< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord

Size: px
Start display at page:

Download "< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord"

Transcription

1 -K +

2 < qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading order (NLO) NLO (low energy constant,lec) χ I = I = K +

3 K QCD Nambu-Goldstone Gell-Mann-Oakes-Renner Nambu-Goldstone QCD K K + n K + n LO NLO LO+NLO

4 3 5.3 K + p K + p LO NLO LO+NLO s (l = ) p (l = ) K

5 4 (Quantum Chromodynamics,QCD) QCD SU(3) c QCD ( ) ( ) ( ) QCD - π K QCD QCD QCD QCD ( ) ( ) < qq >. (Quark Gluon Plasma,QGP) QGP (< qq >= )

6 5 (< qq >= ) Nambu-Goldstone (NG ) (NG π, K, η ) π (π - ) 3% ] (subthreshold) (threshold) π ± - π ± π ±.5MeV/c b free /b =.69 ] π ± - K - K + - K + N( ) K +. K + - K + - K + 3] K + N K + 5fm K + P LAB 8MeV/c σ(k + A) Aσ(K + N) (.) K + K + N K + S = + K + -N K + S = K K Λ(45) K + K +

7 6 C d R R = σ(k+ C)/ σ(k + d)/ > (.) 4] d σ(k + d) = σ(k + N) (.3) R > C σ(k + C) > σ(k + N) (.4) K + Σ free = m N M(K + N) free ρ (.5) M(K + N) free = 8π sb free (.6) m N ρ s K + N b free K + - Σ fit = m N M(K + N) fit ρ (.7) M(K + N) fit = 8π sb fit (.8) K + N b fit E.Friedman A.Gal ] Re b fit Re b free 4% 5% Im b fit Im b free % 5%.3 (.5) (.7) NG K + NG Z Σ = Z M(K + N)ρ m N (.9) Z + Σ E (.)

8 7 Z ρ.4 Z K + - M(K + N) M(K + N) vector meson exchange QCD (Chiral Perturbation Theory,ChPT) QCD NG.5 QCD QCD - K + N

9 8 QCD (Quantum Chromodynamics,QCD). QCD SU(3) c / u, d, s, c, b, t QCD SU(3) c L free = A= f= α,α = q α,f,a (γ µ α,α i µ m f δ α,α )q α,f,a (.) A, f, α q f = (q f,, q f,, q f,3 ) t SU(3) c : q f (x) q f (x) = exp i 8 a= θ a (x) λ a ] q f (x) U(x)q f (x) (.) q f (x) q f (x) = q f (x)u (x) (.3) U SU(3) c (λ a : θ a (x) : ) µ D µ L free A µ D µ q f ( µ + iga µ )q f (.4) A µ = A aµ λ a A µ = UA µ U + i g ( µu)u (.5)

10 QCD 9 A aµ (a =...8), g g QCD L matter = q f (i D m f )q f (.6) f=u,d,s,c,b,t L QCD ( ) ( ) λ a F µν F aµν (.7) F µν = D µ A ν D ν A µ = µ A ν ν A µ + iga µ, A ν ] (.8) F aµν = µ A aν ν A aµ gf abc A bµ A cν (f abc : SU(3) ) (.9) F µν F µν = UF µν U (.) L gauge = 4 F aµνf µν a QCD L QCD = f=u,d,s,c,b,t = T r(f µνf µν ) (.) q f (i D m f )q f T r(f µνf µν ) (.). γ 5 ± γ 5 γ = ( ) (, γ j σ j = σ j ) (j =,, 3) (.3) γ 5 = iγ γ γ γ 3 = ψ ξ, ζ ( ) ξ ψ = ζ ( ) (.4) (.5)

11 QCD ( ξ ψ = ) ( + ζ ) = ψ R + ψ L (.6) ψ R,ψ L γ 5 ψ R = ψ R (.7) γ 5 ψ L = ψ L (.8) γ 5 γ 5 + ψ R, - ψ L P R = + γ5, P L = γ5 (.9) P R + P L = (.) (P R ) = P R, (P L ) = P L (.) P R P L = P L P R = (.) P R ψ = ψ R (.3) P L ψ = ψ L (.4) ψ L,ψ R ψ L = ψ P L γ = ψp R (.5) ψ R = ψ P R γ = ψp L (.6) γ 5 = γ 5, {γ5, γ µ } = QCD ψψ QCD L QCD = f ψψ = ψ R ψ R + ψ R ψ L + ψ L ψ R + ψ L ψ L = ψp L P R ψ + ψp L P L ψ + ψp R P R ψ + ψp R P L ψ = ψ R ψ L + ψ L ψ R (.7) ψγ µ ψ = ψ R γ µ ψ R + ψ L γ µ ψ L (.8) q L,f i Dq L,f + q R,f i Dq R,f m f ( q L,f q R,f + q R,f q L,f ) 4 F aµνf a µν (.9)

12 QCD m f ( ) QCD U(N f ) L U(N f ) R = SU(N f ) L SU(N f ) R U() L U() R SU(N f ) L SU(N f ) R ] 8 q L U L q L, U L = exp i θl a t a a= ] 8 exp i θl a t a SU(N f ) L (.3) a= q R U R q R, U R = expi exp i 8 a= θr a t a ] 8 θr a t a ] a= SU(N f ) R (.3) (θ :, t a : SU(N f ) ) t a, t b ] = if abc t c (f abc : SU(N f ) ) (.3) T rt a t b ] = δ ab (a = Nf ) (.33) t = /N f (.34) N f = : τ =, τ,,3 (Pauli (.35) N f = 3 : λ = /3, λ, 8 (Gell Mann ) (.36) QCD L QCD = f ( q L,f i Dq L,f + q R,f i Dq R,f ) 4 F aµνf µν a (.37) L QCD SU(N f ) L SU(N f ) R L µ a = q L iγ µ ta q L, µ L µ a = (.38) R a µ = q R iγ µ ta q R, µ R a µ = (.39) L µ a, V µ a Q a L = d 3 xl a µ=, Q a R = d 3 xrµ=, a dq a L = (.4) dt dq a R = (.4) dt

13 QCD SU(N f ) L SU(N f ) R Q La, Q Lb ] = if abc Q Lc, Q Ra, Q Rb ] = if abc Q Rc, Q Ra, Q Lb ] = (.4) SU(N f ) L SU(N f ) R U L U R (θ V U R (θ A θ R = θ L ) Q a V, Qa A : q V q, V = exp : q Aq, A = exp i i a= θ R = θ L ) U L ] 8 θv a t a ] 8 θaγ a 5 ta a= (.43) (.44) V µ a = R µ a + L µ a = qiγ µ ta q, µv µ a = (.45) A µ a = R µ a L µ a = qiγ µ γ 5 ta q, µa µ a = (.46) Q a V = Q a L + Q a R (.47) Q a A = Q a R Q a L (.48) Q a V, Q b V ] = if abc Q c V, Q a A, Q b A] = if abc Q c V, Q a V, Q b A] = if abc Q c A (.49) Û V = expiθ a V Q a V ], Û A = expiθ a AQ a A] (.5) Û V qûv + iθv a t a ]q (.5) Û A qûa + iθaγ a 5 ta ]q (.5)

14 3 3 QCD < qq > < qq > Nambu-Goldstone (NG ) π K η 3. N f = q = (u, d) t m f QCD H QCD tq a V =, tq a A = H QCD, Q a V ] =, H QCD, Q a A] = (3.) Û V H QCDÛV = H QCD, Û A H QCDÛA = H QCD (3.) ( SU() V ( ) I = : m π ± = 4 MeV, m π = 35 MeV I = : m p = 938 MeV, m n = 939 MeV ( ) I =, J P = + : I =, J P = : m a = 6 MeV m ρ = 77 MeV SU() V ( )

15 3 4 SU() L SU() R SU() V Û V >= >, Q a V >= > (3.3) Û A > >, Q a A > > (3.4) Q a A ( ) qq < qq > : µ j µ = (3.5) : C V (t) d 3 xρ(x, t), C = C (3.6) V : C, H] =, t C = (3.7) C = (3.8) (3.8) well-defined C() = C() C() = d 3 x ρ(x, ) C() = d 3 x ρ(, ) C() V (3.9) V V 3 C V well-defined well-defined S t (x) = lim C V (t), P (x)] V = lim d 3 x ρ(x, t), P (x)] (3.) V V ds t dt = (3.) S t (x) well-defined x µ A(x), y µ B(y) A(x), B(y),

16 3 5 (x y) < (space-like), x y A(x), B(y)] =, (x y) < (3.) (x y) > (time-like) V (x y) = (light-like) bound bound well-defined well-defined S t (x) = lim d 3 x ρ(x, t), P (x)] (3.3) V order parameter field H Ω Ω order parameter V Ω S t (x) Ω = lim d 3 x Ω ρ(x, t), P (x)] Ω V V = lim Ω C V (t), P (x)] Ω (3.4) V H Ω, C Ω ] = Ω C V Ω S t (x) Ω = (3.5) H Ω, C V ] = Ω H Ω C V C V Ω S t (x) Ω = (3.6) order parameter < qq > C V = Q a=,,3 A = V d 3 xq iγ 5 τ a q (3.7) P a (x) = qiγ 5 τ a q (3.8) Q a A(t), P b (x)] = iδ ab qq (3.9) < qq > (3.)

17 Nambu-Goldstone Q a A (SU() ) masless Ω S t (x) Ω = Ω S t (x) Ω = lim Ω e iht C V ()e iht n n P (x) Ω Ω P (x) n n e iht C V ()e iht Ω ] V n = lim Ω CV () n n P (x) Ω e ient Ω P (x) n n C V () Ω e +ie nt ] V n = lim E n Ω CV () n n P (x) Ω e ient + Ω P (x) n n C V () Ω e +ie nt ] V n t (3.) E n (3.) Ω C Ω () n n P (x) Ω = (3.3) Ω S t (x) Ω E n = Nambu-Goldstone Nambu-Goldstone a SU() NG (π, π ± ) (3.) 3.3 Gell-Mann-Oakes-Renner ˆm (m u + m d )/ µ V µ a ] = i q M, λa q (3.4) } q (3.5) µ A µ a = i qγ 5{ M, λa ( ) ˆm M = ˆm (3.6) SU() V PCAC(Partially-Conserved-Axial vector-current) ˆm

18 3 7 A a µ(x) π b (p) = if π (p )p µ e ipx δ ab (3.7) π b (p) f π f π = 9.4MeV (3.5) G (3.9) µ A µ a = ˆmi qγ 5 τ a q = ˆmP a (x) (3.8) µ A a µ(x) π b (p) = f π m πe ipx δ ab = ˆm < P a (x) π b (p) > = ˆme ipx δ ab G (3.9) f π m π = ˆmG (3.3) V m Bogoliubov limit iδ ab qq = d 3 p Q a (π) 3 E A π c (p) π c (p) P b (x) P b (x) π c (p) π c (p) Q a A ] c p (3.3) Q a A π c (p) = if π p µ= δ ac d 3 xe ipx = if π p µ= δ ac (π) 3 δ 3 (p) (3.3) π c (p) P b (x) = e ipx δ cb G (3.33) (3.3) d 3 p (π) 3 if π p µ= δ ac (π) 3 δ 3 (p)δ cb G e ipx + e ipx] = if π δ ab G (3.34) E p c Glashow-Weinberg relation qq m = f π G m (3.35) qq m f π m G m qq G m = m (3.36) f π m m π = ˆm m π = ˆm G f π (3.37) qq fπ m + O( ˆm ) (3.38) Gell-Mann-Oakes-Renner

19 8 4 QCD Nambu-Goldstone QCD - K + - 5, 6, 8] 4. Nambu-Goldstone NG QCD 4.. G G H NG ϕ i M 4 NG Φ = (ϕ, ϕ,..., ϕ n ) t R n M NG M {Φ : M 4 R n ϕ i : M 4 R} (4.) (g, Φ) G M φ(g, Φ) M φ φ φ(e, Φ) = Φ, Φ M (4.) φ(g, φ(g, Φ)) = φ(g g, Φ), g, g G, Φ M (4.3) G M G M M M φ G φ(g, λφ) λφ(g, Φ) Φ = M (origin) NG Φ =

20 4 9 H h H φ(h, Φ = ) = (4.4) Φ = h H G G H {gh g G} G/H G/H {gh h H} G G = eh + ah + bh + a, b, G (4.5) + G/H φ. gh Φ = R n φ(gh, ) = φ(g, φ(h, )) = φ(g, ), g G, h H (4.6) φ(g, ) G/H φ(g, ) G/H NG. G/H φ g, g G, g / gh φ(g, ) = φ(g, ) = φ(e, ) = φ(g g, ) = φ(g, φ(g, )) = φ(g, φ(g, )) = φ(g g, ) (4.7) g g H g gh g φ(g, ) φ(g, ) ( ) / gh G/H NG Φ gh Φ G/H gh Φ NG R n gh x NG g G Φ f = gh gh NG Φ = φ(f, ) = φ( gh, ) (4.8) φ(g, Φ) = φ(g, φ( gh, )) = φ(g gh, ) = φ(f, ) = Φ f g( gh) (4.9) Φ Φ Φ gh g Φ g Φ gh g g( gh)

21 4 4.. QCD QCD ( ) G H G = SU(N f ) SU(N f ) = {(L, R) L SU(N f ), R SU(N f )} (4.) H = SU(N f ) = {(V, V ) V SU(N f )} (4.) g = ( L, R) G SU(N f ) Ũ = R L G (4.) gh = (, R L )H (4.3) U g = (L, R) G g( gh) = (L, R)(, R L ) = (L, R R L )H = (, R R L L )(L, L)H = (, R R L L )H (4.4) U U = R L U = R R L L = RUL (4.5) x U(x) U(x) = RU(x)L (4.6) QCD N f =, N f = 3 NG M N f =: N f =3: M = {Φ : M 4 R 3 ϕ i : M 4 R} (4.7) M = {Φ : M 4 R 8 ϕ i : M 4 R} (4.8) N N A(N) {A gl(n, C) A = A, T ra = } (4.9) M {ϕ : M 4 A(N) ϕ} (4.) M M τ i, λ a N f =: N f =3: ϕ = 8 a= ϕ = 3 i= ϕ a λ a = ϕ i τ i = ( π π + π π ) π + η 6 π + K + π π + η 6 K K K η 6 (4.) (4.)

22 4 { ( ) } ϕ M 3 U : M 4 SU(N f ) U = exp i, ϕ M F (4.3) F exp NG F U SU(N f ) M 3 SU(N f ) SU(N f ) M 3 φ : G M 3 M 3, φ(l, R), U] RUL (4.4) G M 3. U M 3, R, L SU(N f ) RUL M 3. ϕ(, ), U] = U = U 3. g i = (L i, R i ) G g g = (L L, R R ) φg, φg, U]] = φg, R UL ] = R R UL L (4.5) φg g, U] = R R UL(L L ) = R R UL L (4.6) φg, φg, U]] = φg g, U] (4.7) ϕ = U = H = {(V, V ) V SU(N f )} QCD U ϕg = (V, V ), U ] = V U V = U (4.8) QCD ϕg = (A, A), U ] = A U A = A A U (4.9) NG NG 4. U(ϕ) SU(3) L SU(3) R NG

23 4 NG 4 p µ = ( p, p) 4πF π 7MeV p µ SU(3) L SU(3) R NG p µ = ( p + m NG, p) m NG p p µ NG L eff = n L n (4.3) U U = T r(u U) = 3 SU(3) L SU(3) R L eff = F 4 T r( µu µ U ) (4.3) U RUL (4.3) µ U R µ UL (4.33) U LU R (4.34) µ U L µ U R (4.35) L eff F 4 T r(r µul L µ U R ) = F 4 T r(rr µ U µ U ) = L eff (4.36) F /4 µϕ a µ ϕ a / U = + i ϕ F F ϕ + (4.37) µ U = i µ ϕ F F ϕ µ ϕ + (4.38)

24 4 3 (3) L eff = F 4 T r(i µ ϕ)( i µ ϕ)] + F F = T r( µ ϕ a λ a )( µ ϕ bλ b )] + = 4 µϕ a µ ϕ b T rλ a λ b ] + µϕ a µ ϕ a + L int (4.39) 8 NG NG 4.3 QCD QCD L ext QCD = L QCD + L ext (4.4) L ext QCD = qγ µ (v µ + γ 5 a µ )q q(s iγ 5 P )q = q L γ µ (v µ a µ )q L + q R γ µ (v µ + a µ )q R q R (S + ip )q L q L (S ip )q R = q L γ µ l µ q L + q R γ µ r µ q R q R (S + ip )q L q L (S ip )q R (4.4) v µ, a µ, S, P (4.4) SU(3) L SU(3) R l µ = v µ a µ, r µ = v µ + a µ (4.4) q L V L (x)q L, q R V R (x)q R (4.43) S + ip V R (S + ip )V L (4.44) l µ V L l µ V L + iv L µ V L (4.45) r µ V R r µ V R + iv R µ V R (4.46) L ext QCD = L QCD + L ext SU(3) L SU(3) R U(x) U (x) = V R (x)u(x)v L (x) (4.47) D µ U = µ U ir µ U + iul µ (4.48)

25 4 4 D µ U µ (V R UV L ) i(v Rr µ V R + iv R µ V R )V RUV L + iv RUV L (V Ll µ V L + iv L µ V L ) = ( µ V R )UV L + V R( µ U)V L + V RU( µ V L ) iv R r µ UV L + V R( µ V R )V RUV L +iv R Ul µ V L L V R U( µ V L }{{} ) ( µ V R )UV L = V R ( µ U + iul µ ir µ U)V L = V R(D µ U)V L (4.49) r µ,l µ (field strength tensor) F Rµν = µ r ν ν r µ ir µ, r ν ] (4.5) F Lµν = µ l ν ν l µ il µ, l ν ] (4.5) χ = B (S + ip ) (4.5) 3F B = < qq > (4.53) F Rµν V R F Rµν V R, F Lµν V L F Lµν V L (4.54) χ V R χv L (4.55) NG U = O(q ) (4.56) D µ U = O(q ) (4.57) r µ, l µ = O(q ) (4.58) F Lµν, F Rµν = O(q ) (4.59) χ = O(q ) (4.6) building block O(q ) L = F 4 T rd µu(d µ U) ] + F 4 T rχu + Uχ ] (4.6) O(q n ) building block NG : S = M = diag(m u, m d, m s ) (4.6) v µ = a µ = P = (4.63) QCD

26 NG SU() Ψ = ( p n SU(3) (/) + ) B = 8 a= B a λ a = ) Σ + Λ 6 Σ + p Σ + Λ 6 n Ξ Ξ Λ 6 SU(),SU(3) Σ (4.64) (4.65) 4.4. G SU() L SU() R SU(3) L SU(3) R N f = U SU() (4.) U (π, π ± ) 4. U G U RUL u = U(x) K(L, R, U) u(x) u (x) = RUL RuK (L, R, U) (4.66) K(L, R, U) = u (x)ru = RUL R U (4.67) G {(U, Ψ)} φ(g) : ( U Ψ ) ( ) ( U = Ψ RUL K(L, R, U)Ψ ) (4.68) G {(U, Ψ)} ( U φ(g g ) Ψ ) ( = φ(g ) R UL K(L, R, U)Ψ ( R = R UL ) L K(L, R, R UL )K(L, R, U)Ψ ( ) R = R U(L L ) K(L L, R R, U)Ψ ( ) U = φ(g g ) Ψ ) (4.69)

27 4 6 3 (4.67) K(L, R, R UL )K(L, R, U) = K(L L, R R, U) (4.7) SU() (4.68) g = (L, R) G Ψ U R = L = V U (4.66) (4.7) U = V UV = V u V = V uv V uv = u (4.7) u = V uv (4.7) u (x) = V uk (V, V, U) (4.73) V = K (V, V, U) (4.74) V = K(V, V, U) (4.75) U Ψ G = SU(3) L SU(3) R ( ) ( ) ( ) U U RUL φ(g) : B B = K(L, R, U)BK (L, R, U) (4.76) U SU(3) N f = SU(3) V B = V BV B 4.4. SU() L SU() R U() V (4.68) ( ) ( U(x) V R (x)u(x)v L (x) Ψ(x) exp iθ(x)]k V L (x), V R (x), U(x)] Ψ(x) exp iθ(x)] U() V ) (4.77) D µ Ψ(x) = D µ Ψ(x)] = exp iθ(x)]k V L (x), V R (x), U(x)] D µ Ψ(x)] (4.78) D µ K V R,V L U chiral connection Γ µ = u ( µ ir µ )u + u( µ il µ )u ] (4.79) ( D µ Ψ = µ + Γ µ iν (s) µ ) Ψ (4.8)

28 4 7 ( )] D µψ = µ + Γ µ i ν µ (s) µ θ exp( iθ)kψ (4.8) ( ) = exp( iθ)k µ + Γ µ iν µ (s) Ψ (4.8) (4.8) µ exp( iθ)kψ] = i µ θ] exp( iθ)kψ + exp( iθ) µ K] Ψ + exp( iθ)k µ Ψ] (4.83) µ K = KΓ µ Γ µk (4.84) (4.8) (4.84) (4.79) V, µ V V = ( µ V ) V = V ( µ V ) K = u V R u = u u u V R u = u U V R u = u V L U V R V Ru = u V L u (4.85) Γ µ = ( ) ( ) u µ iv R r µ V R + V R µ V R u + u µ iv L l µ V L + V L µ V L u ] (4.86) O(q) building block chiral vielbein u µ i u ( µ ir µ ) u u ( µ il µ ) u ] (4.87) u µ i u ( µ il µ ) u u ( µ ir µ ) u ] = u µ (4.88) ϕ(t, x) ϕ(t, x), U(t, x) U (t, x) (4.89) l µ r µ, r µ l µ (4.9) SU() L SU() R U() V u µ Ku µ K (4.9) (4.79) (4.87) V µ = iγ µ, A µ = u µ (4.9) building block Ψ, Ψ = O(q ) (4.93) u µ, Γ µ, (i D m) Ψ = O(q ) (4.94) χ ± = O(q ) (4.95) L () πn L () πn = Ψ ( i D m + g ) A γµ γ 5 u µ Ψ (4.96)

29 4 8 m, g A m ΨΨ m ΨΨ tree-level m E (E m) SU(3) L SU(3) R N f = building block (leading order,lo) L () MB = T r B (i D M ) B ] + D T r ( Bγ µ γ 5 {u µ, B} ) + F T r ( Bγ µ γ 5 u µ, B] ) (4.97) M D µ B = µ B + Γ µ, B] (4.98) D,F semi-leptonic decay (next-to-leading order,nlo) - L () MB =b DT r( B{χ +, B}) + b F T r( Bχ +, B]) + b T r( BB)T r(χ + ) +d T r( B{u µ, u µ, B]}) + d T r( Bu µ, u µ, B]]) + d 3 T r( Bu µ )T r(u µ B) + d 4 T r( BB)T r(u µ u µ ) b D, b F, b, d, d, d 3, d 4 - NLO 4. (4.99) 4.: (a)weinberg-tomozawa (WT ) (b)born ( ) (c)born ( ) (d)nlo

30 9 5 -K + - K + p K + p K + n K + n NLO M-matrix M-matrix M-matrix s p 5. K + N ( ) p = p CM + m K, p CM ( ) p = p CM + m N, p CM ( ) p 3 = p CM + m K, p CM ( ) p 4 = p CM + m N, p CM (5.) (5.) (5.3) (5.4) m K K + m N p CM 5. s = (p + p ) = (p 3 + p 4 ) (5.5) t = (p p 3 ) = (p p 4 ) (5.6) u = (p p 4 ) = (p p 3 ) (5.7)

31 5 -K : p p = p 3 p 4 = s m N m K p p 3 = m K t p p 4 = m N t p p 4 = p p 3 = m N + m K u (5.8) (5.9) (5.) on-shell p = p 3 = m K, p = p 4 = m N t = m K p p 3 = p CM ( cos θ) (5.) u = m K + m N s t = s + p CM ( cos θ) + (m K + m N ) (5.) (s (mn + m K ) p CM = )(s (m N m K ) (5.3) s (5.) s + t + u = m K + m N M-matrix 5. K + n K + n SU(3) - Born Q =, S = Σ B = Σ n (5.4) Φ = K+ K (5.5) ( 5.)

32 5 -K : K + n K + n Born ( ) 5.. LO (4.97) LO M-matrix L () = + i 4f K ( n K K + n nk K + n) f K (D F )( Σ K γ 5 n + n K + γ 5 Σ ) (5.6) M () W T = 4fK ū(p 4, s 4 )( p + p 3 )u(p, s ) (5.7) M () Born F ) = (D fk ū(p 4, s 4 ) p γ 5 S Σ (p p 3 ) p 3 γ 5 u(p, s ) (5.8) S Σ S(q) = m q iϵ = m+ q m q iϵ (5.9) : p + p = p 3 + p 4 (5.) Dirac : ( p m)u(p, s) =, ū(p, s)( p m) = (5.) WT M () W T = 4f ū(p 4, s 4 )( p + p 3 )u(p, s ) = 4fK ū(p 4, s 4 )( p + p + p p 4 )u(p, s ) = 4fK ū(p 4, s 4 )( p + p + p p }{{} 4 )u(p, s ) m n m n = fk ū(p 4, s 4 ) p u(p, s ) (5.)

33 5 -K + 3 Born Dirac M () Born p k = (kp) k p (5.3) F ) m Σ + ( p p 3 ) = (D fk ū(p 4, s 4 ) p γ 5 m Σ (p p 3 ) p 3γ 5 u(p, s ) (D F ) = fk m Σ (p p 3 ) m Σū(p 4, s 4 ) p γ 5 p 3 γ 5 u(p, s ) +ū(p 4, s 4 ) p γ 5 p p 3 γ 5 u(p, s ) ū(p 4, s 4 ) p γ 5 p 3 p 3 γ 5 u(p, s )] (5.4) m Σ ū(p 4, s 4 ) p γ 5 p 3 γ 5 u(p, s ) = m Σ m n ū(p 4, s 4 ) p u(p, s ) + m Σ (p p 4 ) m K]ū(p 4, s 4 )u(p, s ) (5.5) ū(p 4, s 4 ) p γ 5 p p 3 γ 5 u(p, s ) = (p p 3 ) m n]ū(p 4, s 4 ) p u(p, s ) + m n (p p 4 ) m K]ū(p 4, s 4 )u(p, s ) (5.6) Born ū(p 4, s 4 ) p γ 5 p 3 p 3 γ 5 u(p, s ) = m Kū(p 4, s 4 ) p u(p, s ) (5.7) M () F ) Born = (D fk m Σ (p mσ p 3 ) m n + (p p 3 ) m n m ] K ū(p4, s 4 ) p u(p, s ) (D F ) fk m Σ (p p 3 ) (m Σ + m n )((p p 4 ) m K)ū(p 4, s 4 )u(p, s ) (5.8) M () = M () = W T + M() Born f K (D F ) f K ] m Σ (p p 3 ) ( m Σm n + (p p 3 ) m n m K) ū(p 4, s 4 ) p u(p, s ) (D F ) fk m Σ (p p 3 ) (m Σ + m n )((p p 4 ) m K)ū(p 4, s 4 )u(p, s ) (5.9) 5.. NLO (4.99) L () = B f K ( ˆm + m s )( b b D + b F ) nnk + K + f K ( d + d + d 4 ) nn µ K + µ K (5.3)

34 5 -K + 33 ˆm = m u+m d, m s u d s B = M-matrix M () = m K ˆm+m s B fk ( ˆm + m s )( b b D + b F ) fk ( d + d + d 4 )(p p 3 ) ] ū(p 4, s 4 )u(p, s ) (5.3) 5..3 LO+NLO M (+) = + (D F ) f K (D F ) fk m Σ (p p 3 ) ( m Σm n + (p p 3 ) m n m K) + ] fk ū(p 4, s 4 ) p u(p, s ) m Σ (p p 3 ) (m Σ + m n )((p p 4 ) m K) B fk ( ˆm + m s )( b b D + b F ) fk ( d + d + d 4 )(p p 3 ) ] ū(p 4, s 4 )u(p, s ) (5.3) M (+) = ū(p 4, s 4 ) A n + B n p ] u(p, s ) (5.33) (D F ) A n = fk m Σ (p p 3 ) (m Σ + m n )((p p 4 ) m K) B fk ( ˆm + m s )( b b D + b F ) fk ( d + d + d 4 )(p p 3 ) (5.34) (D F ) B n = fk m Σ (p p 3 ) ( m Σm n + (p p 3 ) m n m K) + fk (5.35) 5.3 K + p K + p SU(3) - Born Q =, S = Λ Σ B = Σ + Λ 6 p Σ + Λ 6 Λ 6 (5.36) ϕ = K+ K (5.37)

35 5 -K + 34 ( 5.3) K + p K + p K + n K + n 5.3: K + p K + p Born ( ) 5.3. LO (4.97) LO L () = i f K + D F f K M-matrix ( pk+ K p pk K + p ) ( Σ K γ 5 p + p K + γ 5 Σ ) D + 3F 3f K ( Λ K γ 5 p + p K + γ 5 Λ ) (5.38) M () W T = fk ū(p 4, s 4 )( p + p 3 )u(p, s ) (5.39) ( ) M () D F Born = ū(p 4, s 4 ) p γ 5 S Σ (p p 3 ) p 3 γ 5 u(p, s ) f K ( ) 3F + D ū(p 4, s 4 ) p γ 5 S Λ (p p 3 ) p 3 γ 5 u(p, s ) (5.4) 3f K 5. M () W T = fk ū(p 4, s 4 ) p u(p, s ) (5.4) ( ) M () D F Born = f K m Σ (p p 3 ) ( m Σm p + (p p 3 ) m p m K) ( ) ] 3F + D 3f K m Λ (p p 3 ) ( m Λm p + (p p 3 ) m p m K) ū(p 4, s 4 ) p u(p, s ) ( ) D F + f K m Σ (p p 3 ) (m Σ + m p )((p p 4 ) m K) ( ) ] 3F + D 3f K m Λ (p p 3 ) (m Λ + m p )((p p 4 ) m K) ū(p 4, s 4 )u(p, s ) (5.4)

36 5 -K + 35 M () = M () W T + M() Born ( ) D F = f K m Σ (p p 3 ) ( m Σm p + (p p 3 ) m p m K) ( ) 3F + D 3f K m Λ (p p 3 ) ( m Λm p + (p p 3 ) m p m K) + ] fk ū(p 4, s 4 ) p u(p, s ) ( ) D F + f K m Σ (p p 3 ) (m Σ + m p )((p p 4 ) m K) ( ) ] 3F + D 3f K m Λ (p p 3 ) (m Λ + m p )((p p 4 ) m K) ū(p 4, s 4 )u(p, s ) (5.43) 5.3. NLO (4.99) L () = 4B fk ( ˆm + m s )(b + b D ) ppk + K + fk (d + d 3 + d 4 ) pp µ K + µ K (5.44) M-matrix M () 4B = fk ( ˆm + m s )(b + b D ) ] fk (d + d 3 + d 4 )(p p 3 ) ū(p 4, s 4 )u(p, s ) (5.45) LO+NLO ( ) D F M (+) = f K m Σ (p p 3 ) ( m Σm p + (p p 3 ) m p m K) ( ) 3F + D 3f K m Λ (p p 3 ) ( m Λm p + (p p 3 ) m p m K) + ] fk ū(p 4, s 4 ) p u(p, s ) ( ) D F + f K m Σ (p p 3 ) (m Σ + m p )((p p 4 ) m K) ( ) 3F + D 3f K m Λ (p p 3 ) (m Λ + m p )((p p 4 ) m K) + 4B fk ( ˆm + m s )(b + b D ) ] fk (d + d 3 + d 4 )(p p 3 ) ū(p 4, s 4 )u(p, s ) (5.46) M (+) = ū(p 4, s 4 ) A p + B p p ] u(p, s ) (5.47)

37 5 -K + 36 ( D F A p = f K ( 3F + D 3f K f K ) m Σ (p p 3 ) (m Σ + m p )((p p 4 ) m K) ) m Λ (p p 3 ) (m Λ + m p )((p p 4 ) m K) + 4B ( ˆm + m s )(b + b D ) (d + d 3 + d 4 )(p p 3 ) (5.48) f K ( ) D F B p = f K m Σ (p p 3 ) ( m Σm p + (p p 3 ) m p m K) ( ) 3F + D 3f K m Λ (p p 3 ) ( m Λm p + (p p 3 ) m p m K) + fk (5.49) 5.4 M-matrix K + n K + n K + p K + p M-matrix m x A n (A p ) B n (B p ) A, B A m x (p p 3 ) = m x u = m x (m K + m N ) + s p CM + p CM cosθ = m x (m K + m N ) + s R(s) + R(s)τ (5.5) R(s) = p CM, cosθ = τ (5.5) V (s) = m Σ (m K + m N ) + s R(s) (5.5) T (s) = m Λ (m K + m N ) + s R(s) (5.53) m Σ u = V (s) + R(s)τ (5.54) m Λ u = T (s) + R(s)τ (5.55) (p p 4 ) m K = m N m K + s p CM ( cosθ) = s R(s) m K m N + R(s)τ = J(s) + R(s)τ (5.56)

38 5 -K + 37 J(s) = s R(s) m K m N (5.57) R(s) = p CM (5.58) cosθ = τ (5.59) ( ) ( ) D F 3F + D C =, E = f K, C = 3f K (D F ) f K (5.6) B J(s) + R(s)τ A n = C (m Σ + m p ) V (s) R(s)τ }{{} Born B f (m + m s)( b b D + b F ) f ( d + d + d 4 )(m K + R R τ) }{{} NLO J(s) + R(s)t A p = C(m Σ + m N ) V (s) + R(s)t E(m J(s) + R(s)t Λ + m N ) T (s) + R(s)t }{{} Born + 4B fk ( ˆm + m s )(b + b d ) fk (d + d 3 + d 4 )(p p 3 ) }{{} NLO (5.6) (5.6) m x m N + (p p 3 ) m x m K = m x m N 3m N m K + s R(s)] + R(s)cosθ (5.63) W (s) = m Σ m N 3m N m K + s R(s) (5.64) X(s) = m Λ m N 3m N m K + s R(s) (5.65) m Σ m N + (p p 3 ) m N m K = W (s) + R(s)cosθ (5.66) m Λ m N + (p p 3 ) m N m K = X(s) + R(s)cosθ (5.67) B n = C W (s) + R(s)τ V (s) + R(s)τ } {{ } Born W (s) + R(s)τ B p = C V (s) + R(s)τ + f K }{{} W T E X(s) + R(s)τ T (s) + R(s)τ } {{ } Born + f K }{{} W T M-matrix A, B s τ (5.68) (5.69)

39 5 -K / / σ f = F (θ) iσ ng(θ) (5.7) p p n = p p (5.7) 3],F (θ), G(θ) F (θ) = G(θ) = (l + )f + l + lf l )]P l (cosθ) (5.7) l= l= f + l f l ] dp l(cosθ) d(cosθ) sinθ }{{} P l (5.73) f + l = eiδ+ l sinδ + l k f l = eiδ l sinδ l k k (5.74) (5.75) (5.77) P l (x)p l (x)dx = l + δ l,l (5.76) P l (x)p l (x)dx = l + l(l + )δ l,l (5.77) P m l Pl m (x)p m l (x)dx = (l + m)! l + (l m) δ l,l (5.78) = ( x ) m d ( dx ) m P l (x) (5.79) m = F (θ), G(θ) f + = F l= (5.8) f + = 3 (F l= + G l= ) (5.8) f = 3 (F l= G l= ) (5.8) f + = 5 (F l= + G l= ) (5.83) f = 5 (F l= 3G l= ) (5.84) / L S j j = l ± f ± j = l ± ±

40 5 -K + 39 L IJ l =,,, 3,... s,p,d,f... L I J f ± l, I = S : f +, P 3 : f +, P : f M-matrix u(p, s) = E p + m p ( σ p E p +m p ) χ (s) (5.85) M (+) = ū(p 4, s 4 ) A + B p ] u(p, s ) (5.86) σ i σ j = δ ij + iϵ ijk σ k (5.87) CM ū(p 4, s 4 )u(p, s ) = p 4 p + i(p 4 p ) σ E p + m p (5.88) ū(p 4, s 4 )γ u(p, s ) = + p 4 p + i(p 4 p ) σ E p + m p (5.89) ū(p 4, s 4 )γ i u(p, s ) = p i + p i 4 + i(p σ) i i(p 4 σ) i (5.9) M =(E N + m N ) AE K + A p CM ] + B + p CM E N + m N E N + m N iσ ( pˆ 3 pˆ ) p CM E N + m N p = p (5.9) p 3 = p 4 (5.9) ( (E N + m N )A + AE K B) τ ] AE K + (E N + m N )A B τ ] (5.93) F (θ) = (E N + m N ) AE K + A p CM ] + B E N + m N + p CM ] AE K + (E N + m N )A B τ (5.94) E N + m N G(θ) = p CM sinθ ((E N + m N )A + AE K B) (5.95) E N + m N

41 5 -K s (l = ) X P l (τ) l X l = l + W + Rτ W dτ = V V + Rτ R W + Rτ V + Rτ dτxp l (τ) (5.96) ( R + V ln R + V ] τdτ = V (V W ) R ln A, B K + n K + n A l= ) + (5.97) ( R + V R + V n = C ( ) (m Σ + m N ) R + V (V J) ln R R + V + B fk ( ˆm + m s )(b + b D b F ) + + C ( (V W ) R + V ln B l= n = f K R R + V V (V J) (A n τ) l= = C (m Σ + m N ) R ln ) + W V R C (m Σ + m N ) ( m K + R ) (5.98) f (d d d 4 ) (5.99) ) C (5.) ( R + V R + V ) + J V ] R + R 3fK ( d + d + d 4 ) (5.) (B n τ) l= = C V (V W ) R ( ) R + V ln + W V ] R + V R (5.) K + p K + p A l= p = C(V J)(m ( ) Σ + m N ) R + V ln + E(T J)(m ( ) Λ + m N ) R + T ln R R + V R R + T C(m Σ + m N ) E(m Λ + m N ) + 4B fk ( ˆm + m s )(b + b D ) + ( fk (d + d 3 + d 4 ) m K + R ) (5.3) Bp l= = C(V W ) ( ) ( ) R + V E(T X) R + T ln + ln C E + R R + V R R + T fk (5.4) ( ) V (V J) R + V (A p τ) l= = C(m Σ + m N ) R ln + J V ] R + V R ( ) T (T J) R + T E(m Λ + m N ) R ln + J T ] R + T R + R 3fK (d + d 3 + d 4 ) (5.5) ( ) V (V W ) R + V (B p τ) l= = C R ln W V ] R + V R ( ) T (T X) R + T E R ln X T ] (5.6) R + T R

42 5 -K p (l = ) l = G(θ) G(θ) Pl m= O Pl m= (τ) l O l = l + dτopl m= (τ) (5.7) l(l + ) l = P m= l= = x 3 τ W + Rτ 4 V + Rτ dτ = 3 4 π πv (W V ) + R ( )] R V (5.8) K + n K + n A l= n = 3C ( ) ] (m Σ + m N ) R + V R V (V J) ln + R(J V ) R + V B l= n = 3C R + R fk ( d + d + d 4 ) (5.9) ( ) R + V V (V W ) ln (A n τ) l= = 3C (m Σ + m N ) R 3 R + V V (V J) ln ] + R(W V ) ( R + V R + V (5.) ) + RV (J V ) 3 ] R3 B fk ( ˆm + m s )( b b d + b f ) ( fk ( d + d + d 4 ) m K + R ) (B n τ) l= = 3C ( ) R + V R 3 V (V W ) ln + RV (W V ) 3 ] R + V R3 + f K ( ) l= 3C A n τ π(m Σ + m N ) = 4 (J V )V + R ( )] R V (5.) (5.) ( B n τ ) l= = 3C π 4 3πB 4fK ( ˆm + m s )( b b d + b f ) 3π 4fK ( d + d + d 4 ) (W V )V + R ( m K + R ) ( R V )] + 3π 6f K (5.3) (5.4)

43 5 -K + 4 K + p K + p A l= p = 3C(m Σ + m N ) R B l= p 3E(m Λ + m N ) R ( ) R + V V (V J) ln R + V ( R + T T (T J) ln R + T ] + R(J V ) ] ) + R(J T ) + R fk (d + d 3 + d 4 ) (5.5) ( ) R + V = 3C R 3E R (A p τ) l= = 3C(m Σ + m N ) R 3 (B p τ) l= = 3C R 3 ] V (V W ) ln + R(W V ) R + V ( ) ] R + T T (T X) ln + R(X T ) (5.6) R + T ( ) R + V V (V J) ln + RV (J V ) 3 ] R + V R3 ) + RT (J T ) 3 ] R3 + 3E(m Λ + m N ) R 3 T (T J) ln ( R + T R + T + 4B fk ( ˆm + m s )(b + b d ) ( fk (d + d 3 + d 4 ) m K + R ) ( ) R + V V (V W ) ln + RV (W V ) 3 ] R + V R3 ) + RT (X T ) 3 ] R3 + 3E R 3 + f K T (T X) ln ( ) l= 3Cπ(m A p τ Σ + m N ) = 4 ( B p τ ) l= = 3Cπ 4 3Eπ(m Λ + m N ) 4 ( R + T R + T + (J V )V R (J T )T + R ( )] R V ( )] R + 6πB 4fK ( ˆm + m s )(b + b d ) 3π 4fK (d + d 3 + d 4 ) ( )] (W V )V + R R V ( 3Eπ )] (X T )T + 4 R R T + 3π 8fK T ( m K + R ) (5.7) (5.8) (5.9)

44 43 6 M-matrix NLO χ K + - m N = MeV m Σ = MeV m Λ = MeV m K = MeV f K =. MeV ħc = MeV fm D =.8 F = M-matrix NLO I = I = χ χ χ = n ( ) yi f(x i ) (6.) σ i= i y i f(x i ) σ i n I = I = b I= b + b d (6.) d I= d + d 3 + d 4 (6.3)

45 6 44 b I= b b f (6.4) d I= d d 4 + d 3 (6.5) I = n = 35 I = n = χ I = I = ( 6. 6.) 6.: I = MeV ] b I= d I= χ /d.o.f (a) (b) : I = MeV ] b I= d I= χ /d.o.f (c) (d) ( 6. 6.) 5 TOTAL CROSS SECTION mb] 5 5 Bugg,et al (968) Bowen,et al (97) Adams,et al (97) Bowen,et al (973) TOTAL CROSS SECTION mb] 5 5 Bowen,et al (97) Bowen,et al (973) Carroll,et al (973) : I = P LAB MeV/c] 6.: I = P LAB MeV/c] (a),(b) (c),(d) 4, 7, 8, 9] 7, 9, ] M-matrix K + n K + n dσ dω = f = 64π s M (6.6)

46 6 45 K + p K + p (I = ) I = K + n K + n f(k + n K + n) = (f I= + f I= ) (6.7) I = I = b n = b I= b I= (6.8) d n = di= d I= (a)(c),(a)(d),(b)(c),(b)(d) ( 6.3) (6.9) DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =434. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =56. MeV/c] cos(x) cos(x) DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =64. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr].5.5 Giacomelli,et al (973) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =64. MeV/c] cos(x) cos(x) DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =688. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr].5.5 Giacomelli,et al (973) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =7. MeV/c] cos(x) cos(x)

47 6 46 DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =77. MeV/c] cos(x) DIFFERENTIAL CROSS SECTION mb/sr].5.5 Giacomelli,et al (973) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =7. MeV/c] cos(x) 6.3: K+n K + n, ] M-matrix P LAB =434 MeV/c P LAB (b)(c) ( ) P LAB =64 MeV/c P LAB =688 MeV/c P LAB K + n K + n 434. MeV/c P LAB 64. MeV/c

48 : I = 4, 7, 8, 9] p LAB MeV] σ mb] ±.4 Bugg, et al. (968) 6.9 ± ± ± ± ±.35 Bowen,et al. (97) ± ± ± ± ± ± ± ± ± ± ± ±.4 Adams,et al. (97) ± ± ± ± ± ± ± ± ±.9 Bowen,et al. (973) ± ± ± ± ± ± ± ±.3

49 : I = 7, 9, ] p LAB MeV] σ mb] ±.75 Bowen,et al. (97) ± ± ± ± ± ± ± ± ± ±.6 Bowen,et al. (973) ± ± ± ± ±.44 Carroll,et al. (973) ± ± ± ± ± ± ± ± ±.43

50 a (5.8) s f + a = 3] f M-matrix a (6.) (6.) lim f + (6.) p CM f = 8π s M (6.) a = 8π(m N + m K ) M( s = m N + m K ) (6.) Born (6.) a > : a < : (6.3) M < : (6.) I = I = s 6.5 M > : (6.4) 6.5: I = I = s fm] WT Born NLO LO + NLO S ±. Cameron et al. 4] S ±.4 Stenger et al. 5] S S (threshold) 6.3 f l f = (l + )f l P l (cosθ) (6.5) l= f l = eiδ l sin δ l k (6.6)

51 6 5 σ l σ = σ l (6.7) l= σ l = 4π k (l + ) sin δ l (6.8) 6] tree-level (6.6) (6.8) e iδ l f l = sin δ l k (6.9) δ l δ l = arcsin(kf l ) (6.) M-matrix ( ) δ l = arcsin k 8π s M l (6.) (6.4) δ l > : δ l < : (6.) (6.) (5.8),(5.8),(5.8) S, P, P 3, S, P, P 3 ( 6.4) PHASE-SHIFT DEGREES] S P LAB MeV/c] PHASE-SHIFT DEGREES] S P LAB MeV/c]

52 6 5 PHASE-SHIFT DEGREES] P P LAB MeV/c] PHASE-SHIFT DEGREES] P P LAB MeV/c] PHASE-SHIFT DEGREES] P 3 PHASE-SHIFT DEGREES] P P LAB MeV/c] P LAB MeV/c] 6.4: I =, I = s, p 7] I = I = P LAB = 6 MeV/c P LAB = 5 MeV/c 7] P LAB S unitalization8] ( ) 6.4 (6.6) I = ( 6.5) 45 MeV/c P LAB 385 MeV/c P LAB =5MeV/c x =

53 6 5 DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =45. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =75. MeV/c] cos(x) cos(x) DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =5. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =35. MeV/c] cos(x) cos(x) DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =355. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =385. MeV/c] cos(x) cos(x)

54 6 53 DIFFERENTIAL CROSS SECTION mb/sr] 3 Cameron,et al (974).5 P LAB =5. MeV/c] cos(x) DIFFERENTIAL CROSS SECTION mb/sr] 3 Charles,et al (977).5 P LAB =698. MeV/c] cos(x) 6.5: I = 9, ]

55 K + χ NLO K + K + ρ K + - E p m K Σ(E, p, ρ) ] ϕ = (6.3) Σ(E, p, ρ) K + E, m K, p K + Σ free = m N M(K + N) free ρ (6.4) M(K + N) free = 8π sb free (6.5) m N ρ s K + N b free K + - Σ fit = m N M(K + N) fit ρ (6.6) M(K + N) fit = 8π sb fit (6.7) K + N b fit b fit K + - E.Friedman A.Gal ] Re b fit Re b free 4% 5% Im b fit Im b free % 5% ( 6.6) K : K + ] P LAB MeV/c] Σ Reb fm] Imb fm] 488 Σ fit -.3(6).7(7) Σ free Σ fit -.96(39).(9) Σ free Σ fit -.(5).6() Σ free Σ fit -.4(53).85(5) Σ free -.6.8

56 6 55 ( ) (6.3) Π(p) = i E p m K Σ(E, p, ρ) + iϵ (6.8) K + p = m K (ρ) m K + Σ(E = m K, p =, ρ) (6.9) ] on-shell E = m K ( ) Σ Σ(E, p, ρ) = Σ(E = m K, p =, ρ) + (E m K ) E + (6.3) E =m K, p= E m K Σ(E, p, ρ) E m K (6.8) Σ(E = m K, p =, ρ) + (E m K ) ( ) Σ = E m K (E m K ) E ( ) Σ = (E m K ) E E =m K, p= E =m K, p= ] ( ) ] Σ E E =m K, p= (6.3) iz Π(p) = E m K + iϵ (6.3) ( ) ] Σ Z = E (6.33) E =m K, p= E = m K ( ) Σ Σ(E, p, ρ) = Σ(E = m K, p =, ρ) + (E m K) E E =m K ( ) ], p= Σ Σ(E = m K, p =, ρ) + E E =m K, p= ZΣ(E = m K, p =, ρ) (6.34)

57 6 56 Z = ( ) ] ( ) Σ Σ E + E =m K, p= E (6.35) E =m K, p= Z ρ N = Z, K + N M-matrix ρ M(K + p) = M(I = ) (6.36) M(K + n) = M(I = ) + M(I = )] (6.37) M(K + N) = M(K + p) + M(K + n) ] = 3M(I = ) + M(I = )] (6.38) 4 ρ p = ρ n = ρ (6.39) Σ = m N M(K + p)ρ p + M(K + n)ρ n ] = 4m N M(K + p) + M(K + n) ] ρ = 8m N 3M(I = ) + M(I = )] ρ (6.4) ( 6.7) 6.7: P LAB MeV/c] Z (WT) Z (Born) Z (NLO) Z (LO+NLO) ρ ρ.9 ρ ρ +. ρ ρ +.3 ρ ρ ρ ρ.8 ρ ρ +. ρ ρ +.9 ρ ρ ρ ρ.3 ρ ρ +. ρ ρ +.7 ρ ρ ρ ρ. ρ ρ +. ρ ρ +.7 ρ ρ 3% 6.6 5% 5%

58 6 57 Born WT Born NLO ( ) Born ( ) χ constraint TOTAL CROSS SECTION mb] WT Born NLO P LAB MeV/c] TOTAL CROSS SECTION mb] Born NLO P LAB MeV/c] 6.6: I = 6.7: I = on-shell E = p + m on-shell E p E p E E p off-shell P LAB

59 58 7 NLO K + N K + N χ NLO I =, I = K + n K + n I = χ K + χ unitalization unitalization χ K + 3% 5 % 5 % on-shell Born χ constraint

60 59

61 6 ] K.Suzuki et al.,phys.rev.lett. 9 (4) 73 ] E. Friedman,A. Gal, Phys.Rept.45:89-53,7 3] W.Weise, Nuovo Cim. A (989) ] D.Bugg et al.,phys.rev.,68,466(968) 5] S.Scherer and M R.Schindler, A Primer for Chiral Perturbation Theory (Springer) 6] A. Pich, arxiv:hep-ph/ ] T.Bowen et al.,phys.rev.d(97) ] C.J. Adams et al.,phys.rev. D4 (97) ] T.Bowen et al.,phys.rev.7d(973). ] A.S Carroll et al.,phys.lett. B45 (973) ] C.J.S Damerell et al.,nucl.phys. B94 (975) 374 ] G.Giacomelli et al.,nucl.phys. B56 (973) ] J.M. Eisenberg and D. Koltun, Theory of Meson Interactions with Nuclei (Wiley, New York, 98) Chapter. 4] W. Cameron et al,, NucI. Phys. B78 (974) 93. 5] V.J. Stenger et al., Phys. Rev. 34B (964). 6] N.Zettili, Quantum Mechanics:concepts and applications nd ed. (Wiley, New York,9) Chapter. 7] K.Hashimoto, Phys.Rev. C9 (984) ] T.Hyodo and D.Jido,Prog.Part.Nucl.Phys.67:55-98, 9] W.Cameron et al.,nucl.phys. B78 (974) 93 ] B.J. Charles et al.,nucl.phys. B3 (977) 7-53 ] W. Weise, Nucl. Phys. A 69 () 98.

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

PII S (96)

PII S (96) C C R ( 1 Rvw C d m d M.F. Pllps *, P.S. Hp I q G U W C M H P C C f R 5 J 1 6 J 1 A C d w m d u w b b m C d m d T b s b s w b d m d s b s C g u T p d l v w b s d m b b v b b d s d A f b s s s T f p s s

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e = Chiral Fermion in AdS(dS) Gravity Fermions in (Anti) de Sitter Gravity in Four Dimensions, N.I, Takeshi Fukuyama, arxiv:0904.1936. Prog. Theor. Phys. 122 (2009) 339-353. 1. Introduction Palatini formalism

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

Microsoft Word - CTCWEB講座(4章照査)0419.doc

Microsoft Word - CTCWEB講座(4章照査)0419.doc 1912 1914 3 58 16 1 58 2 16 3 4 62 61 4 16 1 16 1914 ( 3) 1955 (30) 1961 (36) 1965 (40) 1970 (45) 1983 (58) 1992 ( 4) 1999 (11) 2004 (16) 2 1 2 3 4 5 6 7 8 9 1 10 2 11 12 13 14 15 16 17 18 19 20 21 22

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675

タ 縺29135 タ 縺5 [ y 1 x i R 8 x j 1 7,5 2 x , チ7192, (2) チ41299 f 675 139ィ 48 1995 3. 753 165, 2 6 86 タ7 9 998917619 4381 縺48 縺55 317832645 タ5 縺4273 971927, 95652539358195 45 チ5197 9 4527259495 2 7545953471 129175253471 9557991 3.9. タ52917652 縺1874ィ 989 95652539358195 45

More information

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e

1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh

More information

13Ad m in is t r a t ie e n h u lp v e r le n in g Ad m in is t r a t ie v e p r o b le m e n,p r o b le m e n in d e h u lp v e r le n in g I n d ic

13Ad m in is t r a t ie e n h u lp v e r le n in g Ad m in is t r a t ie v e p r o b le m e n,p r o b le m e n in d e h u lp v e r le n in g I n d ic 13D a t a b a n k m r in g R a p p o r t M ィC Aa n g e m a a k t o p 19 /09 /2007 o m 09 :3 1 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06 013-00185 V o o r z ie n in g N ie

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () "64": ィャ 9997ィ

縺 縺8 縺, [ 縺 チ : () () () 4 チ93799; () 64: ィャ 9997ィ 34978 998 3. 73 68, 86 タ7 9 9989769 438 縺48 縺 378364 タ 縺473 399-4 8 637744739 683 6744939 3.9. 378,.. 68 ィ 349 889 3349947 89893 683447 4 334999897447 (9489) 67449, 6377447 683, 74984 7849799 34789 83747

More information

液晶テレビ保護パネル対応表 (SHARP) SHARP LC-AE6 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE6 LC-AE6 LC-AE6 LC-AE7 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE7 LC-AE7 LC-AE7

液晶テレビ保護パネル対応表 (SHARP) SHARP LC-AE6 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE6 LC-AE6 LC-AE6 LC-AE7 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE7 LC-AE7 LC-AE7 液晶テレビ保護パネル対応表 (Panasonic) Panasonic TH-A305 A305 39 TH-39A305 左右 7.5 下 7mmはみでますが 使用できます TH-A305 YK-CRT016 A0 TH-A0 左右 9.5 下 30mmはみでますが 使用できます AS600 TH-AS600 AS630 TH-AS630 YK-CRT016 TH-AS6 AS6 TH-AS6 55

More information

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A

(2) N elec = D p,q p,q χ q χ p dr = p,q D p,q S q,p Mulliken PA D Mull p = p = group A D p,p 1 + D p,q S q,p p q p [ r A D Mull p ] group χ p G Mull A 7 - (Electron-Donor Acceptor) : Charge-Transfer ( CT) ( (Charge-Transfer) - (electron donor-electron acceptor) [1][2][3][4] Van der Waals CT [5] Population Analysis population analysis ( ), observable

More information

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980

8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory 10.3 Fubini 1 Introduction [1],, [2],, [3],, [4],, [5],, [6],, [7],, [8],, [1, 2, 3] 1980 % 100% 1 Introduction 2 (100%) 2.1 2.2 2.3 3 (100%) 3.1 3.2 σ- 4 (100%) 4.1 4.2 5 (100%) 5.1 5.2 5.3 6 (100%) 7 (40%) 8 Fubini (90%) 2006.11.20 1 8.1 Fubini 8.2 Fubini 9 (0%) 10 (50%) 10.1 10.2 Carathéodory

More information

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0 1473 : de nouvelles perspectives 2006 2 pp 102 119 VI q 1 Tetsuya Kikuchi Sabro Kakei Drinfel d-sokolov Painlevé [KK1] [KK2] [KK3] [KIK] [ ] [ ] [KK3] three-wave equation Painlevé VI q q Drinfel d-sokolov

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

Fig. Division of unbounded domain into closed interior domain and its eterior domain. Zienkiewicz [5, 6] Burnett [7, 8] [3] The conjugated Ast

Fig. Division of unbounded domain into closed interior domain and its eterior domain. Zienkiewicz [5, 6] Burnett [7, 8] [3] The conjugated Ast 7 6 pp. 635 643 635 43..Rz; 43.4.Rj * 3 3 Unbounded problems, Finite element method, Infinite element, Hybrid variational principle, Fourier series. Boundary Element Method: BEM BEM Finite Element Method:

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

3章 問題・略解

3章 問題・略解 S S W R S O( l) O( ) c Jg g J Jg S R J 7. K.9 JK S W S R S JK S S R J 7. K.9JK 4 (a) -Tice 7.K T ice T N 77 K S R.9 JK 4. JK T T ice N.6JK S W S R S JK S S.6JK R (b) S R JK S.6 JK T T ice N 6 O( c) O(

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

(1) 1.1

(1) 1.1 1 1 1.1 1.1.1 1.1 ( ) ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) { ( ) ( ) ( ) ( ) ( ) 2 1 1.1.2 (1) 1.1 1.1 3 (2) 1.2 4 1 (3) 1.3 ( ) ( ) (4) 1.1 5 (5) ( ) 1.4 6 1 (6) 1.5 (7) ( ) (8) 1.1 7 1.1.3

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

05秋案内.indd

05秋案内.indd 1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

IV.dvi

IV.dvi IV 1 IV ] shib@mth.hiroshim-u.c.jp [] 1. z 0 ε δ := ε z 0 z

More information

( V V dv = ˆx + x y ŷ + V ) z ẑ (dxˆx + dyŷ + dzẑ) (gradient) ( V V V = ˆx + x y ŷ + V ) z ẑ (infinitesimal displacement) dl = (dxˆx + dyŷ + dzẑ) θ dv

( V V dv = ˆx + x y ŷ + V ) z ẑ (dxˆx + dyŷ + dzẑ) (gradient) ( V V V = ˆx + x y ŷ + V ) z ẑ (infinitesimal displacement) dl = (dxˆx + dyŷ + dzẑ) θ dv ,2 () Needham WIKI WEB... C = A B A, B θ C C = (A B) (A B) C 2 = A 2 + B 2 2AB cos θ..2 f(x) df dx = lim f(x) x x df = (Oridinary Derivatives) ( ) df dx dx 3 V (x, y, z) ( ) ( V V dv = dx + x y ) dy +

More information

1 Flores, D. (009) All you can drink: should we worry about quality? Journal of Regulatory Economics 35(1), Saggi, K., and Vettas, N. (00) On in

1 Flores, D. (009) All you can drink: should we worry about quality? Journal of Regulatory Economics 35(1), Saggi, K., and Vettas, N. (00) On in 6 016 4 6 1 1 Flores, D. (009) All you can drink: should we worry about quality? Journal of Regulatory Economics 35(1), 1 18. Saggi, K., and Vettas, N. (00) On intrabrand and interbrand competition: The

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2 critter twitter ( PRML) PRML PRML PRML PRML 1. 2. 3. PRML PRML 110 PRML 700 1 PRML pdf PRML (http://critter.sakura.ne.jp) 1 1.1 N x t y(x, w) = w 0 + w 1 x + w 2 x 2 + + w M x m = M w j x j (1.1) j=0 E(w)

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3.....................

NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3..................... NumRu::GPhys::EP Flux 7 2 9 NumRu::GPhys::EP Flux 2 2 NumRu::GPhys::EP Flux 3 2.................................. 3 2.2 EP............................. 4 2.3................................. 5 2.4.............................

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

...............y.\....07..

...............y.\....07.. 150 11.512.0 11.812.0 12.013.0 12.514.0 1 a c d e 1 3 a 1m b 6 20 30cm day a b a b 6 6 151 6 S 5m 11.511.8 G 515m 11.812.0 SG 10m 11.812.0 10m 11.511.8 1020m 11.812.0 SF 5m 11.511.8 510m 11.812.0 V 5m

More information

J.qxd

J.qxd IQ 2 I/Q IQ IQ IQ IQ 3 IQ 4 5 6 I Q 7 IQ 0 deg 8 IQ I QI I Q Q Q Q { I Q { I I 9 I/QI/QI/Q IQ IQ I/Q Q Σ I IQ I Q 10 I/Q I/Q I/Q IQ IQ 11 π 12 01 00 11 10 13 I/Q I QI I/Q IQ 14 π QI π I/QI Q IQ IQ π 15

More information

H-21.indb

H-21.indb 1 ) ) ) ) ) h b C N S c a js S M 3 F % % EL Q P O H J E % E L % L U R 09*# # * k S c a js S 5 1 9 3 7 dp 1 2 3 4 5 6 7 ) 1 13 2 3 58 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

ver 0.3 Chapter 0 0.1 () 0( ) 0.2 3 4 CHAPTER 0. http://www.jaist.ac.jp/~t-yama/k116 0.3 50% ( Wikipedia ) ( ) 0.4! 2006 0.4. 5 MIT OCW ( ) MIT Open Courseware MIT (Massachusetts Institute of Technology)

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

学習の手順

学習の手順 NAVI 2 MAP 3 ABCD EFGH D F ABCD EFGH CD EH A ABC A BC AD ABC DBA BC//DE x 4 a //b // c x BC//DE EC AD//EF//BC x y AD DB AE EC DE//BC 5 D E AB AC BC 12cm DE 10 AP=PB=BR AQ=CQ BS CS 11 ABCD 1 C AB M BD P

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

untitled

untitled 17 5 16 1 2 2 2 3 4 4 5 5 7 5.1... 8 5.2... 9 6 10 1 1 (sample survey metod) 1981 4 27 28 51.5% 48.5% 5 10 51.75% 48.24% (complete survey ( ) ) (populatio) (sample) (parameter) (estimator) 1936 200 2 N

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information