zα 4 8 n δ j 4 + = m 1 1 Zα n 1 + δ j + 3 Zα 4 n 8 n 4 + = E NR mzα4 n 4 n j , E NR = m mzα n 6.16 Zα 4 E NR E NR n, j n, E j fine structure nl j n r = 0, κ < 0 n = n r + l + 1, n r = 0, 1,, κ < 0 κ = l , κ > 0 κ = l 6.15 n n = n r + l n = l, κ > 0 n r = 0 n n r κ l j / 1S 1/ / 1P 1/ / S 1/ } / P 1/ 0 1 3/ P 3/ 0 3/ D 3/ n n r κ l j / 3S 1/ } 1 1 1/ 3P 1/ 1 1 3/ 3P 3/ } 1 3/ 3D 3/ 0 3 5/ 3D 5/ / 3F 5/, 6.14 i f E = E i E f 10 5 ev, E NR ev i f 6.14 E NR S 1/ P 1/ P 3/ S 1/ S 1/ 3P 1/ P 3/ 3S 1/ D 3/ 3P 1/ D 5/ 3D 3/ Phys. Rev. Lett , Phys. Rev. Lett

59 6 57,, S 1/ P 1/, 3S 1/ 3P 1/, 3P 3/ 3D 3/ 6.14, Lamb shift, n r = 0, κ = 1 F = ρ λ e ρ/ f 1 + f, G = m E m + E ρλ e ρ/ f 1 f E = m 1 Zα, n r = 0 f 1 = 0, M0, λ + 1, ρ = 1 F = Cρ λ e ρ/, λ = 1 Zα, G = C 1 λ Zα ρλ e ρ/ ρ = m E r = Zαm r = Z a B r a B = 1/αm 6.9 F r Y ljm3 θ, φ ψx = r λ 1 Zr i Gr σ x = C e Zr/a B r r Y a B ljm 3 θ, φ χ ± i 1 λ σ x Zα r χ ± l = 0, j = 1/ Y ljm3 χ ± σ z χ ± = ± χ ± Zα 1 λ 1 = Zα / 0 ψx C χ e Zr/aB ± 0,, 1 < λ 1 < 0 ψ Zr a B λ 1 e, Zr e 1/λ 1 e /Zα = /Z a B,,,

60 ,, L q i p i = L/ q i, q i p i [ q i, q j ] = [ p i, p j ] = 0, [ q i, p j ] = i δ ij, = 1, q, φt, x,, x i, x i + dx q i t = φt, x i d 3 x 1,, q i L/ q i L L = d 3 x L, L φx = φt, x µ φx, φ I = t t 1 dt L = t t 1 dt d 3 x L φx φx + εx, εt 1, x = εt, x = 0 δi = 0 δi = t t 1 Lφ + ε, µ φ + ε = Lφ, µ φ + L φ ε + L µ φ µ ε L dt d 3 x φ ε + L µ φ µ ε = t, µ t 1 L µ φ = L φ L dt d 3 x ε φ L µ µ = 0 φ φx L L L = i Lφ i, µ φ i d 3 x, φ i = φt, x i q i = φ i d 3 x p i H H = p i q i L = i i p i = L q i = L φ i p i φi d 3 x L = d 3 x H, H = px φx L

61 7 59 [ q i, p j ] = [ φ i, p j ] d 3 x = i δ ij dx 0 δ ij /d 3 x δx i x j [ φt, x, φt, x ] = [ pt, x, pt, x ] = 0, [ φt, x, pt, x ] = i δx x 7.1 px = L φx, φx 7.1, { φt, x, φt, x } = { pt, x, pt, x } = 0, {φt, x, pt, x } = i δx x 7. { A, B } AB + BA 7., 0, 0, m 0 φx Klein-Gordon µ µ + m 0 φx = L L = 1 µ φ µ φ m 0φ = 1 φ φ m 0φ L µ φ = µφ, L φ = m 0φ, 7.3 px px = L = φ φ, [ ] [ φt, x, φt, x ] = φt, x, φt, x = 0, [ ] φt, x, φt, x = i δx x 7.4, e ip x 7.3 H = p φ L = 1 φ + φ + m 0φ µ µ + m 0 e ip x = p + m 0 e ip x

62 7 60 p 0 = ± ω p, ω p = p + m 0 e ip x 7.3 p 0 = ω p > 0 e ± ip x 7.3, 7.3 d 3 p 1 φx = c π 3/ p e ip x + c p e ip x 7.5 ωp φx = i d 3 p π 3/ ωp c p e ip x + c p e ip x 7.6, d 3 x e iq x φ0, x = 1 c π 3/ q + c d 3 x q, e iq x ωq φ0, x = i c ωq π 3/ q + c q [ cp, c ] 1 q = ω p ω q = ω p + ω q ω p ω q = ω p + ω q ω p ω q c q = d 3 x d 3 x π 3 d 3 x d 3 x π 3 d 3 x e iq x ω π 3/ q φ0, x + i φ0, x ωq [ e ip x+iq x ω p φ0, x + i φ0, x, ω q φ0, x i φ0, x ] e ip x+iq x δx x d 3 x π 3 e ip q x = δp q [ cp, c ] q = δp q, [ cp, c q ] = [ c p, c ] q = H c, c d 3 x φx ωp = d 3 p d 3 ω q q = 1 d 3 x π 3 c p e ip x c p e ip x c q e iq x c q e iq x d 3 p ω p c pc p + c p c p c p c p e iωpt c pc pe iωpt d 3 x φ = d 3 p d 3 q = 1 p q ω p ω q d 3 x π 3 c p e ip x c p e ip x c q e iq x c q e iq x d 3 p p ω p c pc p + c p c p + c p c p e iωpt + c pc pe iωpt d 3 x φ = d 3 p d 3 1 q ω p ω q = 1 d 3 x π 3 c p e ip x + c p e ip x c q e iq x + c q e iq x d 3 p 1 ω p c pc p + c p c p + c p c p e iω pt + c pc pe iω pt H = 1 d 3 x φ + φ + m 0φ = 1 d 3 p ω p c pc p + c p c p = d 3 p ω p c pc p + 1 δp p

63 H = c p 0 = 0 d 3 p ω p c pc p + 0 H 0 H,, 0 H 0 H c p, c p H = d 3 p ω p c pc p [ H, c p ] = d 3 p ω p c p [ c p, c p ] = ω p c p, [ H, c p ] = ω p c p 7.8, φt, x H 7.5 [ H, φt, x ] = α b d 3 p 1 ω π 3/ p c p e ip x + ω p c p e ip x = i φt, x ωp exp ib P α P exp ib P α φt, x, α φt, x b α expib P φt, x exp ib P α = α φt, x b α b expib P φt, x exp ib P = φt, x b i [ b P, φt, x ] = b φt, x [ P, φt, x ] = i φt, x, [ P, pt, x ] = i pt, x P = d 3 x px φx P c, c P = 1 d 3 p p c pc p + δp p + c p c p e iωpt + c pc pe iω pt p p, 1 0 P = d 3 p p c pc p α H P H α = E α α, P α = p α α

64 [ H, c q ] = ωq c q, [ H, c q ] = ω q c q, [ P, c q ] = q c q, [ P, c q ] = q c q Hc q α = [ H, c q ] + c q H α = E α + ω q c q α, P c q α = p α + q c q α Hc q α = E α ω q c q α, P c q α = p α q c q α c q ω q = q + m 0 q, c q m 0 q, c q q 0 c q 0 1 time-ordered product T T φx φx θt t φx φx + θt tφx φx 7.9 i F x x = 0 T φx φx 0 = θt t 0 φx φx 0 + θt t 0 φx φx F x x F x x 7.5 d 0 φx φx 3 p d 3 p 1 0 = π 3 0 c p e ip x + c p e ip x c p e ip x + c eip x p 0 ω p ω p d 3 p d 3 p = π 3 e ip x+ip x 0 c p c p ω p ω 0 = p d 3 p e p x x π 3 ω p i F x x = i F x = d 3 p π 3 1 ω p θt t e ip x x + θt t e ip x x d 3 p 1 π 3 θt e ip x + θ t e ip x 7.11 ω p R iε R R iε R t > 0 t < 0

65 7 63 θt = dk, ε πi k iε e ikt t > 0, k, R k R k = R e iϕ 0 ϕ π C + 1/k iε k = iε dk e ikt C + πi k iε = eikt k=iε = e εt 1, ε +0 k = R e iϕ e ikt = e tr sin ϕ e itr cos ϕ tr sin ϕ = e t > 0 sin ϕ > 0 e ikt 0, R, R 0 t > 0 e ikt dk πi k iε = 1 t < 0 C k = iε C e ikt dk C πi k iε = 0, e ikt t < 0 sin ϕ < 0 R 0, t < F x = 1 dk πi k iε = 0 e ikt d 3 p dk 1 π 4 exp iω p kt + ip x + exp iω p kt ip x ω p k iε 1 q 0 = ω p k, q = p, q 0 = ω p + k, q = p, k, p q 0, q F x = 1 d 4 q 1 π 4 ω q 1 ω q q 0 iε + 1 ω q + q 0 iε e iq x = d 4 q π 4 e iq x q 0 ω q iε q 0 ω q iε = q 0 q m 0 + i ω q ε = q m 0 + i ω q ε, q = q µ q µ = q 0 q, ω q > 0 ω q ε ε F x = d 4 q π 4 Fq e iq x, F q = q 0 q 0 = ω q F q m 0 + iε 7.13 t θt t = δt t, t θt t = δt t

66 7 64 i t Fx x = δt t 0 [ φt, x, φt, x ] T φx φx i t Fx x = δt t 0 [ φt, x, φt, x ] T φx φx 0 = iδt t δx x + 0 T φx φx 0 + m 0 F x x = δ 4 x x i 0 T + m 0 φx φx 0 = δ 4 x x 7.14 F x x m d 0 F x x 4 q m 0 q = e iq x x π 4 q m 0 + iε 1 x + iε = P 1 x iπδx, x P 1 x = 1, x δx = 0 + m d 0 F x x 4 q = e iq x x π 4 = δ 4 x x 7.3 L L = ψx i/ m ψx ψ 4 4 ψ α x, ψ α x,,, ψ ψ ψ ψ L = i/ m ψx ψ, α α, µ L µ ψ α = L ψ α L µ ψ α = 0 i/ m ψx = 0, ψ L ψ α = m ψ α, L µ ψ α = i ψγ µ α µ L µ ψ α L = i µ ψγ µ + mψ ψ α = 0 α

67 7 65 γ 0 i/ m ψx = 0, ψ α, p α = L ψ α = i ψγ 0 α = iψ α {ψ αt, x, ψ β t, x } = δ αβ δx x, {ψ α t, x, ψ β t, x } = ψx,, second quantization,, ψx ψx = s d 3 p m ap, s up, se ip x + cp, s vp, se ip x π 3/ E p p 0 = E p = p + m, ap, s, cp, s ψx ψx 4.31, 4.3 m d 3 x ap, s = eip x u p, sψx π 3/ E p m d 3 x cp, s = e ip x v p, sψx π 3/ E p, 7.15 a, a, c, c t = t { ap, s, a p, s } m d 3 x d 3 x = e ip x+ip x Ep E p π 3 e ip 0 p 0 t { } u αp, s u β p, s ψ α t, x, ψ β t, x = αβ m u p, sup, s e ip 0 p 0 d t 3 x Ep E p π 3 e ip p x = m E p u p, sup, s δp p 4.13 { ap, s, a p, s } = δ ss δp p { cp, s, c p, s } = δ ss δp p 0, { a p, s, a p, s } = 0, a p, s = 0, 1

68 7 66 H H = p ψ L = iψ 0 ψ ψ γ 0 iγ iγ m ψ = ψ iγ + m ψ H H = d 3 x ψx iγ + m ψx = d 3 x ψ x iα + mγ 0 ψx iα + mγ 0, H a, c iγ + m ψx = s d 3 p π 3/ m E p ap, s e ip x γ p + m up, s + cp, s e ip x γ p + m vp, s 4.10 γ p + m up, s = E p γ 0 up, s, γ p + m vp, s = E p γ 0 vp, s iγ + m ψx = s d 3 p mep γ 0 ap, s e ip x up, s cp, s e ip x vp, s π 3/ H = m ss d 3 p d 3 p E p E p d 3 x π 3 a p, s u p, s e ip x + c p, s v p, s e ip x ap, s up, s e ip x cp, s vp, s e ip x = m ss d 3 p u p, s up, s a p, s ap, s + v p, s up, s c p, s ap, s e ip0 t u p, s vp, s a p, s cp, s e ip0t v p, s vp, s c p, s cp, s u, v 4.13 H = s d 3 p E p a p, sap, s c p, scp, s ap, s 0 = 0, cp, s 0 = 0 a p, s ap, s a p, s = a p, s δ ss δp p a p, sap, s Ha p, s 0 = E p a p, s 0 Hc p, s 0 = E p c p, s 0

69 7 67 a, c, a E p, c E p 0,, c p, s 0 = 0,,, cp, s 0 b p, s = cp, s, ap, s 0 = 0, bp, s 0 = ap, s, bp, s ψx ψx = d 3 p m ap, s up, se ip x + b p, s vp, se ip x 7.18 π 3/ E s p, { ap, s, a p, s } = { bp, s, b p, s } = δ ss δp p, = c b, c b H = d 3 p E p a p, sap, s bp, sb p, s s = s d 3 p E p a p, sap, s + b p, sbp, s + 0 H 0 0 H 0 = s d 3 p E p δp p Ha p, s 0 = E p + 0 H 0 a p, s 0, Hb p, s 0 = E p + 0 H 0 b p, s 0, a, b H 0 H 0, 0 H 0,, 0 H 0 H = d 3 p E p a p, sap, s + b p, sbp, s s, µ j µ = 0, j µ x = ψxγ µ ψx,,, Q q Q = q d 3 x ψxγ 0 ψx

70 7 68 a, b Q = q d 3 p d 3 p m d 3 x Ep E ss p π 3 a p, s u p, se ip x + bp, s v p, se ip x ap, s up, s e ip x + b p, s vp, s e ip x = q s = q s d 3 p a p, sap, s + bp, sb p, s d 3 p a p, sap, s b p, sbp, s + 0 Q 0 0 Q 0 = q s d 3 p δp p H Q = q d 3 p a p, sap, s b p, sbp, s s Q a p, s 0 = q a p, s 0, Q b p, s 0 = q b p, s 0 q ,, ψx, T ψ α x ψ β x θt t ψ α x ψ β x θt tψ β x ψ α x S F i S F x x 0 T ψ α xψ β x 0 αβ i S F x x = d 3 p d 3 p m αβ π 3 Ep E ss p θt t 0 ap, s a p, s 0 u α p, su β p, s e ip x+ip x θt t 0 bp, s b p, s 0 v α p, sv β p, s ip x ip x e t < t, t t, t < t, t t 0 ap, s a p, s 0 = 0 δ ss δp p a p, s ap, s 0 = δ ss δp p

71 7 69 i S F x x = αβ s d 3 p m π 3 θt t u α p, su β p, s e ip x x E p θt t v α p, sv β p, s e ip x x = d 3 p m θt π 3 t Λ + p e ip x x + θt tλ p e ip x x E p αβ Λ ± p , 4.18 d 3 p /p + m S F x = i π 3 θte ip x /p m θ te ip x E p E p 7.1 d 3 p dk Ep γ 0 p γ + m exp ie p kt + ip x S F x = π 4 E p k iε E pγ 0 p γ m exp ie p kt ip x E p k iε F d 4 q 1 S F x = π 4 E q = = d 4 q π 4 Eq γ 0 q γ + m E q q 0 iε q 0 γ 0 q γ + m E q q 0 iε E q + q 0 iε e iq x d 4 q π 4 S Fq e iq x, S F q = E qγ 0 + q γ m E q + q 0 e iq x iε /q + m q m + iε 7.1 z /q + z/q z = q z /q + z q z = 1 /q z 4 4 /q z z = m iε S F q = /q + m q m + iε = 1 /q m + iε 7. e iq x x µ i µ e iq x = q µ e iq x d 4 q i/ + m d S F x = e iq x 4 q e iq x π 4 q m = i/ + m + iε π 4 q m + iε = i/ + m Fx i/ m i/ + m = / / m = m 7.14 i/ m S F x = + m F x = δ 4 x x S F x i/ m ψ = 0

72 S H H 0 V t t S i t t S = H t S, H = H 0 + V t S t I e ih 0t t S, V I t = e ih 0t V e ih 0t i t t I = e ih0t H 0 + i t S = e ih0t V t S = e ih0t V e ih0t t I = V I t t I 8.1 t t I,,,, H 0, V I V ϕ i ϕ i ϕ i x V = V [ϕ i x], V I t = V [ϕ i t, x], ϕ i t, x = e ih 0t ϕ i xe ih 0t 8. i t ϕ it, x = H 0 e ih 0t ϕ i xe ih 0t + e ih 0t ϕ i xe ih 0t H 0 = [ ϕ i t, x, H 0 ] 8.3 H 0, ϕ i t, x V [ϕ i ] L int V [ϕ i ] = d 3 x L int L int g 4! φ4 x, g ψxψxφx, g ψxγ µ ψxa µ x φ, ψ, A µ t S = e iht t 0 t 0 S t I = Ut, t 0 t 0 I t Ut, t 0 = i V I t Ut, t t I = e ih 0t e iht t 0 t 0 S = e ih 0t e iht t 0 e ih 0t 0 t 0 I Ut, t 0 = e ih0t e iht t0 e ih0t0 8.5

73 8 71 Ut, t Ut 0, t 0 = 1 Ut, t 0 = 1 + i T Ut, t 0 = 1 + i t t 0 dt 1 V I t 1 Ut 1, t 0 t = 1 + i dt 1 V I t 1 t 0 t1 1 + i t = 1 + i dt 1 V I t 1 + i t 0 t t 0 dt 1 V I t 1 + i t1 t t t t 0 dt 1 dt V I t Ut, t 0 t 0 t 0 dt 1 t1 t1 t 0 dt V I t 1 V I t Ut, t 0 t 0 dt V I t 1 V I t t + i 3 dt 1 dt t 0 t 0 t 0 dt 3 V I t 1 V I t V I t 3 + t t t = 1 + i dt 1 V I t 1 + i t 0 dt 1 t 0 dt θt 1 t V I t 1 V I t t 0 + i 3 t t 0 dt 1 t t 0 dt t t 0 dt 3 θt 1 t θt t 3 V I t 1 V I t V I t T V I t 1 V I t = θt 1 t V I t 1 V I t + θt t 1 V I t V I t 1 T V I t 1 V I t V I t 3 = 3 i,j,k=1 i j k θt i t j θt j t k V I t i V I t j V I t k n ϕ,, V I ϕ ϕ, V I 8.6 S Ut, t 0 = 1 + i = + i3 3! t t t dt 1 V I t 1 + i dt 1 dt T V I t 1 V I t t 0! t 0 t 0 t t dt 1 dt dt 3 T V I t 1 V I t V I t 3 + t 0 t 0 t 0 t i n n=0 n! t t 0 dt 1 t dt n T V I t 1 V I t n t 0 t = T exp i dt V I t t 0, t i t f,,, V I t e ε t, ε + 0 t e ε t = 1, t ± e ε t = 0 e ε t,, H 0 i = E i i, H 0 f = E f f

74 8 7 E i = E f t S = e ih0t t I = e ih0t Ut, t 0 t 0 I = e ih0t Ut, t 0 e ih0t0 t 0 S, t 0 i t 0 f f e ih 0t U, e ih 0t 0 i = e ie 0t t 0 f U, i f S i S = U, = T exp i dt V I t S Dyson S V I L int S = T exp i d 4 x L int x 8.7 L int ϕ i x, 8.3 ϕ i x, F, S F, H 0 H 0 0, 8.3 ϕx, H Φ i Φx = [ Φx, H ] t 0 T ΦxΦx 0 Φx = e iht Φ0, x e iht, t = 0 Φ0, x = ϕx 8. Φx = e iht e ih0t ϕxe ih0t e iht Φx Φx = e iht e ih0t ϕxe ih0t e iht t e ih0t ϕx e ih0t e iht 8.5 Ut, t = e ih0t e iht t e ih0t, U0, t = e iht e ih0t, Ut, 0 = e ih0t e iht Φx Φx = U0, tϕxut, t ϕx Ut, 0, 0 0 H 0 0 V I H 0 0 = e iθ U0, 0

75 8 73, V I 0 = e iθ U, 0 0, 0 = e iθ U 1, U = U 1 0 = e iθ 0 U, 0 1 = 0 0 = e iθ+θ 0 U, 0U0, 0 = e iθ+θ 0 S 0 0 ΦxΦx 0 = e iθ+θ 0 U, 0U0, tϕxut, t ϕx Ut, 0U0, 0 = 1 0 S 0 0 U, tϕxut, t ϕx Ut, 0 V I 1 U, t, Ut, t, Ut, i t dt 1 V I t 1 ϕxϕx + i t t dt 1 ϕxv I t 1 ϕx + i t dt 1 ϕxϕx V I t 1 t > t i dt 1 T ϕxϕx V I t 1 0 T ΦxΦx 0 = = 1 0 S 0 i n n=0 n! dt S 0 0 T ϕxϕx S 0 dt n 0 T ϕxϕx V I t 1 V I t n T Φx 1 Φx n 0 = 0 S 0 0 T ϕx 1 ϕx n S , 8.8 exp, L int,, 8. S f T L int x 1 L int x n i L int x ϕ i x f T ϕ 1 x 1 ϕ n x n i

76 8 74 Wick normal product ϕ 1 x 1 ϕ n x n,, 1 normal product : ϕ 1 x 1 ϕ n x n : ϕ i x ϕ + i x ϕ i x, φx : φx 1 φx : = : φ + x 1 + φ x 1 φ + x + φ x : ψx : ψ α x 1 ψ β x : = : = φ + x 1 φ + x + φ + x 1 φ x + φ + x φ x 1 + φ x 1 φ x 8.9 ψ + α = ψ + α x 1 ψ + ψ + β x 1 + ψ α x 1 β x + ψ α + x ψ α ψ + β x + ψ β x : x 1 ψ β x x 1 + ψ α x 1 ψ β x ψ α x 1 ψ + x 0, β ϕ i x 0 = 0, 0 ϕ + i x = 0 0 : ϕ 1 x 1 ϕ n x n : 0 = 0 [ φ x 1, φ + x ] x 1, x Cx 1, x 8.9 φx 1 φx : φx 1 φx : = [ φ x 1, φ + x ] = Cx 1, x, 0 0 φx 1 φx 0 = Cx 1, x φx 1 φx = : φx 1 φx : + 0 φx 1 φx 0 ψ α x 1 ψ β x : ψ α x 1 ψ β x : = {ψ α x 1, ψ + β x } = 0 ψ α x 1 ψ β x 0 ψ α x 1 ψ β x = : ψ α x 1 ψ β x : + 0 ψ α x 1 ψ β x 0

77 8 75 T φx 1 φx = θt 1 t φx 1 φx + θt t 1 φx φx 1 = θt 1 t : φx 1 φx : + 0 φx 1 φx 0 + θt t 1 : φx φx 1 : + 0 φx φx 1 0 : φx 1 φx : = : φx φx 1 : T φx 1 φx = : φx 1 φx : + 0 T φx 1 φx 0 = : φx 1 φx : + i F x 1 x T ψ α x 1 ψ β x = θt 1 t ψ α x 1 ψ β x θt t 1 ψ β x ψ α x 1 : ψ α x 1 ψ β x : = : ψ β x ψ α x 1 : = θt 1 t : ψ α x 1 ψ β x : θt t 1 : ψ β x ψ α x 1 : + 0 T ψ α x 1 ψ β x 0 T ψ α x 1 ψ β x = : ψ α x 1 ψ β x : + 0 T ψ α x 1 ψ β x 0 ϕ i x i ϕ i, = : ψ α x 1 ψ β x : + i S F x 1 x αβ ϕ 1 ϕ = : ϕ 1 ϕ : + ϕ 1 ϕ, T ϕ 1 ϕ = : ϕ 1 ϕ : + ϕ 1 ϕ 8.11 ϕ 1 ϕ 0 ϕ 1 ϕ 0, ϕ 1 ϕ 0 T ϕ 1 ϕ 0 contraction 8.11 n ϕ 1 ϕ ϕ n ϕ 1 ϕ ϕ n = : ϕ 1 ϕ ϕ n : + : ϕ 1 ϕ ϕ n : + : ϕ 1 ϕ ϕ 3 ϕ n : + + : ϕ 1 ϕ ϕ 3 ϕ 4 ϕ n : + : ϕ 1 ϕ ϕ 3 ϕ 4 ϕ n : + + : ϕ 1 ϕ ϕ 3 ϕ 4 ϕ 5 ϕ 6 ϕ n : + T ϕ 1 ϕ ϕ n = : ϕ 1 ϕ ϕ n : + : ϕ 1 ϕ ϕ n : + : ϕ 1 ϕ ϕ 3 ϕ n : + + : ϕ 1 ϕ ϕ 3 ϕ 4 ϕ n : + : ϕ 1 ϕ ϕ 3 ϕ 4 ϕ n : + + : ϕ 1 ϕ ϕ 3 ϕ 4 ϕ 5 ϕ 6 ϕ n : +

78 8 76,,, ϕ : ϕ 1 ϕ ϕ 3 ϕ 4 ϕ n := ϕ 1 ϕ 3 : ϕ ϕ 4 ϕ n := ϕ 1 ϕ 3 ϕ ϕ 4 : ϕ 5 ϕ n :, : ϕ 1 ϕ : : ϕ 3 ϕ 4 : = ϕ 1 ϕ ϕ 1 ϕ ϕ 3 ϕ 4 ϕ 3 ϕ 4 ϕ 1 ϕ ϕ 3 ϕ 4 = : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : : ϕ 1 ϕ : : ϕ 3 ϕ 4 : = : ϕ 1 ϕ ϕ 3 ϕ 4 : + ϕ 1 ϕ : ϕ 3 ϕ 4 : ϕ 3 ϕ 4 + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + ϕ 3 ϕ 4 : ϕ 1 ϕ : ϕ 1 ϕ + ϕ 1 ϕ ϕ 3 ϕ 4 + ϕ 1 ϕ ϕ 3 ϕ 4 : ϕ 1 ϕ : ϕ 1 ϕ = ϕ 1 ϕ : ϕ 1 ϕ : : ϕ 3 ϕ 4 : = : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + : ϕ 1 ϕ ϕ 3 ϕ 4 : + ϕ 1 ϕ ϕ 3 ϕ 4

79 L int = g : ψxψx φx : p 1, s 1, p, s p 1, s 1, p, s i = a p 1, s 1 a p, s 0, f = a p, s a p 1, s S fi = f S i = f i + i d 4 x f L int x i 1 d 4 x d 4 x f T L int xl int x i + i, f f φ i = Wick ψ = ψx, ψ = ψx 7.18 ψψ a + b a + b ψψ ψ ψ 0 f : φ φ : i = 0 f T L int xl int x i = g f T : ψψφ : : ψ ψ φ : i = g φ φ f : ψψψ ψ : + : ψψψ ψ : + : ψψψ ψ : + ψψψ ψ i = g φ φ f : ψψψ ψ : i + ψ α ψ β f : ψ α ψ β : i + ψ α ψ β f : ψ α ψ β : i + ψψψ ψ f i f : ψ α ψ β : i 0 ap 1, s 1ap, s a p, sap, s a p 1, s 1 a p, s 0, p 1, s 1 = p 1, s , 1 1, S fi = g d 4 x d 4 x f : ψxψx ψx ψx : i φxφx ψ a, ψ + b 9. f : ψxψx ψx ψx : i = f : ψ + xψ x ψ + x ψ x : i = αβ f ψ + α xψ + β x ψ α xψ β x i

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

05秋案内.indd

05秋案内.indd 1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ Complete Ancient Greek 2010 (2003 ) October 15, 2013 * 25 04-23 0 ἅ ὅς 03 05(06) 0 ἄβιος,-ον, 15 99-02 0 ἄβροτον ἄβροτος 15 99-02 0 ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυσσος

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () 64: ィャ 9997ィ 34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord -K + < qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading order (NLO) NLO (low energy constant,lec) χ I = I

More information

(7) u 1 θ A {u 1, u, u 3 } U = (u 1, u, u 3 ) A = UT (θ) + tu t UAU = T (θ) + () θ x z cos θ 0 sin θ cos θ sin θ 0 X(θ) = 0 cos θ sin θ, Y (θ) =

(7) u 1 θ A {u 1, u, u 3 } U = (u 1, u, u 3 ) A = UT (θ) + tu t UAU = T (θ) + () θ x z cos θ 0 sin θ cos θ sin θ 0 X(θ) = 0 cos θ sin θ, Y (θ) = Mathematics for Computer Graphics 1 1.1 a = (a x, a, a z ), b = (b x, b, b z ) c = (c x, c, c z ) a, b a, b a, b, c x,, z ( ) c a, b (vector product) (outer product) a b c = ( a b a z b z, a z b z a x

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2

[Oc, Proposition 2.1, Theorem 2.4] K X (a) l (b) l (a) (b) X [M3] Huber adic 1 Huber ([Hu1], [Hu2], [Hu3]) adic 1.1 adic A I I A {I n } 0 adic 2 On the action of the Weil group on the l-adic cohomology of rigid spaces over local fields (Yoichi Mieda) Graduate School of Mathematical Sciences, The University of Tokyo 0 l Galois K F F q l q K, F K,

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1

II 2014 2 (1) log(1 + r/100) n = log 2 n log(1 + r/100) = log 2 n = log 2 log(1 + r/100) (2) y = f(x) = log(1 + x) x = 0 1 f (x) = 1/(1 + x) f (0) = 1 II 2014 1 1 I 1.1 72 r 2 72 8 72/8 = 9 9 2 a 0 1 a 1 a 1 = a 0 (1+r/100) 2 a 2 a 2 = a 1 (1 + r/100) = a 0 (1 + r/100) 2 n a n = a 0 (1 + r/100) n a n a 0 2 n a 0 (1 + r/100) n = 2a 0 (1 + r/100) n = 2

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information

007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040 000040 0040 0040 674 00000 70 00000 0 00000

007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040 000040 0040 0040 674 00000 70 00000 0 00000 EDOGAWA ITY Y @ Y 60 7 66997 00 00 00 00 600 000 000 4900 900 700 000 f 004000 00 000 7f 70g 0 0 007 0 ue ue 6 67 090 b 6666 D 666 0 6 6 0 0 0 4 0 6 7 6 6706 00000 00000 69 000040 000040 0040 0040 000040

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A 7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

PII S (96)

PII S (96) C C R ( 1 Rvw C d m d M.F. Pllps *, P.S. Hp I q G U W C M H P C C f R 5 J 1 6 J 1 A C d w m d u w b b m C d m d T b s b s w b d m d s b s C g u T p d l v w b s d m b b v b b d s d A f b s s s T f p s s

More information

液晶テレビ保護パネル対応表 (SHARP) SHARP LC-AE6 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE6 LC-AE6 LC-AE6 LC-AE7 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE7 LC-AE7 LC-AE7

液晶テレビ保護パネル対応表 (SHARP) SHARP LC-AE6 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE6 LC-AE6 LC-AE6 LC-AE7 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE7 LC-AE7 LC-AE7 液晶テレビ保護パネル対応表 (Panasonic) Panasonic TH-A305 A305 39 TH-39A305 左右 7.5 下 7mmはみでますが 使用できます TH-A305 YK-CRT016 A0 TH-A0 左右 9.5 下 30mmはみでますが 使用できます AS600 TH-AS600 AS630 TH-AS630 YK-CRT016 TH-AS6 AS6 TH-AS6 55

More information

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0 1473 : de nouvelles perspectives 2006 2 pp 102 119 VI q 1 Tetsuya Kikuchi Sabro Kakei Drinfel d-sokolov Painlevé [KK1] [KK2] [KK3] [KIK] [ ] [ ] [KK3] three-wave equation Painlevé VI q q Drinfel d-sokolov

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2

α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn A, B A B A B A B A B B A A B N 2 1. 2. 3. 4. 5. 6. 7. 8. N Z 9. Z Q 10. Q R 2 1. 2. 3. 4. Zorn 5. 6. 7. 8. 9. x x x y x, y α = 2 2 α x = y = 2 1 α = 2 2 α 2 = ( 2) 2 = 2 x = α, y = 2 x, y X 0, X 1.X 2,... x 0 X 0, x 1 X 1, x 2 X 2.. Zorn

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

縺02 縺07 縺 , 縺05 [

縺02 縺07 縺 , 縺05 [ 1309ィ 0408 2003 03. 070503 173, 02 6 0806 タ07 09 090908090107060109 04030801 030707 縺0609010706010907 08030307070109 縺08050105040405080909 0402090705040909 030008090902 02 ィ 020501090705030003040909040500

More information

Note5.dvi

Note5.dvi 12 2011 7 4 2.2.2 Feynman ( ) S M N S M + N S Ai Ao t ij (i Ai, j Ao) N M G = 2e2 t ij 2 (8.28) h i μ 1 μ 2 J 12 J 12 / μ 2 μ 1 (8.28) S S (8.28) (8.28) 2 ( ) (collapse) j 12-1 2.3 2.3.1 Onsager S B S(B)

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

補足情報

補足情報 1 危 険 警 告 注 意 2 3 4 5 6 7 8 1 2 3 4 5 9 6 7 8 9 10 10 1 2 11 1 12 1 2 13 3 4 14 1 2 15 3 4 5 16 1 2 3 17 1 2 3 4 18 19 20 21 22 23 1 2 3 4 5 24 6 7 8 9 10 25 26 27 28 6 1 2 7 8 9 3 4 5 29 1 2 警 告 3 4 5

More information

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2 critter twitter ( PRML) PRML PRML PRML PRML 1. 2. 3. PRML PRML 110 PRML 700 1 PRML pdf PRML (http://critter.sakura.ne.jp) 1 1.1 N x t y(x, w) = w 0 + w 1 x + w 2 x 2 + + w M x m = M w j x j (1.1) j=0 E(w)

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r

4 4. A p X A 1 X X A 1 A 4.3 X p X p X S(X) = E ((X p) ) X = X E(X) = E(X) p p 4.3p < p < 1 X X p f(i) = P (X = i) = p(1 p) i 1, i = 1,,... 1 + r + r 4 1 4 4.1 X P (X = 1) =.4, P (X = ) =.3, P (X = 1) =., P (X = ) =.1 E(X) = 1.4 +.3 + 1. +.1 = 4. X Y = X P (X = ) = P (X = 1) = P (X = ) = P (X = 1) = P (X = ) =. Y P (Y = ) = P (X = ) =., P (Y = 1) =

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information