< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord

Size: px
Start display at page:

Download "< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord"

Transcription

1 -K +

2 < qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading order (NLO) NLO (low energy constant,lec) χ I = I = K +

3 K QCD Nambu-Goldstone Gell-Mann-Oakes-Renner Nambu-Goldstone QCD K K + n K + n LO NLO LO+NLO

4 3 5.3 K + p K + p LO NLO LO+NLO s (l = ) p (l = ) K

5 4 (Quantum Chromodynamics,QCD) QCD SU(3) c QCD ( ) ( ) ( ) QCD - π K QCD QCD QCD QCD ( ) ( ) < qq >. (Quark Gluon Plasma,QGP) QGP (< qq >= )

6 5 (< qq >= ) Nambu-Goldstone (NG ) (NG π, K, η ) π (π - ) 3% ] (subthreshold) (threshold) π ± - π ± π ±.5MeV/c b free /b =.69 ] π ± - K - K + - K + N( ) K +. K + - K + - K + 3] K + N K + 5fm K + P LAB 8MeV/c σ(k + A) Aσ(K + N) (.) K + K + N K + S = + K + -N K + S = K K Λ(45) K + K +

7 6 C d R R = σ(k+ C)/ σ(k + d)/ > (.) 4] d σ(k + d) = σ(k + N) (.3) R > C σ(k + C) > σ(k + N) (.4) K + Σ free = m N M(K + N) free ρ (.5) M(K + N) free = 8π sb free (.6) m N ρ s K + N b free K + - Σ fit = m N M(K + N) fit ρ (.7) M(K + N) fit = 8π sb fit (.8) K + N b fit E.Friedman A.Gal ] Re b fit Re b free 4% 5% Im b fit Im b free % 5%.3 (.5) (.7) NG K + NG Z Σ = Z M(K + N)ρ m N (.9) Z + Σ E (.)

8 7 Z ρ.4 Z K + - M(K + N) M(K + N) vector meson exchange QCD (Chiral Perturbation Theory,ChPT) QCD NG.5 QCD QCD - K + N

9 8 QCD (Quantum Chromodynamics,QCD). QCD SU(3) c / u, d, s, c, b, t QCD SU(3) c L free = A= f= α,α = q α,f,a (γ µ α,α i µ m f δ α,α )q α,f,a (.) A, f, α q f = (q f,, q f,, q f,3 ) t SU(3) c : q f (x) q f (x) = exp i 8 a= θ a (x) λ a ] q f (x) U(x)q f (x) (.) q f (x) q f (x) = q f (x)u (x) (.3) U SU(3) c (λ a : θ a (x) : ) µ D µ L free A µ D µ q f ( µ + iga µ )q f (.4) A µ = A aµ λ a A µ = UA µ U + i g ( µu)u (.5)

10 QCD 9 A aµ (a =...8), g g QCD L matter = q f (i D m f )q f (.6) f=u,d,s,c,b,t L QCD ( ) ( ) λ a F µν F aµν (.7) F µν = D µ A ν D ν A µ = µ A ν ν A µ + iga µ, A ν ] (.8) F aµν = µ A aν ν A aµ gf abc A bµ A cν (f abc : SU(3) ) (.9) F µν F µν = UF µν U (.) L gauge = 4 F aµνf µν a QCD L QCD = f=u,d,s,c,b,t = T r(f µνf µν ) (.) q f (i D m f )q f T r(f µνf µν ) (.). γ 5 ± γ 5 γ = ( ) (, γ j σ j = σ j ) (j =,, 3) (.3) γ 5 = iγ γ γ γ 3 = ψ ξ, ζ ( ) ξ ψ = ζ ( ) (.4) (.5)

11 QCD ( ξ ψ = ) ( + ζ ) = ψ R + ψ L (.6) ψ R,ψ L γ 5 ψ R = ψ R (.7) γ 5 ψ L = ψ L (.8) γ 5 γ 5 + ψ R, - ψ L P R = + γ5, P L = γ5 (.9) P R + P L = (.) (P R ) = P R, (P L ) = P L (.) P R P L = P L P R = (.) P R ψ = ψ R (.3) P L ψ = ψ L (.4) ψ L,ψ R ψ L = ψ P L γ = ψp R (.5) ψ R = ψ P R γ = ψp L (.6) γ 5 = γ 5, {γ5, γ µ } = QCD ψψ QCD L QCD = f ψψ = ψ R ψ R + ψ R ψ L + ψ L ψ R + ψ L ψ L = ψp L P R ψ + ψp L P L ψ + ψp R P R ψ + ψp R P L ψ = ψ R ψ L + ψ L ψ R (.7) ψγ µ ψ = ψ R γ µ ψ R + ψ L γ µ ψ L (.8) q L,f i Dq L,f + q R,f i Dq R,f m f ( q L,f q R,f + q R,f q L,f ) 4 F aµνf a µν (.9)

12 QCD m f ( ) QCD U(N f ) L U(N f ) R = SU(N f ) L SU(N f ) R U() L U() R SU(N f ) L SU(N f ) R ] 8 q L U L q L, U L = exp i θl a t a a= ] 8 exp i θl a t a SU(N f ) L (.3) a= q R U R q R, U R = expi exp i 8 a= θr a t a ] 8 θr a t a ] a= SU(N f ) R (.3) (θ :, t a : SU(N f ) ) t a, t b ] = if abc t c (f abc : SU(N f ) ) (.3) T rt a t b ] = δ ab (a = Nf ) (.33) t = /N f (.34) N f = : τ =, τ,,3 (Pauli (.35) N f = 3 : λ = /3, λ, 8 (Gell Mann ) (.36) QCD L QCD = f ( q L,f i Dq L,f + q R,f i Dq R,f ) 4 F aµνf µν a (.37) L QCD SU(N f ) L SU(N f ) R L µ a = q L iγ µ ta q L, µ L µ a = (.38) R a µ = q R iγ µ ta q R, µ R a µ = (.39) L µ a, V µ a Q a L = d 3 xl a µ=, Q a R = d 3 xrµ=, a dq a L = (.4) dt dq a R = (.4) dt

13 QCD SU(N f ) L SU(N f ) R Q La, Q Lb ] = if abc Q Lc, Q Ra, Q Rb ] = if abc Q Rc, Q Ra, Q Lb ] = (.4) SU(N f ) L SU(N f ) R U L U R (θ V U R (θ A θ R = θ L ) Q a V, Qa A : q V q, V = exp : q Aq, A = exp i i a= θ R = θ L ) U L ] 8 θv a t a ] 8 θaγ a 5 ta a= (.43) (.44) V µ a = R µ a + L µ a = qiγ µ ta q, µv µ a = (.45) A µ a = R µ a L µ a = qiγ µ γ 5 ta q, µa µ a = (.46) Q a V = Q a L + Q a R (.47) Q a A = Q a R Q a L (.48) Q a V, Q b V ] = if abc Q c V, Q a A, Q b A] = if abc Q c V, Q a V, Q b A] = if abc Q c A (.49) Û V = expiθ a V Q a V ], Û A = expiθ a AQ a A] (.5) Û V qûv + iθv a t a ]q (.5) Û A qûa + iθaγ a 5 ta ]q (.5)

14 3 3 QCD < qq > < qq > Nambu-Goldstone (NG ) π K η 3. N f = q = (u, d) t m f QCD H QCD tq a V =, tq a A = H QCD, Q a V ] =, H QCD, Q a A] = (3.) Û V H QCDÛV = H QCD, Û A H QCDÛA = H QCD (3.) ( SU() V ( ) I = : m π ± = 4 MeV, m π = 35 MeV I = : m p = 938 MeV, m n = 939 MeV ( ) I =, J P = + : I =, J P = : m a = 6 MeV m ρ = 77 MeV SU() V ( )

15 3 4 SU() L SU() R SU() V Û V >= >, Q a V >= > (3.3) Û A > >, Q a A > > (3.4) Q a A ( ) qq < qq > : µ j µ = (3.5) : C V (t) d 3 xρ(x, t), C = C (3.6) V : C, H] =, t C = (3.7) C = (3.8) (3.8) well-defined C() = C() C() = d 3 x ρ(x, ) C() = d 3 x ρ(, ) C() V (3.9) V V 3 C V well-defined well-defined S t (x) = lim C V (t), P (x)] V = lim d 3 x ρ(x, t), P (x)] (3.) V V ds t dt = (3.) S t (x) well-defined x µ A(x), y µ B(y) A(x), B(y),

16 3 5 (x y) < (space-like), x y A(x), B(y)] =, (x y) < (3.) (x y) > (time-like) V (x y) = (light-like) bound bound well-defined well-defined S t (x) = lim d 3 x ρ(x, t), P (x)] (3.3) V order parameter field H Ω Ω order parameter V Ω S t (x) Ω = lim d 3 x Ω ρ(x, t), P (x)] Ω V V = lim Ω C V (t), P (x)] Ω (3.4) V H Ω, C Ω ] = Ω C V Ω S t (x) Ω = (3.5) H Ω, C V ] = Ω H Ω C V C V Ω S t (x) Ω = (3.6) order parameter < qq > C V = Q a=,,3 A = V d 3 xq iγ 5 τ a q (3.7) P a (x) = qiγ 5 τ a q (3.8) Q a A(t), P b (x)] = iδ ab qq (3.9) < qq > (3.)

17 Nambu-Goldstone Q a A (SU() ) masless Ω S t (x) Ω = Ω S t (x) Ω = lim Ω e iht C V ()e iht n n P (x) Ω Ω P (x) n n e iht C V ()e iht Ω ] V n = lim Ω CV () n n P (x) Ω e ient Ω P (x) n n C V () Ω e +ie nt ] V n = lim E n Ω CV () n n P (x) Ω e ient + Ω P (x) n n C V () Ω e +ie nt ] V n t (3.) E n (3.) Ω C Ω () n n P (x) Ω = (3.3) Ω S t (x) Ω E n = Nambu-Goldstone Nambu-Goldstone a SU() NG (π, π ± ) (3.) 3.3 Gell-Mann-Oakes-Renner ˆm (m u + m d )/ µ V µ a ] = i q M, λa q (3.4) } q (3.5) µ A µ a = i qγ 5{ M, λa ( ) ˆm M = ˆm (3.6) SU() V PCAC(Partially-Conserved-Axial vector-current) ˆm

18 3 7 A a µ(x) π b (p) = if π (p )p µ e ipx δ ab (3.7) π b (p) f π f π = 9.4MeV (3.5) G (3.9) µ A µ a = ˆmi qγ 5 τ a q = ˆmP a (x) (3.8) µ A a µ(x) π b (p) = f π m πe ipx δ ab = ˆm < P a (x) π b (p) > = ˆme ipx δ ab G (3.9) f π m π = ˆmG (3.3) V m Bogoliubov limit iδ ab qq = d 3 p Q a (π) 3 E A π c (p) π c (p) P b (x) P b (x) π c (p) π c (p) Q a A ] c p (3.3) Q a A π c (p) = if π p µ= δ ac d 3 xe ipx = if π p µ= δ ac (π) 3 δ 3 (p) (3.3) π c (p) P b (x) = e ipx δ cb G (3.33) (3.3) d 3 p (π) 3 if π p µ= δ ac (π) 3 δ 3 (p)δ cb G e ipx + e ipx] = if π δ ab G (3.34) E p c Glashow-Weinberg relation qq m = f π G m (3.35) qq m f π m G m qq G m = m (3.36) f π m m π = ˆm m π = ˆm G f π (3.37) qq fπ m + O( ˆm ) (3.38) Gell-Mann-Oakes-Renner

19 8 4 QCD Nambu-Goldstone QCD - K + - 5, 6, 8] 4. Nambu-Goldstone NG QCD 4.. G G H NG ϕ i M 4 NG Φ = (ϕ, ϕ,..., ϕ n ) t R n M NG M {Φ : M 4 R n ϕ i : M 4 R} (4.) (g, Φ) G M φ(g, Φ) M φ φ φ(e, Φ) = Φ, Φ M (4.) φ(g, φ(g, Φ)) = φ(g g, Φ), g, g G, Φ M (4.3) G M G M M M φ G φ(g, λφ) λφ(g, Φ) Φ = M (origin) NG Φ =

20 4 9 H h H φ(h, Φ = ) = (4.4) Φ = h H G G H {gh g G} G/H G/H {gh h H} G G = eh + ah + bh + a, b, G (4.5) + G/H φ. gh Φ = R n φ(gh, ) = φ(g, φ(h, )) = φ(g, ), g G, h H (4.6) φ(g, ) G/H φ(g, ) G/H NG. G/H φ g, g G, g / gh φ(g, ) = φ(g, ) = φ(e, ) = φ(g g, ) = φ(g, φ(g, )) = φ(g, φ(g, )) = φ(g g, ) (4.7) g g H g gh g φ(g, ) φ(g, ) ( ) / gh G/H NG Φ gh Φ G/H gh Φ NG R n gh x NG g G Φ f = gh gh NG Φ = φ(f, ) = φ( gh, ) (4.8) φ(g, Φ) = φ(g, φ( gh, )) = φ(g gh, ) = φ(f, ) = Φ f g( gh) (4.9) Φ Φ Φ gh g Φ g Φ gh g g( gh)

21 4 4.. QCD QCD ( ) G H G = SU(N f ) SU(N f ) = {(L, R) L SU(N f ), R SU(N f )} (4.) H = SU(N f ) = {(V, V ) V SU(N f )} (4.) g = ( L, R) G SU(N f ) Ũ = R L G (4.) gh = (, R L )H (4.3) U g = (L, R) G g( gh) = (L, R)(, R L ) = (L, R R L )H = (, R R L L )(L, L)H = (, R R L L )H (4.4) U U = R L U = R R L L = RUL (4.5) x U(x) U(x) = RU(x)L (4.6) QCD N f =, N f = 3 NG M N f =: N f =3: M = {Φ : M 4 R 3 ϕ i : M 4 R} (4.7) M = {Φ : M 4 R 8 ϕ i : M 4 R} (4.8) N N A(N) {A gl(n, C) A = A, T ra = } (4.9) M {ϕ : M 4 A(N) ϕ} (4.) M M τ i, λ a N f =: N f =3: ϕ = 8 a= ϕ = 3 i= ϕ a λ a = ϕ i τ i = ( π π + π π ) π + η 6 π + K + π π + η 6 K K K η 6 (4.) (4.)

22 4 { ( ) } ϕ M 3 U : M 4 SU(N f ) U = exp i, ϕ M F (4.3) F exp NG F U SU(N f ) M 3 SU(N f ) SU(N f ) M 3 φ : G M 3 M 3, φ(l, R), U] RUL (4.4) G M 3. U M 3, R, L SU(N f ) RUL M 3. ϕ(, ), U] = U = U 3. g i = (L i, R i ) G g g = (L L, R R ) φg, φg, U]] = φg, R UL ] = R R UL L (4.5) φg g, U] = R R UL(L L ) = R R UL L (4.6) φg, φg, U]] = φg g, U] (4.7) ϕ = U = H = {(V, V ) V SU(N f )} QCD U ϕg = (V, V ), U ] = V U V = U (4.8) QCD ϕg = (A, A), U ] = A U A = A A U (4.9) NG NG 4. U(ϕ) SU(3) L SU(3) R NG

23 4 NG 4 p µ = ( p, p) 4πF π 7MeV p µ SU(3) L SU(3) R NG p µ = ( p + m NG, p) m NG p p µ NG L eff = n L n (4.3) U U = T r(u U) = 3 SU(3) L SU(3) R L eff = F 4 T r( µu µ U ) (4.3) U RUL (4.3) µ U R µ UL (4.33) U LU R (4.34) µ U L µ U R (4.35) L eff F 4 T r(r µul L µ U R ) = F 4 T r(rr µ U µ U ) = L eff (4.36) F /4 µϕ a µ ϕ a / U = + i ϕ F F ϕ + (4.37) µ U = i µ ϕ F F ϕ µ ϕ + (4.38)

24 4 3 (3) L eff = F 4 T r(i µ ϕ)( i µ ϕ)] + F F = T r( µ ϕ a λ a )( µ ϕ bλ b )] + = 4 µϕ a µ ϕ b T rλ a λ b ] + µϕ a µ ϕ a + L int (4.39) 8 NG NG 4.3 QCD QCD L ext QCD = L QCD + L ext (4.4) L ext QCD = qγ µ (v µ + γ 5 a µ )q q(s iγ 5 P )q = q L γ µ (v µ a µ )q L + q R γ µ (v µ + a µ )q R q R (S + ip )q L q L (S ip )q R = q L γ µ l µ q L + q R γ µ r µ q R q R (S + ip )q L q L (S ip )q R (4.4) v µ, a µ, S, P (4.4) SU(3) L SU(3) R l µ = v µ a µ, r µ = v µ + a µ (4.4) q L V L (x)q L, q R V R (x)q R (4.43) S + ip V R (S + ip )V L (4.44) l µ V L l µ V L + iv L µ V L (4.45) r µ V R r µ V R + iv R µ V R (4.46) L ext QCD = L QCD + L ext SU(3) L SU(3) R U(x) U (x) = V R (x)u(x)v L (x) (4.47) D µ U = µ U ir µ U + iul µ (4.48)

25 4 4 D µ U µ (V R UV L ) i(v Rr µ V R + iv R µ V R )V RUV L + iv RUV L (V Ll µ V L + iv L µ V L ) = ( µ V R )UV L + V R( µ U)V L + V RU( µ V L ) iv R r µ UV L + V R( µ V R )V RUV L +iv R Ul µ V L L V R U( µ V L }{{} ) ( µ V R )UV L = V R ( µ U + iul µ ir µ U)V L = V R(D µ U)V L (4.49) r µ,l µ (field strength tensor) F Rµν = µ r ν ν r µ ir µ, r ν ] (4.5) F Lµν = µ l ν ν l µ il µ, l ν ] (4.5) χ = B (S + ip ) (4.5) 3F B = < qq > (4.53) F Rµν V R F Rµν V R, F Lµν V L F Lµν V L (4.54) χ V R χv L (4.55) NG U = O(q ) (4.56) D µ U = O(q ) (4.57) r µ, l µ = O(q ) (4.58) F Lµν, F Rµν = O(q ) (4.59) χ = O(q ) (4.6) building block O(q ) L = F 4 T rd µu(d µ U) ] + F 4 T rχu + Uχ ] (4.6) O(q n ) building block NG : S = M = diag(m u, m d, m s ) (4.6) v µ = a µ = P = (4.63) QCD

26 NG SU() Ψ = ( p n SU(3) (/) + ) B = 8 a= B a λ a = ) Σ + Λ 6 Σ + p Σ + Λ 6 n Ξ Ξ Λ 6 SU(),SU(3) Σ (4.64) (4.65) 4.4. G SU() L SU() R SU(3) L SU(3) R N f = U SU() (4.) U (π, π ± ) 4. U G U RUL u = U(x) K(L, R, U) u(x) u (x) = RUL RuK (L, R, U) (4.66) K(L, R, U) = u (x)ru = RUL R U (4.67) G {(U, Ψ)} φ(g) : ( U Ψ ) ( ) ( U = Ψ RUL K(L, R, U)Ψ ) (4.68) G {(U, Ψ)} ( U φ(g g ) Ψ ) ( = φ(g ) R UL K(L, R, U)Ψ ( R = R UL ) L K(L, R, R UL )K(L, R, U)Ψ ( ) R = R U(L L ) K(L L, R R, U)Ψ ( ) U = φ(g g ) Ψ ) (4.69)

27 4 6 3 (4.67) K(L, R, R UL )K(L, R, U) = K(L L, R R, U) (4.7) SU() (4.68) g = (L, R) G Ψ U R = L = V U (4.66) (4.7) U = V UV = V u V = V uv V uv = u (4.7) u = V uv (4.7) u (x) = V uk (V, V, U) (4.73) V = K (V, V, U) (4.74) V = K(V, V, U) (4.75) U Ψ G = SU(3) L SU(3) R ( ) ( ) ( ) U U RUL φ(g) : B B = K(L, R, U)BK (L, R, U) (4.76) U SU(3) N f = SU(3) V B = V BV B 4.4. SU() L SU() R U() V (4.68) ( ) ( U(x) V R (x)u(x)v L (x) Ψ(x) exp iθ(x)]k V L (x), V R (x), U(x)] Ψ(x) exp iθ(x)] U() V ) (4.77) D µ Ψ(x) = D µ Ψ(x)] = exp iθ(x)]k V L (x), V R (x), U(x)] D µ Ψ(x)] (4.78) D µ K V R,V L U chiral connection Γ µ = u ( µ ir µ )u + u( µ il µ )u ] (4.79) ( D µ Ψ = µ + Γ µ iν (s) µ ) Ψ (4.8)

28 4 7 ( )] D µψ = µ + Γ µ i ν µ (s) µ θ exp( iθ)kψ (4.8) ( ) = exp( iθ)k µ + Γ µ iν µ (s) Ψ (4.8) (4.8) µ exp( iθ)kψ] = i µ θ] exp( iθ)kψ + exp( iθ) µ K] Ψ + exp( iθ)k µ Ψ] (4.83) µ K = KΓ µ Γ µk (4.84) (4.8) (4.84) (4.79) V, µ V V = ( µ V ) V = V ( µ V ) K = u V R u = u u u V R u = u U V R u = u V L U V R V Ru = u V L u (4.85) Γ µ = ( ) ( ) u µ iv R r µ V R + V R µ V R u + u µ iv L l µ V L + V L µ V L u ] (4.86) O(q) building block chiral vielbein u µ i u ( µ ir µ ) u u ( µ il µ ) u ] (4.87) u µ i u ( µ il µ ) u u ( µ ir µ ) u ] = u µ (4.88) ϕ(t, x) ϕ(t, x), U(t, x) U (t, x) (4.89) l µ r µ, r µ l µ (4.9) SU() L SU() R U() V u µ Ku µ K (4.9) (4.79) (4.87) V µ = iγ µ, A µ = u µ (4.9) building block Ψ, Ψ = O(q ) (4.93) u µ, Γ µ, (i D m) Ψ = O(q ) (4.94) χ ± = O(q ) (4.95) L () πn L () πn = Ψ ( i D m + g ) A γµ γ 5 u µ Ψ (4.96)

29 4 8 m, g A m ΨΨ m ΨΨ tree-level m E (E m) SU(3) L SU(3) R N f = building block (leading order,lo) L () MB = T r B (i D M ) B ] + D T r ( Bγ µ γ 5 {u µ, B} ) + F T r ( Bγ µ γ 5 u µ, B] ) (4.97) M D µ B = µ B + Γ µ, B] (4.98) D,F semi-leptonic decay (next-to-leading order,nlo) - L () MB =b DT r( B{χ +, B}) + b F T r( Bχ +, B]) + b T r( BB)T r(χ + ) +d T r( B{u µ, u µ, B]}) + d T r( Bu µ, u µ, B]]) + d 3 T r( Bu µ )T r(u µ B) + d 4 T r( BB)T r(u µ u µ ) b D, b F, b, d, d, d 3, d 4 - NLO 4. (4.99) 4.: (a)weinberg-tomozawa (WT ) (b)born ( ) (c)born ( ) (d)nlo

30 9 5 -K + - K + p K + p K + n K + n NLO M-matrix M-matrix M-matrix s p 5. K + N ( ) p = p CM + m K, p CM ( ) p = p CM + m N, p CM ( ) p 3 = p CM + m K, p CM ( ) p 4 = p CM + m N, p CM (5.) (5.) (5.3) (5.4) m K K + m N p CM 5. s = (p + p ) = (p 3 + p 4 ) (5.5) t = (p p 3 ) = (p p 4 ) (5.6) u = (p p 4 ) = (p p 3 ) (5.7)

31 5 -K : p p = p 3 p 4 = s m N m K p p 3 = m K t p p 4 = m N t p p 4 = p p 3 = m N + m K u (5.8) (5.9) (5.) on-shell p = p 3 = m K, p = p 4 = m N t = m K p p 3 = p CM ( cos θ) (5.) u = m K + m N s t = s + p CM ( cos θ) + (m K + m N ) (5.) (s (mn + m K ) p CM = )(s (m N m K ) (5.3) s (5.) s + t + u = m K + m N M-matrix 5. K + n K + n SU(3) - Born Q =, S = Σ B = Σ n (5.4) Φ = K+ K (5.5) ( 5.)

32 5 -K : K + n K + n Born ( ) 5.. LO (4.97) LO M-matrix L () = + i 4f K ( n K K + n nk K + n) f K (D F )( Σ K γ 5 n + n K + γ 5 Σ ) (5.6) M () W T = 4fK ū(p 4, s 4 )( p + p 3 )u(p, s ) (5.7) M () Born F ) = (D fk ū(p 4, s 4 ) p γ 5 S Σ (p p 3 ) p 3 γ 5 u(p, s ) (5.8) S Σ S(q) = m q iϵ = m+ q m q iϵ (5.9) : p + p = p 3 + p 4 (5.) Dirac : ( p m)u(p, s) =, ū(p, s)( p m) = (5.) WT M () W T = 4f ū(p 4, s 4 )( p + p 3 )u(p, s ) = 4fK ū(p 4, s 4 )( p + p + p p 4 )u(p, s ) = 4fK ū(p 4, s 4 )( p + p + p p }{{} 4 )u(p, s ) m n m n = fk ū(p 4, s 4 ) p u(p, s ) (5.)

33 5 -K + 3 Born Dirac M () Born p k = (kp) k p (5.3) F ) m Σ + ( p p 3 ) = (D fk ū(p 4, s 4 ) p γ 5 m Σ (p p 3 ) p 3γ 5 u(p, s ) (D F ) = fk m Σ (p p 3 ) m Σū(p 4, s 4 ) p γ 5 p 3 γ 5 u(p, s ) +ū(p 4, s 4 ) p γ 5 p p 3 γ 5 u(p, s ) ū(p 4, s 4 ) p γ 5 p 3 p 3 γ 5 u(p, s )] (5.4) m Σ ū(p 4, s 4 ) p γ 5 p 3 γ 5 u(p, s ) = m Σ m n ū(p 4, s 4 ) p u(p, s ) + m Σ (p p 4 ) m K]ū(p 4, s 4 )u(p, s ) (5.5) ū(p 4, s 4 ) p γ 5 p p 3 γ 5 u(p, s ) = (p p 3 ) m n]ū(p 4, s 4 ) p u(p, s ) + m n (p p 4 ) m K]ū(p 4, s 4 )u(p, s ) (5.6) Born ū(p 4, s 4 ) p γ 5 p 3 p 3 γ 5 u(p, s ) = m Kū(p 4, s 4 ) p u(p, s ) (5.7) M () F ) Born = (D fk m Σ (p mσ p 3 ) m n + (p p 3 ) m n m ] K ū(p4, s 4 ) p u(p, s ) (D F ) fk m Σ (p p 3 ) (m Σ + m n )((p p 4 ) m K)ū(p 4, s 4 )u(p, s ) (5.8) M () = M () = W T + M() Born f K (D F ) f K ] m Σ (p p 3 ) ( m Σm n + (p p 3 ) m n m K) ū(p 4, s 4 ) p u(p, s ) (D F ) fk m Σ (p p 3 ) (m Σ + m n )((p p 4 ) m K)ū(p 4, s 4 )u(p, s ) (5.9) 5.. NLO (4.99) L () = B f K ( ˆm + m s )( b b D + b F ) nnk + K + f K ( d + d + d 4 ) nn µ K + µ K (5.3)

34 5 -K + 33 ˆm = m u+m d, m s u d s B = M-matrix M () = m K ˆm+m s B fk ( ˆm + m s )( b b D + b F ) fk ( d + d + d 4 )(p p 3 ) ] ū(p 4, s 4 )u(p, s ) (5.3) 5..3 LO+NLO M (+) = + (D F ) f K (D F ) fk m Σ (p p 3 ) ( m Σm n + (p p 3 ) m n m K) + ] fk ū(p 4, s 4 ) p u(p, s ) m Σ (p p 3 ) (m Σ + m n )((p p 4 ) m K) B fk ( ˆm + m s )( b b D + b F ) fk ( d + d + d 4 )(p p 3 ) ] ū(p 4, s 4 )u(p, s ) (5.3) M (+) = ū(p 4, s 4 ) A n + B n p ] u(p, s ) (5.33) (D F ) A n = fk m Σ (p p 3 ) (m Σ + m n )((p p 4 ) m K) B fk ( ˆm + m s )( b b D + b F ) fk ( d + d + d 4 )(p p 3 ) (5.34) (D F ) B n = fk m Σ (p p 3 ) ( m Σm n + (p p 3 ) m n m K) + fk (5.35) 5.3 K + p K + p SU(3) - Born Q =, S = Λ Σ B = Σ + Λ 6 p Σ + Λ 6 Λ 6 (5.36) ϕ = K+ K (5.37)

35 5 -K + 34 ( 5.3) K + p K + p K + n K + n 5.3: K + p K + p Born ( ) 5.3. LO (4.97) LO L () = i f K + D F f K M-matrix ( pk+ K p pk K + p ) ( Σ K γ 5 p + p K + γ 5 Σ ) D + 3F 3f K ( Λ K γ 5 p + p K + γ 5 Λ ) (5.38) M () W T = fk ū(p 4, s 4 )( p + p 3 )u(p, s ) (5.39) ( ) M () D F Born = ū(p 4, s 4 ) p γ 5 S Σ (p p 3 ) p 3 γ 5 u(p, s ) f K ( ) 3F + D ū(p 4, s 4 ) p γ 5 S Λ (p p 3 ) p 3 γ 5 u(p, s ) (5.4) 3f K 5. M () W T = fk ū(p 4, s 4 ) p u(p, s ) (5.4) ( ) M () D F Born = f K m Σ (p p 3 ) ( m Σm p + (p p 3 ) m p m K) ( ) ] 3F + D 3f K m Λ (p p 3 ) ( m Λm p + (p p 3 ) m p m K) ū(p 4, s 4 ) p u(p, s ) ( ) D F + f K m Σ (p p 3 ) (m Σ + m p )((p p 4 ) m K) ( ) ] 3F + D 3f K m Λ (p p 3 ) (m Λ + m p )((p p 4 ) m K) ū(p 4, s 4 )u(p, s ) (5.4)

36 5 -K + 35 M () = M () W T + M() Born ( ) D F = f K m Σ (p p 3 ) ( m Σm p + (p p 3 ) m p m K) ( ) 3F + D 3f K m Λ (p p 3 ) ( m Λm p + (p p 3 ) m p m K) + ] fk ū(p 4, s 4 ) p u(p, s ) ( ) D F + f K m Σ (p p 3 ) (m Σ + m p )((p p 4 ) m K) ( ) ] 3F + D 3f K m Λ (p p 3 ) (m Λ + m p )((p p 4 ) m K) ū(p 4, s 4 )u(p, s ) (5.43) 5.3. NLO (4.99) L () = 4B fk ( ˆm + m s )(b + b D ) ppk + K + fk (d + d 3 + d 4 ) pp µ K + µ K (5.44) M-matrix M () 4B = fk ( ˆm + m s )(b + b D ) ] fk (d + d 3 + d 4 )(p p 3 ) ū(p 4, s 4 )u(p, s ) (5.45) LO+NLO ( ) D F M (+) = f K m Σ (p p 3 ) ( m Σm p + (p p 3 ) m p m K) ( ) 3F + D 3f K m Λ (p p 3 ) ( m Λm p + (p p 3 ) m p m K) + ] fk ū(p 4, s 4 ) p u(p, s ) ( ) D F + f K m Σ (p p 3 ) (m Σ + m p )((p p 4 ) m K) ( ) 3F + D 3f K m Λ (p p 3 ) (m Λ + m p )((p p 4 ) m K) + 4B fk ( ˆm + m s )(b + b D ) ] fk (d + d 3 + d 4 )(p p 3 ) ū(p 4, s 4 )u(p, s ) (5.46) M (+) = ū(p 4, s 4 ) A p + B p p ] u(p, s ) (5.47)

37 5 -K + 36 ( D F A p = f K ( 3F + D 3f K f K ) m Σ (p p 3 ) (m Σ + m p )((p p 4 ) m K) ) m Λ (p p 3 ) (m Λ + m p )((p p 4 ) m K) + 4B ( ˆm + m s )(b + b D ) (d + d 3 + d 4 )(p p 3 ) (5.48) f K ( ) D F B p = f K m Σ (p p 3 ) ( m Σm p + (p p 3 ) m p m K) ( ) 3F + D 3f K m Λ (p p 3 ) ( m Λm p + (p p 3 ) m p m K) + fk (5.49) 5.4 M-matrix K + n K + n K + p K + p M-matrix m x A n (A p ) B n (B p ) A, B A m x (p p 3 ) = m x u = m x (m K + m N ) + s p CM + p CM cosθ = m x (m K + m N ) + s R(s) + R(s)τ (5.5) R(s) = p CM, cosθ = τ (5.5) V (s) = m Σ (m K + m N ) + s R(s) (5.5) T (s) = m Λ (m K + m N ) + s R(s) (5.53) m Σ u = V (s) + R(s)τ (5.54) m Λ u = T (s) + R(s)τ (5.55) (p p 4 ) m K = m N m K + s p CM ( cosθ) = s R(s) m K m N + R(s)τ = J(s) + R(s)τ (5.56)

38 5 -K + 37 J(s) = s R(s) m K m N (5.57) R(s) = p CM (5.58) cosθ = τ (5.59) ( ) ( ) D F 3F + D C =, E = f K, C = 3f K (D F ) f K (5.6) B J(s) + R(s)τ A n = C (m Σ + m p ) V (s) R(s)τ }{{} Born B f (m + m s)( b b D + b F ) f ( d + d + d 4 )(m K + R R τ) }{{} NLO J(s) + R(s)t A p = C(m Σ + m N ) V (s) + R(s)t E(m J(s) + R(s)t Λ + m N ) T (s) + R(s)t }{{} Born + 4B fk ( ˆm + m s )(b + b d ) fk (d + d 3 + d 4 )(p p 3 ) }{{} NLO (5.6) (5.6) m x m N + (p p 3 ) m x m K = m x m N 3m N m K + s R(s)] + R(s)cosθ (5.63) W (s) = m Σ m N 3m N m K + s R(s) (5.64) X(s) = m Λ m N 3m N m K + s R(s) (5.65) m Σ m N + (p p 3 ) m N m K = W (s) + R(s)cosθ (5.66) m Λ m N + (p p 3 ) m N m K = X(s) + R(s)cosθ (5.67) B n = C W (s) + R(s)τ V (s) + R(s)τ } {{ } Born W (s) + R(s)τ B p = C V (s) + R(s)τ + f K }{{} W T E X(s) + R(s)τ T (s) + R(s)τ } {{ } Born + f K }{{} W T M-matrix A, B s τ (5.68) (5.69)

39 5 -K / / σ f = F (θ) iσ ng(θ) (5.7) p p n = p p (5.7) 3],F (θ), G(θ) F (θ) = G(θ) = (l + )f + l + lf l )]P l (cosθ) (5.7) l= l= f + l f l ] dp l(cosθ) d(cosθ) sinθ }{{} P l (5.73) f + l = eiδ+ l sinδ + l k f l = eiδ l sinδ l k k (5.74) (5.75) (5.77) P l (x)p l (x)dx = l + δ l,l (5.76) P l (x)p l (x)dx = l + l(l + )δ l,l (5.77) P m l Pl m (x)p m l (x)dx = (l + m)! l + (l m) δ l,l (5.78) = ( x ) m d ( dx ) m P l (x) (5.79) m = F (θ), G(θ) f + = F l= (5.8) f + = 3 (F l= + G l= ) (5.8) f = 3 (F l= G l= ) (5.8) f + = 5 (F l= + G l= ) (5.83) f = 5 (F l= 3G l= ) (5.84) / L S j j = l ± f ± j = l ± ±

40 5 -K + 39 L IJ l =,,, 3,... s,p,d,f... L I J f ± l, I = S : f +, P 3 : f +, P : f M-matrix u(p, s) = E p + m p ( σ p E p +m p ) χ (s) (5.85) M (+) = ū(p 4, s 4 ) A + B p ] u(p, s ) (5.86) σ i σ j = δ ij + iϵ ijk σ k (5.87) CM ū(p 4, s 4 )u(p, s ) = p 4 p + i(p 4 p ) σ E p + m p (5.88) ū(p 4, s 4 )γ u(p, s ) = + p 4 p + i(p 4 p ) σ E p + m p (5.89) ū(p 4, s 4 )γ i u(p, s ) = p i + p i 4 + i(p σ) i i(p 4 σ) i (5.9) M =(E N + m N ) AE K + A p CM ] + B + p CM E N + m N E N + m N iσ ( pˆ 3 pˆ ) p CM E N + m N p = p (5.9) p 3 = p 4 (5.9) ( (E N + m N )A + AE K B) τ ] AE K + (E N + m N )A B τ ] (5.93) F (θ) = (E N + m N ) AE K + A p CM ] + B E N + m N + p CM ] AE K + (E N + m N )A B τ (5.94) E N + m N G(θ) = p CM sinθ ((E N + m N )A + AE K B) (5.95) E N + m N

41 5 -K s (l = ) X P l (τ) l X l = l + W + Rτ W dτ = V V + Rτ R W + Rτ V + Rτ dτxp l (τ) (5.96) ( R + V ln R + V ] τdτ = V (V W ) R ln A, B K + n K + n A l= ) + (5.97) ( R + V R + V n = C ( ) (m Σ + m N ) R + V (V J) ln R R + V + B fk ( ˆm + m s )(b + b D b F ) + + C ( (V W ) R + V ln B l= n = f K R R + V V (V J) (A n τ) l= = C (m Σ + m N ) R ln ) + W V R C (m Σ + m N ) ( m K + R ) (5.98) f (d d d 4 ) (5.99) ) C (5.) ( R + V R + V ) + J V ] R + R 3fK ( d + d + d 4 ) (5.) (B n τ) l= = C V (V W ) R ( ) R + V ln + W V ] R + V R (5.) K + p K + p A l= p = C(V J)(m ( ) Σ + m N ) R + V ln + E(T J)(m ( ) Λ + m N ) R + T ln R R + V R R + T C(m Σ + m N ) E(m Λ + m N ) + 4B fk ( ˆm + m s )(b + b D ) + ( fk (d + d 3 + d 4 ) m K + R ) (5.3) Bp l= = C(V W ) ( ) ( ) R + V E(T X) R + T ln + ln C E + R R + V R R + T fk (5.4) ( ) V (V J) R + V (A p τ) l= = C(m Σ + m N ) R ln + J V ] R + V R ( ) T (T J) R + T E(m Λ + m N ) R ln + J T ] R + T R + R 3fK (d + d 3 + d 4 ) (5.5) ( ) V (V W ) R + V (B p τ) l= = C R ln W V ] R + V R ( ) T (T X) R + T E R ln X T ] (5.6) R + T R

42 5 -K p (l = ) l = G(θ) G(θ) Pl m= O Pl m= (τ) l O l = l + dτopl m= (τ) (5.7) l(l + ) l = P m= l= = x 3 τ W + Rτ 4 V + Rτ dτ = 3 4 π πv (W V ) + R ( )] R V (5.8) K + n K + n A l= n = 3C ( ) ] (m Σ + m N ) R + V R V (V J) ln + R(J V ) R + V B l= n = 3C R + R fk ( d + d + d 4 ) (5.9) ( ) R + V V (V W ) ln (A n τ) l= = 3C (m Σ + m N ) R 3 R + V V (V J) ln ] + R(W V ) ( R + V R + V (5.) ) + RV (J V ) 3 ] R3 B fk ( ˆm + m s )( b b d + b f ) ( fk ( d + d + d 4 ) m K + R ) (B n τ) l= = 3C ( ) R + V R 3 V (V W ) ln + RV (W V ) 3 ] R + V R3 + f K ( ) l= 3C A n τ π(m Σ + m N ) = 4 (J V )V + R ( )] R V (5.) (5.) ( B n τ ) l= = 3C π 4 3πB 4fK ( ˆm + m s )( b b d + b f ) 3π 4fK ( d + d + d 4 ) (W V )V + R ( m K + R ) ( R V )] + 3π 6f K (5.3) (5.4)

43 5 -K + 4 K + p K + p A l= p = 3C(m Σ + m N ) R B l= p 3E(m Λ + m N ) R ( ) R + V V (V J) ln R + V ( R + T T (T J) ln R + T ] + R(J V ) ] ) + R(J T ) + R fk (d + d 3 + d 4 ) (5.5) ( ) R + V = 3C R 3E R (A p τ) l= = 3C(m Σ + m N ) R 3 (B p τ) l= = 3C R 3 ] V (V W ) ln + R(W V ) R + V ( ) ] R + T T (T X) ln + R(X T ) (5.6) R + T ( ) R + V V (V J) ln + RV (J V ) 3 ] R + V R3 ) + RT (J T ) 3 ] R3 + 3E(m Λ + m N ) R 3 T (T J) ln ( R + T R + T + 4B fk ( ˆm + m s )(b + b d ) ( fk (d + d 3 + d 4 ) m K + R ) ( ) R + V V (V W ) ln + RV (W V ) 3 ] R + V R3 ) + RT (X T ) 3 ] R3 + 3E R 3 + f K T (T X) ln ( ) l= 3Cπ(m A p τ Σ + m N ) = 4 ( B p τ ) l= = 3Cπ 4 3Eπ(m Λ + m N ) 4 ( R + T R + T + (J V )V R (J T )T + R ( )] R V ( )] R + 6πB 4fK ( ˆm + m s )(b + b d ) 3π 4fK (d + d 3 + d 4 ) ( )] (W V )V + R R V ( 3Eπ )] (X T )T + 4 R R T + 3π 8fK T ( m K + R ) (5.7) (5.8) (5.9)

44 43 6 M-matrix NLO χ K + - m N = MeV m Σ = MeV m Λ = MeV m K = MeV f K =. MeV ħc = MeV fm D =.8 F = M-matrix NLO I = I = χ χ χ = n ( ) yi f(x i ) (6.) σ i= i y i f(x i ) σ i n I = I = b I= b + b d (6.) d I= d + d 3 + d 4 (6.3)

45 6 44 b I= b b f (6.4) d I= d d 4 + d 3 (6.5) I = n = 35 I = n = χ I = I = ( 6. 6.) 6.: I = MeV ] b I= d I= χ /d.o.f (a) (b) : I = MeV ] b I= d I= χ /d.o.f (c) (d) ( 6. 6.) 5 TOTAL CROSS SECTION mb] 5 5 Bugg,et al (968) Bowen,et al (97) Adams,et al (97) Bowen,et al (973) TOTAL CROSS SECTION mb] 5 5 Bowen,et al (97) Bowen,et al (973) Carroll,et al (973) : I = P LAB MeV/c] 6.: I = P LAB MeV/c] (a),(b) (c),(d) 4, 7, 8, 9] 7, 9, ] M-matrix K + n K + n dσ dω = f = 64π s M (6.6)

46 6 45 K + p K + p (I = ) I = K + n K + n f(k + n K + n) = (f I= + f I= ) (6.7) I = I = b n = b I= b I= (6.8) d n = di= d I= (a)(c),(a)(d),(b)(c),(b)(d) ( 6.3) (6.9) DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =434. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =56. MeV/c] cos(x) cos(x) DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =64. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr].5.5 Giacomelli,et al (973) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =64. MeV/c] cos(x) cos(x) DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =688. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr].5.5 Giacomelli,et al (973) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =7. MeV/c] cos(x) cos(x)

47 6 46 DIFFERENTIAL CROSS SECTION mb/sr].5.5 Damerell,et al (975) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =77. MeV/c] cos(x) DIFFERENTIAL CROSS SECTION mb/sr].5.5 Giacomelli,et al (973) (a)(c) (a)(d) (b)(c) (b)(d) P LAB =7. MeV/c] cos(x) 6.3: K+n K + n, ] M-matrix P LAB =434 MeV/c P LAB (b)(c) ( ) P LAB =64 MeV/c P LAB =688 MeV/c P LAB K + n K + n 434. MeV/c P LAB 64. MeV/c

48 : I = 4, 7, 8, 9] p LAB MeV] σ mb] ±.4 Bugg, et al. (968) 6.9 ± ± ± ± ±.35 Bowen,et al. (97) ± ± ± ± ± ± ± ± ± ± ± ±.4 Adams,et al. (97) ± ± ± ± ± ± ± ± ±.9 Bowen,et al. (973) ± ± ± ± ± ± ± ±.3

49 : I = 7, 9, ] p LAB MeV] σ mb] ±.75 Bowen,et al. (97) ± ± ± ± ± ± ± ± ± ±.6 Bowen,et al. (973) ± ± ± ± ±.44 Carroll,et al. (973) ± ± ± ± ± ± ± ± ±.43

50 a (5.8) s f + a = 3] f M-matrix a (6.) (6.) lim f + (6.) p CM f = 8π s M (6.) a = 8π(m N + m K ) M( s = m N + m K ) (6.) Born (6.) a > : a < : (6.3) M < : (6.) I = I = s 6.5 M > : (6.4) 6.5: I = I = s fm] WT Born NLO LO + NLO S ±. Cameron et al. 4] S ±.4 Stenger et al. 5] S S (threshold) 6.3 f l f = (l + )f l P l (cosθ) (6.5) l= f l = eiδ l sin δ l k (6.6)

51 6 5 σ l σ = σ l (6.7) l= σ l = 4π k (l + ) sin δ l (6.8) 6] tree-level (6.6) (6.8) e iδ l f l = sin δ l k (6.9) δ l δ l = arcsin(kf l ) (6.) M-matrix ( ) δ l = arcsin k 8π s M l (6.) (6.4) δ l > : δ l < : (6.) (6.) (5.8),(5.8),(5.8) S, P, P 3, S, P, P 3 ( 6.4) PHASE-SHIFT DEGREES] S P LAB MeV/c] PHASE-SHIFT DEGREES] S P LAB MeV/c]

52 6 5 PHASE-SHIFT DEGREES] P P LAB MeV/c] PHASE-SHIFT DEGREES] P P LAB MeV/c] PHASE-SHIFT DEGREES] P 3 PHASE-SHIFT DEGREES] P P LAB MeV/c] P LAB MeV/c] 6.4: I =, I = s, p 7] I = I = P LAB = 6 MeV/c P LAB = 5 MeV/c 7] P LAB S unitalization8] ( ) 6.4 (6.6) I = ( 6.5) 45 MeV/c P LAB 385 MeV/c P LAB =5MeV/c x =

53 6 5 DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =45. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =75. MeV/c] cos(x) cos(x) DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =5. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =35. MeV/c] cos(x) cos(x) DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =355. MeV/c] DIFFERENTIAL CROSS SECTION mb/sr] Cameron,et al (974) P LAB =385. MeV/c] cos(x) cos(x)

54 6 53 DIFFERENTIAL CROSS SECTION mb/sr] 3 Cameron,et al (974).5 P LAB =5. MeV/c] cos(x) DIFFERENTIAL CROSS SECTION mb/sr] 3 Charles,et al (977).5 P LAB =698. MeV/c] cos(x) 6.5: I = 9, ]

55 K + χ NLO K + K + ρ K + - E p m K Σ(E, p, ρ) ] ϕ = (6.3) Σ(E, p, ρ) K + E, m K, p K + Σ free = m N M(K + N) free ρ (6.4) M(K + N) free = 8π sb free (6.5) m N ρ s K + N b free K + - Σ fit = m N M(K + N) fit ρ (6.6) M(K + N) fit = 8π sb fit (6.7) K + N b fit b fit K + - E.Friedman A.Gal ] Re b fit Re b free 4% 5% Im b fit Im b free % 5% ( 6.6) K : K + ] P LAB MeV/c] Σ Reb fm] Imb fm] 488 Σ fit -.3(6).7(7) Σ free Σ fit -.96(39).(9) Σ free Σ fit -.(5).6() Σ free Σ fit -.4(53).85(5) Σ free -.6.8

56 6 55 ( ) (6.3) Π(p) = i E p m K Σ(E, p, ρ) + iϵ (6.8) K + p = m K (ρ) m K + Σ(E = m K, p =, ρ) (6.9) ] on-shell E = m K ( ) Σ Σ(E, p, ρ) = Σ(E = m K, p =, ρ) + (E m K ) E + (6.3) E =m K, p= E m K Σ(E, p, ρ) E m K (6.8) Σ(E = m K, p =, ρ) + (E m K ) ( ) Σ = E m K (E m K ) E ( ) Σ = (E m K ) E E =m K, p= E =m K, p= ] ( ) ] Σ E E =m K, p= (6.3) iz Π(p) = E m K + iϵ (6.3) ( ) ] Σ Z = E (6.33) E =m K, p= E = m K ( ) Σ Σ(E, p, ρ) = Σ(E = m K, p =, ρ) + (E m K) E E =m K ( ) ], p= Σ Σ(E = m K, p =, ρ) + E E =m K, p= ZΣ(E = m K, p =, ρ) (6.34)

57 6 56 Z = ( ) ] ( ) Σ Σ E + E =m K, p= E (6.35) E =m K, p= Z ρ N = Z, K + N M-matrix ρ M(K + p) = M(I = ) (6.36) M(K + n) = M(I = ) + M(I = )] (6.37) M(K + N) = M(K + p) + M(K + n) ] = 3M(I = ) + M(I = )] (6.38) 4 ρ p = ρ n = ρ (6.39) Σ = m N M(K + p)ρ p + M(K + n)ρ n ] = 4m N M(K + p) + M(K + n) ] ρ = 8m N 3M(I = ) + M(I = )] ρ (6.4) ( 6.7) 6.7: P LAB MeV/c] Z (WT) Z (Born) Z (NLO) Z (LO+NLO) ρ ρ.9 ρ ρ +. ρ ρ +.3 ρ ρ ρ ρ.8 ρ ρ +. ρ ρ +.9 ρ ρ ρ ρ.3 ρ ρ +. ρ ρ +.7 ρ ρ ρ ρ. ρ ρ +. ρ ρ +.7 ρ ρ 3% 6.6 5% 5%

58 6 57 Born WT Born NLO ( ) Born ( ) χ constraint TOTAL CROSS SECTION mb] WT Born NLO P LAB MeV/c] TOTAL CROSS SECTION mb] Born NLO P LAB MeV/c] 6.6: I = 6.7: I = on-shell E = p + m on-shell E p E p E E p off-shell P LAB

59 58 7 NLO K + N K + N χ NLO I =, I = K + n K + n I = χ K + χ unitalization unitalization χ K + 3% 5 % 5 % on-shell Born χ constraint

60 59

61 6 ] K.Suzuki et al.,phys.rev.lett. 9 (4) 73 ] E. Friedman,A. Gal, Phys.Rept.45:89-53,7 3] W.Weise, Nuovo Cim. A (989) ] D.Bugg et al.,phys.rev.,68,466(968) 5] S.Scherer and M R.Schindler, A Primer for Chiral Perturbation Theory (Springer) 6] A. Pich, arxiv:hep-ph/ ] T.Bowen et al.,phys.rev.d(97) ] C.J. Adams et al.,phys.rev. D4 (97) ] T.Bowen et al.,phys.rev.7d(973). ] A.S Carroll et al.,phys.lett. B45 (973) ] C.J.S Damerell et al.,nucl.phys. B94 (975) 374 ] G.Giacomelli et al.,nucl.phys. B56 (973) ] J.M. Eisenberg and D. Koltun, Theory of Meson Interactions with Nuclei (Wiley, New York, 98) Chapter. 4] W. Cameron et al,, NucI. Phys. B78 (974) 93. 5] V.J. Stenger et al., Phys. Rev. 34B (964). 6] N.Zettili, Quantum Mechanics:concepts and applications nd ed. (Wiley, New York,9) Chapter. 7] K.Hashimoto, Phys.Rev. C9 (984) ] T.Hyodo and D.Jido,Prog.Part.Nucl.Phys.67:55-98, 9] W.Cameron et al.,nucl.phys. B78 (974) 93 ] B.J. Charles et al.,nucl.phys. B3 (977) 7-53 ] W. Weise, Nucl. Phys. A 69 () 98.

0406_total.pdf

0406_total.pdf 59 7 7.1 σ-ω σ-ω σ ω σ = σ(r), ω µ = δ µ,0 ω(r) (6-4) (iγ µ µ m U(r) γ 0 V (r))ψ(x) = 0 (7-1) U(r) = g σ σ(r), V (r) = g ω ω(r) σ(r) ω(r) (6-3) ( 2 + m 2 σ)σ(r) = g σ ψψ (7-2) ( 2 + m 2 ω)ω(r) = g ω ψγ

More information

,,..,. 1

,,..,. 1 016 9 3 6 0 016 1 0 1 10 1 1 17 1..,,..,. 1 1 c = h = G = ε 0 = 1. 1.1 L L T V 1.1. T, V. d dt L q i L q i = 0 1.. q i t L q i, q i, t L ϕ, ϕ, x µ x µ 1.3. ϕ x µ, L. S, L, L S = Ld 4 x 1.4 = Ld 3 xdt 1.5

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes ) ( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji 8 4 2018 6 2018 6 7 1 (Contents) 1. 2 2. (1) 22 3. 31 1. Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji SETO 22 3. Editorial Comments Tadashi

More information

main.dvi

main.dvi SGC - 48 208X Y Z Z 2006 1930 β Z 2006! 1 2 3 Z 1930 SGC -12, 2001 5 6 http://www.saiensu.co.jp/support.htm http://www.shinshu-u.ac.jp/ haru/ xy.z :-P 3 4 2006 3 ii 1 1 1.1... 1 1.2 1930... 1 1.3 1930...

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

2017 II 1 Schwinger Yang-Mills 5. Higgs 1 2017 II 1 Schwinger 2 3 4. Yang-Mills 5. Higgs 1 1 Schwinger Schwinger φ 4 L J 1 2 µφ(x) µ φ(x) 1 2 m2 φ 2 (x) λφ 4 (x) + φ(x)j(x) (1.1) J(x) Schwinger source term) c J(x) x S φ d 4 xl J (1.2) φ(x) m 2

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ± 7 7. ( ) SU() SU() 9 ( MeV) p 98.8 π + π 0 n 99.57 9.57 97.4 497.70 δm m 0.4%.% 0.% 0.8% π 9.57 4.96 Σ + Σ 0 Σ 89.6 9.46 K + K 0 49.67 (7.) p p = αp + βn, n n = γp + δn (7.a) [ ] p ψ ψ = Uψ, U = n [ α

More information

( ) (ver )

( ) (ver ) ver.3.1 11 9 1 1. p1, 1.1 ψx, t,, E, p. = E, p ψx, t,. p, 1.8 p4, 1. t = t ρx, t = m [ψ ψ ψ ψ] ρx, t = mi [ψ ψ ψ ψ] p4, 1.1 = p6, 1.38 p6, 1.4 = fxδ ϵ x = fxδϵx = 1 π fxδ ϵ x dx = fxδ ϵ x dx = [ 1 fϵ π

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx i B5 7.8. p89 4. ψ x, tψx, t = ψ R x, t iψ I x, t ψ R x, t + iψ I x, t = ψ R x, t + ψ I x, t p 5.8 π π π F e ix + F e ix + F 3 e 3ix F e ix + F e ix + F 3 e 3ix dx πψ x πψx p39 7. AX = X A [ a b c d x

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

SO(2)

SO(2) TOP URL http://amonphys.web.fc2.com/ 1 12 3 12.1.................................. 3 12.2.......................... 4 12.3............................. 5 12.4 SO(2).................................. 6

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc 013 6 30 BCS 1 1.1........................ 1................................ 3 1.3............................ 3 1.4............................... 5 1.5.................................... 5 6 3 7 4 8

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1

Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1 Λ(1405) supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, Aug. 5th 1 S KN Λ(1405) Λ(1405) CDD Nc 2 L = q(i/ m)q P L = 1 2 (1 γ 5), P R = 1 2 (1 + γ 5), q L P L q, q

More information

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1) 23 2 2.1 10 5 6 N/m 2 2.1.1 f x x L dl U 1 du = T ds pdv + fdl (2.1) 24 2 dv = 0 dl ( ) U f = T L p,t ( ) S L p,t (2.2) 2 ( ) ( ) S f = L T p,t p,l (2.3) ( ) U f = L p,t + T ( ) f T p,l (2.4) 1 f e ( U/

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K 2 2 T c µ T c 1 1.1 1911 Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 1 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K τ 4.2K σ 58 213 email:takada@issp.u-tokyo.ac.jp 1933 Meissner Ochsenfeld λ = 1 5 cm B = χ B =

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e ( ) Note 3 19 12 13 8 8.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R, µ R, τ R (1a) L ( ) ) * 3) W Z 1/2 ( - )

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

反D中間子と核子のエキゾチックな 束縛状態と散乱状態の解析

反D中間子と核子のエキゾチックな   束縛状態と散乱状態の解析 .... D 1 in collaboration with 1, 2, 1 RCNP 1, KEK 2 . Exotic hadron qqq q q Θ + Λ(1405) etc. uudd s? KN quasi-bound state? . D(B)-N bound state { { D D0 ( cu) B = D ( cd), B = + ( bu) B 0 ( bd) D(B)-N

More information

16 B

16 B 16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 7 7.1 7.1.1 Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x 3 )=(x 0, x )=(ct, x ) (7.3) E/c ct K = E mc 2 (7.4)

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a 1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

B ver B

B ver B B ver. 2017.02.24 B Contents 1 11 1.1....................... 11 1.1.1............. 11 1.1.2.......................... 12 1.2............................. 14 1.2.1................ 14 1.2.2.......................

More information

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( ) http://astr-www.kj.yamagata-u.ac.jp/~shibata f4a f4b 2 f4cone f4eki f4end 4 f5meanfp f6coin () f6a f7a f7b f7d f8a f8b f9a f9b f9c f9kep f0a f0bt version feqmo fvec4 fvec fvec6 fvec2 fvec3 f3a (-D) f3b

More information

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c)   yoshioka/education-09.html pdf 1 2009 1 ( ) ( 40 )+( 60 ) 1 1. 2. Schrödinger 3. (a) (b) (c) http://goofy.phys.nara-wu.ac.jp/ yoshioka/education-09.html pdf 1 1. ( photon) ν λ = c ν (c = 3.0 108 /m : ) ɛ = hν (1) p = hν/c = h/λ (2) h

More information

dynamics-solution2.dvi

dynamics-solution2.dvi 1 1. (1) a + b = i +3i + k () a b =5i 5j +3k (3) a b =1 (4) a b = 7i j +1k. a = 14 l =/ 14, m=1/ 14, n=3/ 14 3. 4. 5. df (t) d [a(t)e(t)] =ti +9t j +4k, = d a(t) d[a(t)e(t)] e(t)+ da(t) d f (t) =i +18tj

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

( ) ) AGD 2) 7) 1

( ) ) AGD 2) 7) 1 ( 9 5 6 ) ) AGD ) 7) S. ψ (r, t) ψ(r, t) (r, t) Ĥ ψ(r, t) = e iĥt/ħ ψ(r, )e iĥt/ħ ˆn(r, t) = ψ (r, t)ψ(r, t) () : ψ(r, t)ψ (r, t) ψ (r, t)ψ(r, t) = δ(r r ) () ψ(r, t)ψ(r, t) ψ(r, t)ψ(r, t) = (3) ψ (r,

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1 (vierbein) QCD QCD 1 1: QCD QCD Γ ρ µν A µ R σ µνρ F µν g µν A µ Lagrangian gr TrFµν F µν No. Yes. Yes. No. No! Yes! [1] Nash & Sen [2] Riemann

More information