(PV: Photovoltaics) PV (CCT: Critical Clearing Time) PV P-δ CCT CCT PV PV CCT P-δ CCT PV CCT P-δ PV PV PV : CCT[s] PV

Size: px
Start display at page:

Download "(PV: Photovoltaics) PV (CCT: Critical Clearing Time) PV P-δ CCT CCT PV PV CCT P-δ CCT PV CCT P-δ PV PV PV : CCT[s] PV"

Transcription

1

2 (PV: Photovoltaics) PV (CCT: Critical Clearing Time) PV P-δ CCT CCT PV PV CCT P-δ CCT PV CCT P-δ PV PV PV : CCT[s] PV PV PV PV PV i

3 PV PV 8. PV PV PV CCT δ v P PV P P ii

4 δ v P PV P P PV PV PV PV PV PV PV Y PV PV PV PV PV iii

5 A P-δ 8 B CCT 8 iv

6 PV PV PV 3. (PV: Photovoltaics) PV.. PV [] CO [] CO (I) PV PV [3] 997 PV 8 [GW] PV 5 4[GW] (.4) [4] 6[GW] (9 ) [5] PV [%] PV (II) PV PV. [6] 8GW 3 53GW 8[GW] 3 95[GW] (.) 58[GW] 3 88[GW] (.) 83[GW] 3 33[GW] (.3) [4] PV [%] ( GW ) PV

7 Cumulative installed PV power [MW] year.: PV [3] PV introduce power [GW] estimate in 8/7 estimate in 9/4 3 or 4 years earlier year.:.: [GW] [4] 3 5 8% 5 7% 38 49% 4% 6 % 63 % 33 % 6 % 8 96

8 .: [GW] [4] % 5 7% 39 54% 4 49% 6 3% 63 % 4% 33 % : [GW] [4] % 49 5% 63 58% 86 56% 6 % 63 9% 3% 33 % : [GW] [4] % 46 9% 4 6% 43 59% 3 8% 5 % % 3 % 7 4 (III) PV PV ( ) [7] PV PV.3 [8] km ( 8 3 ) (IV).4 [9] ITIC. 3

9 .35.3 aerial cable fault underground cable fault fault rate [num/km] year.3: 6%. % IEEE346 Information Technology Industry Council (ITIC) SEMI(Semiconductor Equipment and Materials International) SEMI F47 Cheng-Chieh Shen IEC PLC(Programmable Logic Controller) PLC (I) [] Tan MPPT PV.5 PV I r PV P pv I pv V ac I ac V pv I pv MPPT MPPT(Maximum Power Point Tracking) PV MPPT V pv.6 PV.6[s] % % (.6(a)) PV [W] 6[W] 5.5[s] 4

10 .4: ITIC and SEMI F47 curves, and three PLC s voltage sags tolerance test results. IV A 4% B MPPT V P V C (.6(c)).7 PV.6[s] % 4% (.7(a)) PV 6[W] 5[W].5[s] 5[W] IV A 4% B MPPT V P V C (.7(c)). PV PV PV 5

11 Ir PV array I pv Inverter V ac V pv V ref I ac MPPT.5: PV [] (a) (a) (b) (b) (c) IV.6: PV [] (c) IV.7: PV [] PV PV PV ( ) 6

12 .3 PV PV PV PV PCS P-δ..PV : 7

13 PV PV PV PV.[pu] (.4).[pu] PV PV PV PV PV PV PV PV PV PV PV (PV ) PV. PV... PV PV module PV V P V I P V. PV VI [] PV V P V V P V MPPT PV V P V Boost Converter PV V P V V DC S V DC C DC Grid Converter V DC V AC PV PV 3 PV MPPT 8

14 .: [] Boost Converter Grid Converter I AC Q Q 3 I PV L B D V DC V AC Grid PV module V PV S C DC Q Q 4.: PV [] 9

15 .. PV.3 PV [] Active Power Control MPPT ACL MPPT(Maximum Power Point Tracking) ACL(Active Current Limit) PV PV Boost Converter PV V pv PV PV module V pv Grid converter PLL(Phase Locked Loop). PV PV (.4).[pu] ACL.[pu] /..83[pu] [3].[pu] Y [4] PV. PV PV PV.. PV 4 PV PV PV PV ( 3.8) PV.5[pu] PV π

16 Active Power Control Boost converter PV module MPPT ACL V DC V DC select max V DC k. V pv P Ir V P pv IEEE 547 I max P PV V DC I AC =(I Pdes +I Qdes ) / θ I =θ V -θ PLL -atan(i Qdes /I Pdes ) I AC θ I Voltage Control + V AC * V AC - PI + - I Qmax -I Qmax Active AntiIlanding NBP Phase Locked Loop V AC θ V dq V D V Q G PLL (s) /ω ω /s ω PLL.3: PV []

17 .4 available area. P const Voltage[p.u.] I const Power [p.u.].4: PV PV PV PV PV

18 x d P-δ Y 3. PV PV 3.3 PV PV 3.4 PV PV PV PV PV PV 3.: Y 3.: PV PV 3.3: PV PV 3

19 3.4: sn PV PV PV 3 PV 4 (.4) 5 6 (.54[pu]) 6 7 PV PV.5[pu] 8 PV PV 9 PV PV 3. PV PV 3.. ( ) PV ( 3.) (I) [6] 3. / (II) ( ) 3.(a) n 4

20 v g G v t δ xl v synchronous generator I 3.: r l infinite bus n 3.(b) x P x = P = n k= x k (3.) n P k (3.) k= (3.) (3.) x P P x x P (3.3) (3.4) x = P = n k= x k = n x = x n (3.3) n P k = np (3.4) k= n (3.3) (3.4) δ v x P G x P G... δ3 v 3 δ v x P G δ3 v 3 P n G x n (a) n (b) 3.: (III) ( 3.3(a)) ( 3.3(b)) ( 3.3(c)) 5

21 (3.5) (3.6) x 3 = x 3c = x 3 + x 3 + x 3 = x 3 + x (3.5) x 3 + x 3 + x 3 = x 3 + x (3.6) δ3 v 3 x 3 v δ3 v 3 x 3f x 3 x 3 v x 3 x 3 CB x 3 CB x 3 CB CB (a) (b) δ3 v 3 x 3c v x 3 x 3 (c) 3.3: (IV) PV 3.4 PV pu [MVA] 5[kV] (3.5) (3.6).4[pu].57[pu] v 3.[pu] v P P 3.[pu] synchronous generator δ v G P δ3 v 3 P 3 CB.34[pu].34[pu] x 3 v CB.3[pu] infinite bus 3.4: PV (MVA ) 6

22 (V) PV PV PV [7] PV (VI) 3.5 PV 3.5 ( 3.3) ( 3.) ( 3.4) x x 3.4[pu].57[pu] ((III) ) P m = P PV (. ) G synchronous generator δ v P x P PV δ+δ3 i δ3 v 3 P 3 CB.34[pu].34[pu] x 3 v CB.3[pu] infinite bus 3.5: 3.5: x ([MVA] )[pu] x ( ) x ( ) x ( ) x ( ) [MVA] 5[Hz] 3.6 x,x 3 ( x =.5[pu] x ) 3.6 ( 3.3) ( 3.) ( 3.4) x x 3.6[pu] (CB:Circuit Breaker) 7

23 .8[pu] P 3 =.[pu] PV P =.5[pu] P 4 =.9[pu] ( ) x P v x G δ synchronous generator P PV δ +δ 3 i x 3 δ 3 v 3.4[pu] v P 3 CB.4[pu] CB.4[pu] infinite bus P 4 Load i 4 δ 3 3.6: (MVA ) 3.6: x ([MVA] )[pu] x ( ) x ( ) x ( ) x ( ) P δ CCT PV PV 3.3 AVR [8] PSS 8

24 P PSS PV ( 3.8(c))(Lpt=) [4] 3.3. xl ra xl xlmd xmd xld xlfd xlmd xlf xld xmd rkd rfd (a) (b) (d ) 3.7: 3.7(a) [5] 3.7(b) x d x d = x l (3.7) x md + x lmd +x lfd x l x md x lmd 3.3. (+ ) ( 3.) x d AVR&PSS d q ( ) (Lgt=5) AVR(Automatic Voltage Regulator) PSS(Power System Stabilizer) AVR [8] ( 3.8(a)) PSS P PSS ( 3.8(b))(LAT=53) [4]

25 PV PV PV ( ) P-δ ( 5 ) 6 Y ( 3.8(c))(Lpt=) [4] PV.5 CV U.5[pu].[pu] EA EAS + - G PSS EFS/G5 UL + G +T 3 s + + +T s - +T 4 s + LL G6 s +T 6 s G5 +T 5 s G=., G=5., T =.3, UL=., LL=-., T 3=., T 4=.5, G5=., T 5=.3, UL=5.5, LL=-4.8, G6=., T 6=. (a) AVR Pg EA VC Pgs +D UL + T s +T s +T 4 s +T 6 s G - +T +T 5 s +T 8 s Vs s +T 3 s +T 7 s -D LL D=., T =., T =.7, T 3 =.5, T 4 =., T 5 =., T 6 =., T 7 =., G=., T 8 =., UL=., LL=-. (b) PSS UL LL EA EF W CV W HT S g - δ +Gs +T s TQTS PLM X SR LVG - /T 3 T /T 6 VM U s L P TH +T 4 s +T 4 s cross Sec -K + TP + K δ=4.,k=.3,t =.,T =.,T 3 =.,T 4 =5.,T 5 =.5,T 6 =9.,U=.,L=.,G=. (c) 3.8: AVR PSS [9] P m P e P m P e > P m P e < P m P e =

26 3.9: PV ( 3.3) PV PV 3.7 (3.4 ) [MVA].54[pu].[pu].64[pu].64[pu].64[pu] PV.5[pu].4[pu].4[pu] (3..3 ).[pu] PV.5[pu].5[pu].5[pu].[pu].5[pu] PV.5[pu].[pu].[pu].5[pu] x (4.4) : ([MVA] )[pu]

27 3.3.7 ( 3.3) PV PV ( 3.8) PV PV PV (3.3.6 ) PV PV PV PV (.5[pu] ) [pu].83[pu].9[pu] 6 (.54[pu]) 3.4. (. ).9[pu] 6 (.54[pu]) 3.5 AVR [8] PSS

28 P PSS PV ( 3.8(c))(Lpt=) [4] PV ( ) PV.9[pu] 6 (.54[pu]) PV PV PV ( ) PV PV PV PV 3. 3.: 3.8 c 3

29 3.8: sn PV P mc + = P / PV δ c = π/ 3 P = P 3 + P 4 4 if(v 3 >.83) P 4 = P 4 else P 4 =.v 3 5 P 4 =.54[pu] 6 P 4c =[pu] 7 PV P =.5[pu] 8 PV P =[pu] 9 PV P c =P P m c: P : PV δ c : PV P : P 4 : P 4 : P : PV P c : PV 4

30 4 CCT PV 4.: ( ) v x d v 3=. - v 3 (4.).[pu] v.[pu] δ - δ PV [rad]( π/[rad]) [rad] δ 3 (4.9) - δ 4 [rad] [rad] P (4.5) P P PV (4.9) P P 3 (4.) P 3 P 4 (4.39) P 4 x.38 x 3.4 *)v 3 =.[pu] 6 **) δ c = π/[rad] δ P v δ 3 v e jδ v 3 e jδ 3 jx + i e j(δ +δ 3 ) = v 3e jδ 3 v jx (4.) (4.) v 3 v 3 (x + x 3 ) = x 3 v e j(δ δ 3 ) + jx x 3 i e jδ + x v e jδ (4.) 5

31 P G δ v synchronous generator x.385 [pu] δ3 v 3 CB P 3.6 [pu].6 [pu] x 3 CB v.7 [pu] infinite bus 4.: ( ) (4.) v 3 (4.3) v 3 = x 3v e j(δ δ 3 ) + jx x 3 i e jδ + x v e jδ 3 x + x (4.3) (4.3) v 3 x 3 v sin (δ δ 3 ) + x x 3 i cos δ x v sin δ 3 = x 3 v (sin δ cos δ 3 cos δ sin δ 3 ) + x x 3 i cos δ x v sin δ 3 = (i)δ (x 3 v sin δ ) cos δ 3 (x 3 v cos δ + x v ) sin δ 3 = x x 3 i cos δ.. (4.4) (4.4) δ 3 Z cos (δ 3 α) = x x 3 i cos δ (4.5) Z = (x 3 v sin δ ) + (x 3 v cos δ + x v ) (4.6) tan α = x 3v cos δ + x v x 3 v sin δ (4.7) (a) x x 3 i cos δ Z (x x 3 i cos δ ) (x 3 v sin δ ) + (x 3 v cos δ + x v ) (x3 v sin δ ) i + (x 3 v cos δ + x v ) (4.8) x x 3 cos δ δ 3 = cos ( x x 3 i cos δ Z (b) x x 3 i cos δ Z <- < x x 3 i cos δ Z (ii) δ = (4.4) δ = ) + α (4.9) θ - cos θ (x 3 v + x v ) sin δ 3 = x x 3 i cos δ (4.) 6

32 (a) x x 3 i cos δ x 3 v + x v ( ) δ 3 = sin x x 3 i cos δ x 3 v + x v (4.) δ 3 (4.5) P (b) x x 3 i cos δ x 3 v + x v θ - sin θ δ v 3 v 3 (4.3) v 3 = x 3v cos (δ δ 3 ) x x 3 i sin δ + x v cos δ 3 x + x (4.) δ 3 (4.9) v P P + jq P + jq = V Ī = v e jδ v e jδ v 3 e δ3 jx = v jx + v v 3 e j(δ δ3) jx (4.3) v 3 v 3 = v 3 (4.3) (4.3) P + jq = v + v e j(δ δ3) x 3 v e j(δ δ3) jx x 3 i e jδ + x v e jδ3.. (4.4) jx jx x + x 3 = v x 3 v jx jx (x + x 3 ) j v jx x 3 i e j(δ δ δ3) + x v e jδ x x + x 3 P P = v x x x 3 i cos (δ δ δ 3 ) + x v sin δ x + x 3 P = v v sin δ i x 3 v cos (δ δ δ 3 ) x + x (4.5) P 4..4 PV P P + jq P + jq = V Ī (4.6) = v 3 e jδ3 i e j(δ+δ3) (4.7) = v 3 i e jδ (4.8) P P = v 3 i cos δ (4.9) (4.) v 3 P 7

33 4..5 P 3 P 3 P PV P P loss (4.) P 3 = P + P + P loss (4.) P loss = (4.) (4.) (4.) P 3 = P + P (4.) P δ P v 3 P v x G δ synchronous generator P PV δ +δ 3 i x 3 δ 3 v 3.4[pu] v P 3 CB.4[pu] CB.4[pu] infinite bus P 4 Load i 4 δ 3 4.: ( ) ( 3.6) P 4 ( 3.6) 3 PV I 4t I 4t = i e j(δ+δ3) (4.3) 4. 3 PV I 4l I 4l = i e j(δ +δ 3 ) + i 4 e j(δ 4+δ 3 ) (4.4) I 4t I 4l (4.5) 8

34 e jφ I 4t e jφ I 4l e jφ (4.6) i e j(δ +δ 3 +φ) i e j(δ +δ 3 +φ) + i 4 e j(δ 4+δ 3 +φ) (4.7) i cos δ + δ 3 + φ i cos δ + δ 3 + φ i 4 cos(δ 4 + δ 3 + φ) (4.8) i sin δ + δ 3 + φ i sin δ + δ 3 + φ i 4 sin(δ 4 + δ 3 + φ) (4.9) 4.. δ 3 (4.8) (4.9) δ 3 = cos ( x x 3 (i cos δ i 4 cos δ 4 ) Z ) + α (4.3) Z = (x 3 v sin δ ) + (x 3 v cos δ + x v ) (4.3) tan α = x 3v cos δ + x v x 3 v sin δ (4.3) 4.. v 3 (4.9) (4.) v 3 = x 3v cos (δ δ 3 ) x x 3 (i sin δ i 4 cos δ 4 ) + x v cos δ 3 x + x (4.33) 4..3 P (4.8) (4.5) P = v v sin δ x 3 v (i cos (δ δ δ 3 ) i 4 cos (δ δ 4 δ 3 )) x + x (4.34) 4..4 PV P (4.9) P = v 3 i cos δ (4.35) 4..5 P 4 P 4 + jq 4 P 4 + jq 4 = V 4 Ī (4.36) = v 3 e jδ3 i 4 e j(δ4+δ3) (4.37) = v 3 i 4 e jδ (4.38) P 4 P 4 = v 3 i 4 cos δ (4.39) (4.) v 3 P 9

35 4..6 S A x A [pu] S B x B [pu] S A = V X A (4.4) S B = V X B (4.4) x B = x A S B S A (4.4) x A =.35[pu] S A = [MVA] S B = [MVA] x B x x =.35 = 7.38[pu] (4.43) x B 3 x.5[pu] x (4.44) x =.5.35 =.8[pu] (4.44) x [5] ω S g s ds g dt = δ (4.45) = T M (4.46) S g ([s]) M ([s]) ω ([rad/s]) δ ([rad/s]) T ( - ) s S g d ds g dt (S g) = S g dt ω MS g = = T dδ ω M dt (4.47) T dδ (4.48) P c (δ e ) > P c (δ e ) < 3

36 P c (δ e ) = T c (CCT: Critical Clearing Time) 4. P-δ δ c δ s T c 4..8 δ c δ s T c M d δ ω dt = P m (4.49) T c δ c δ c = δ s + Tc P m ω M dtdt = δ s + P mω M T c (4.5) ω = πf M(δ c δ s ) T c = (4.5) πf P m f : (5[Hz]) P m : 3

37 5 P-δ CCT PV CCT PV PV PV PV PV PV PV PV PV PV PV (PV ) PV.9[pu] 6 (.54[pu]) PV PV PV ( ) PV PV PV PV PV ( ) PV PV P-δ 5. PV PV 4 (.. ) PV PV PV PV ( 3.8) 3

38 PV.5[pu] PV 5.. PV PV PV ( 3.8) PV.5[pu] CCT (I) 5. PV CCT PV PV.5[pu] PV.[pu] ( [MVA]) CCT PV PV CCT CCT ( ) 5.: PV CCT [s] PV.7 (II) P-δ PV P-δ 5. P-δ 5.(a) CCT.363[s] 5.(b) PV P.5[pu].[pu] δ s P m CCT.7[s] 5. P-δ.36[s] CCT PV.7[s] PV PV.5[pu] ( ) CCT 33

39 .5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m..5 CCT=.7[s] cap=.[pu] v =.[pu] P c P c P 3c v 3c δ s δ [deg] δ c δ e δ s δ c δ [deg] δ e (a) (b) PV 5.: PV.5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5 P m..5 CCT=.7[s] cap=.[pu] v =.[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) (b) PV 5.: PV 34

40 5.. PV PV PV.5[pu] ( 3.8) PV CCT ( 5.) PV CCT (I) 5. PV CCT PV PV.5[pu](PV ).5[pu].5[pu].75[pu] CCT PV CCT 5.: PV CCT [s] PV PV (II) P-δ PV P-δ 5.3 P-δ 5.3(a) CCT.363[s] 5.3(b) PV P.5[pu].75[pu] P m CCT.5[s].5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.75.5 CCT=.5[s] cap=.[pu] v =.9[pu] P c P c P 3c v 3c δ s δ [deg] δ c δ e δ s δ c δ [deg] δ e (a) ( ) (b) PV 5.3: PV 5.4 PV P-δ 5.4(a) CCT.5[s] 5.4(b) PV P P m CCT.75[s] 35

41 .5 P m.5 CCT=.[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.75.5 CCT=.75[s] cap=.75[pu] v =.3[pu] P c P c P 3c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) (b) PV 5.4: PV P-δ 5..3 PV PV PV ( 3.8) PV CCT ( 5.3) (I) 5.3 PV CCT PV P CCT 5.3: PV CCT [s] PV (II) P-δ PV P-δ 5.5 P-δ 5.5(a) CCT.363[s] 5.5(b) PV P c CCT.69[s] 5.5(a) (P-δ ) P c P 3c PV 5.5(b) PV P c δ 7[deg].5[pu] PV 36

42 PV δ PV (4.5) PV i P P = v v sin δ i x 3 v cos (δ δ δ 3 ) x + x (5.) P δ δ δ 3 δ PV δ = δ δ 3 (4.9) (4.6) (4.7) δ 3 = cos ( x x 3 i cos δ Z ) + α (5.) Z = (x 3 v sin δ ) + (x 3 v cos δ + x v ) (5.3) tan α = x 3v cos δ + x v x 3 v sin δ (5.4) δ = π PV /.(PV PV.[pu] ) PV i =..5=.6[pu] Z = (x 3 v ) + (x v ) = (.57.8) + (.38.).693. (5.5) tan α = x 3v cos δ + x v = (5.6) x 3 v sin δ.57.8 ( ) δ 3 = cos x x 3 i cos δ + α (5.7) Z cos ( ) + tan (.57) (5.8) cos (.57) + tan (.57).89[rad] (5.9) δ δ 3 = π.89 = (5.) cos(δ δ 3 ) cos(.39) (5.) i x 3 v cos (δ δ δ 3 ) x + x 3 = [pu] (5.) δ =9[deg].4[pu] 5.6 PV P-δ 5.6(a) CCT.5[s] 5.6(b) PV P c CCT.44[s] PV CCT 5..4 PV PV PV PV ( 3.8) CCT 37

43 .5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.5 CCT=.69[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c δ s δ [deg] δ c δ e δ s δ c δ [deg] δ e (a) ( ) (b) PV 5.5: PV P-δ.5 P m.5 CCT=.[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.5 CCT=.44[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) ( ) (b) PV 5.6: PV P-δ 38

44 (I) 5.4 PV CCT PV CCT 5.4: PV CCT [s] PV (II) P-δ PV P-δ 5.7(a) P-δ CCT.363[s] 5.7(b) 5.7(a) PV P-δ PV P Q PV δ π P-δ (4.) v 3 = x 3v cos (δ δ 3 ) x x 3 i sin δ + x v cos δ 3 x + x (5.3) PV δ π v 3 P v 3 P = v v 3 sin(δ δ 3 ) x (5.4) v 3 P CCT.39[s].5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.5 CCT=.39[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c δ s δ [deg] δ c δ e δ s δ [deg] δ c δ e (a) ( ) (b) PV 5.7: PV P-δ 39

45 5. 3 (3.4 ) ( 3.8) [pu].83[pu] ( 3.8) CCT CCT (I) 5.5 CCT CCT 5.5: CCT [s] (II) P-δ P-δ 5.8(a) P-δ CCT.36[s] 5.8(b) 5.8(a) P-δ P 4 CCT.369[s] 5.9 P-δ 5.9(a) CCT.7[s] 5.9(b) ( 5.4 ) CCT.68[s] (.54[pu]) ( 3.8) P P m CCT 4

46 .5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5 Pm.5 CCT=.369[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) ( ) (b) 5.8: P-δ.5 Pm.5 CCT=.7[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c.5 Pm.5 CCT=.68[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) (b) 5.9: P-δ 4

47 (I) 5.6 CCT P P m CCT 5.6: CCT [s] (II) P-δ P-δ 5. P-δ 5.(a) CCT.36[s] (.[pu]) ( ).5[pu].4[pu] 5.(b) CCT.77[s].5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5.5 P m.4 CCT=.77[s] cap=.64[pu] v =.[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ [deg] δ c δ e (a) ( ) (b) 5.: P-δ 5. P-δ 5.(a) CCT.7[s] 5.(b) v 3 CCT.5[s] 5..3 CCT 4

48 .5 Pm.5 CCT=.7[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c.5.5 P m.4 CCT=.5[s] cap=.4[pu] v =.3[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) ( ) (b) 5.: P-δ (I) 5.7 CCT sin P 3c CCT PV CCT (.7[s]) 5.7: CCT [s] (II) P-δ P-δ 5. P-δ 5.(a) CCT.36[s] 5.(b) P c P-δ CCT.87[s] PV P c P 3c P c P-δ (4.34) i 4 P = v v sin δ x 3 v (i cos (δ δ δ 3 ) i 4 cos (δ δ 4 δ 3 ) x + x (5.5) 5.3 P-δ 5.3(a) CCT.7[s] 5.3(b) P-δ P-δ.6[pu] P m (.5[pu]) CCT.9[s] PV ( 5.(b)).7[s] 43

49 .5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5 Pm.5 CCT=.87[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) ( ) (b) 5.: P-δ.5 Pm.5 CCT=.7[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c.5 Pm.5 CCT=.9[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) ( ) (b) 5.3: P-δ 44

50 5.3 (.. ) PV PV ( 3.8) 5.3. PV (3.3.6 ) PV PV ([MVA]) P-δ CCT (I) 5.8 CCT CCT 5.8: CCT [s] PV (II) P-δ P-δ 5.4(a) P-δ 5.4(b) 5.4(a) P-δ (II-) P-δ.[pu].5[pu] ([MVA]) x.38[pu].636[pu] δ s 34[deg] 4[rad] P c δ e 55[deg] 48[deg] 45

51 (II-) [s] 5[s] (4.5) CCT M M(δ c δ s ) T c = (5.6) πf P m ( ) (δ c δ s ) P m CCT.5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m.5 CCT=.[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c δ s δ [deg] δ c δ e δ s δ c δ [deg] δ e (a) ( ) (b) 5.4: P-δ 5.3. PV PV PV ( ) LFC( ) PV P-δ PV (.5[pu]) CCT (I) 5.9 PV CCT PV CCT (II) P-δ PV P-δ PV 46

52 5.9: PV CCT [s] PV (II-) 5.5(a) P-δ 5.5(b) PV P-δ 5.5(a) 5.5(b) PV.5[pu] CCT.5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P mc.75 P m.5 CCT=.33[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c δ s δ [deg] δ c δ e δ s δ c δ [deg] δ e (a) ( ) (b) PV 5.5: PV P-δ (II-) 5.6(a) PV P-δ 5.6(b) 5.5(a) P-δ P-δ.5 P mc.75 P m.5 CCT=.58[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c.5 P mc.75 Pm.5 no CCT cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ e δ [deg] (a) (b) 5.6: PV P-δ 47

53 5.4 (.. ) PV ( 3.8) 5.4. P δ CCT (I) 5. CCT 5.: CCT[s] (II) P-δ P-δ 5.7 P-δ 5.7(a) 5.7(b).5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c δ s δ [deg] δ c δ e δ s δ c δ [deg] δ e (a) (b) 5.7: P-δ 48

54 P P (4.5) P = v v sin δ i x 3 v cos (δ δ δ 3 ) x + x (5.7) P (4.34) P = v v sin δ x 3 v (i cos (δ δ δ 3 ) i 4 cos (δ δ 4 δ 3 ) x + x (5.8) (II-) δ =[deg] PV P i 4 (.9[pu]) PV i (.5[pu]) P δ P P (II-) P v x +x 3 x =.38[pu] x 3 =.57[pu] v =.[pu] 3 x =.5[pu] x 3 =.8[pu] v =.3[pu] P-δ. P max =.4[pu] (5.9) P max =.3.79[pu] (5.) δ =75[deg] P-δ.[pu] CCT (II-3) 5.8 P-δ 5.8(a) 5.8(b) CCT P-δ CCT 5.4. PV PV ( 3.8) P P m CCT (I) 5. CCT CCT 49

55 .5 P m.5 CCT=.[s] cap=.5[pu] v =.8[pu] P c P c P 3c v 3c.5 Pm.5 CCT=.7[s] cap=.5[pu] v =.[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) (b) 5.8: P-δ 5.: CCT [s] (II) P-δ P-δ P (II-) P 5.9(a) P-δ CCT.363[s] 5.9(b) P.[pu] PV P (.5[pu]) PV.[pu].5[pu] M ([MVA]) [s] 5[s] P m.5[pu].[pu] (4.5) CCT M P m M(δ c δ s ) T c = (5.) πf P m CCT.5/.87 ( CCT.3[s]) δ s δ c δ s CCT.9[s] (II-) P.[pu].[pu] P-δ δ =8[deg].97[pu].[pu] P-δ 5.(b) P-δ.37[pu] 5

56 .5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5 P m..5 CCT=.9[s] cap=.5[pu] v =.3[pu] P c P c P 3c v 3c δ s δ [deg] δ c δ e δ s δ c δ [deg] δ e (a) ( ) (b) 5.9: P-δ.5 Pm.5 CCT=.36[s] cap=.[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5 P m..5 CCT=.36[s] cap=.[pu] v =.[pu] P c P c P 3c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) ( ) (b) 5.: P-δ 5

57 PV PV 5.5. CCT 5. PV CCT PV Case No. 5. sn(scenario number) trans. const. trans. reduce load const. load reduce PV CCT.7[s] 5.: CCT[s] sn PV PV PV PV.7 9 PV (I) PV PV CCT CCT PV PV PV ( 3.8) PV PV.5[pu] CCT PV PV.5[pu] ( 3.8) PV PV CCT ( 5.) PV CCT 5

58 CCT[s] Case No. trans. const. load const. trans. reduce load reduce 5.: CCT[s] PV PV ( 3.8) PV CCT ( 5.3) PV PV ( 3.8) CCT (II) CCT.83[pu].83[pu] ( 3.8) CCT CCT 6 (.54[pu]) ( 3.8) P P m CCT CCT (III) CCT 53

59 PV (3.3.6 ) PV PV P-δ CCT PV PV (.5[pu]) CCT (IV) CCT P δ CCT PV PV ( 3.8) P P m CCT 5.5. PV PV PV ( 3.8) PV PV CCT ( 5.3) CCT (I) 5.3 PV CCT PV 5. PV CCT PV PV PV CCT PV CCT PV 54

60 5.3: PV CCT[s] sn PV PV PV * PV PV PV.7 99 PV PV PV *: -:CCT ( ) CCT[s] Case No. trans. const. load const. trans. reduce load reduce 5.: PV 55

61 (II) P-δ PV CCT 5.3 PV P-δ 5.3(a) CCT.5[s] 5.3(b) CCT.5[s] PV P 3c PV PV P c CCT.5.5 P m.4 CCT=.5[s] cap=.4[pu] v =.3[pu] P c P c P 3c P 4c v 3c.5.5 P m.4 CCT=.5[s] cap=.4[pu] v =.3[pu] P c P c P 3c P 4c v 3c δ s δ c δ [deg] δ e δ s δ c δ [deg] δ e (a) sn 5 (b) sn 95 PV 5.3: P-δ (III) PV P-δ (4.33) PV v 3 = x 3v cos (δ δ 3 ) x x 3 (i sin δ i 4 cos δ 4 ) + x v cos δ 3 x + x (5.) PV i δ 3 PV i (4.9) (4.6) (4.7) δ 3 = cos ( x x 3 i cos δ Z ) + α (5.3) Z = (x 3 v sin δ ) + (x 3 v cos δ + x v ) (5.4) tan α = x 3v cos δ + x v x 3 v sin δ (5.5) 5.4(a) δ =9[deg] PV i v 3 5.4(b) 5.(b) 5.4(a) PV i v 3 5.4(b) PV i.5[pu] v 3 PV i v 3 56

62 v 3 [s].73 v 3 [s] i [pu] i [pu] (a) sn 5 (b) sn : δ =9[deg] PV i v 3 (IV) PV CCT 5.4 PV ( ) PV ( ) PV PV PV PV 5.4: CCT CCT PV * PV *: 57

63 6 Y Y CCT 5 AVR PSS PV Y Y CCT PV CCT Y P EF v EF ( / ) pu [pu] δ [deg] 6. PV PV 3 (.. ) PV PV PV ( 3.8) PV.5[pu] PV PV Y 6.. PV PV PV ( 3.8) PV.5[pu] CCT (I) 6. PV CCT 58

64 PV PV.5[pu] PV.[pu] ( [MVA]) CCT PV PV CCT CCT ( ) 6.: PV CCT [s] PV.9.7 (II) Y PV Y 6.(a) Y CCT.37[s] 6.(b) PV P.5[pu].[pu] δ s P m δ P m CCT.9[s].5 CCT=.37[s] CCT=.9[s] δ [deg] δ [deg] time [s] δ P e t e g time [s] δ P e t e g EF/ (a) (b) PV 6.: PV 6.. PV PV PV.5[pu] ( 3.8) PV CCT ( 6.) PV CCT 59

65 (I) 6. PV CCT PV PV.5[pu](PV ).5[pu].5[pu].75[pu] CCT PV CCT 6.: PV CCT [s] PV PV (II) Y PV Y 6.(a) Y CCT.37[s] 6.(b) PV P.5[pu].75[pu] P m CCT.8[s].5 CCT=.37[s] CCT=.8[s] δ [deg] δ [deg] time [s] δ P e t e g time [s] δ P e t e g EF/ (a) (b) PV 6.: PV 6..3 PV PV PV ( 3.8) PV CCT ( 6.3) 6

66 (I) 6.3 PV CCT PV P CCT 6.3: PV CCT [s] PV (II) Y PV Y 6.3(a) Y CCT.37[s] 6.3(b) PV Y PV P.88[pu].76[pu] CCT.47[s].5 CCT=.3[s] CCT=.47[s] δ [deg] δ [deg] time [s] δ P e t e g P time [s] δ P e t e g P (a) (b) PV 6.3: PV 6. 3 (3.4 ) ( 3.8) 6

67 6...83[pu].83[pu] ( 3.8) CCT CCT (I) 6.4 CCT CCT 6.4: CCT [s] (II) Y PV Y 6.4(a) Y CCT.3[s] 6.4(b) 6.4(a) P 4 P CCT.34[s].5 CCT=.337[s] CCT=.34[s] δ [deg] δ [deg] time [s] δ P e t e g P time [s] δ P e t e g P 4 (a) (b) 6.4: 6.5(a) Y CCT.47[s] 6.5(b) 6.5(a) 6.5(a) δ 9[deg](t=.9[s]).75[pu] δ 9[deg](t=.[s]).7[pu] CCT.4[s] 6

68 .5 CCT=.47[s] CCT=.4[s] δ [deg] δ [deg] time [s] δ P e t e g P time [s] δ P e t e g P 4 (a) (b) 6.5: (.54[pu]) ( 3.8) P P m CCT (I) 6.5 CCT P P m CCT 6.5: CCT [s] (II) Y Y 6.6(a) Y CCT.337[s] 6.6(b) P δ CCT.737[s] 6.7(a) Y CCT.47[s] 6.7(b) e g CCT.8[s] 63

69 .5 CCT=.33[s] CCT=.737[s] δ [deg] δ [deg] time [s] δ P e t e g time [s] δ P e t e g (a) (b) 6.6:.5 CCT=.47[s] CCT=.8[s] δ [deg] δ [deg] time [s] δ P e t e g time [s] δ P e t e g (a) (b) 6.7: 64

70 6..3 CCT (I) 6.6 CCT CCT 6.6: CCT [s] (II) Y PV Y 6.8(a) Y CCT.337[s] 6.8(b) Y P P-δ CCT.87[s].5 CCT=.337[s] CCT=.87[s] δ [deg] δ [deg] time [s] δ P e t e g P time [s] δ P e t e g EF/ (a) (b) 6.8: 6.3 (.. ) PV PV ( 3.8) 65

71 6.3. AVR&PSS (3.3. ) x d CCT (I) 6.7 CCT δ q e g x d AVR PSS.[pu] CCT PV CCT 6.7: CCT [s] PV.7.7 (II) Y Y 6.9(a) CCT.363[s] 6.9(b) Y e g P CCT.3[s] 6.9 PV Y TP ( ) ( ) CCT.7[s] 66

72 .5 P m.5 CCT=.363[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c.5.5 CCT=.37[s] δ [deg] δ s δ [deg] δ c δ e time [s] δ P e t e g (a) P-δ (b) Y.5 CCT=.7[s] δ [deg] time [s] δ P e t e g TP 6.9: PV Y 6.3. PV (3.3.6 ) PV PV ([MVA]) P-δ CCT (I) 6.8 CCT CCT Y 6.8: CCT [s] PV

73 (II) Y PV Y 6.(a) Y CCT.37[s] 6.(b) P-δ Y P.43[s].88[pu].8[s].8[pu] [s] 5[s] CCT.87[s].5 CCT=.37[s] CCT=.87[s] δ [deg] δ [deg] time [s] δ P e t e g time [s] δ P e t e g (a) (b) 6.: 6.(a) Y 6.(b) P-δ CCT.47[s].8[pu].7[pu].5 CCT=.33[s] CCT=.47[s] δ [deg] δ [deg] time [s] δ P e t e g time [s] δ P e t e g (a) (b) 6.: PV PV PV ( ) LFC( ) 68

74 PV P-δ PV (.5[pu]) CCT (I) 6.9 PV CCT PV CCT 6.9: PV CCT [s] PV (II) Y PV Y 6.(a) Y CCT.37[s] 6.(b) PV CCT.37[s] PV T P 6.4(a) T P.75[pu] 5[s] CCT Y 6.3(a) Y CCT.87[s] 6.3(b) PV CCT.87[s] 6.4(b) T P.75[pu] 5[s] T P 6.4 (.. ) PV ( 3.8) 69

75 .5 CCT=.3[s] CCT=.3[s] δ [deg] δ [deg] time [s] δ P EA v TP time [s] δ P EA v TP (a) (b) PV 6.: PV.5 CCT=.9[s] CCT=.9[s] δ [deg] δ [deg] time [s] δ P EA v TP time [s] δ P EA v TP (a) (b) PV 6.3: PV.5 CCT=.37[s] CCT=.87[s] δ [deg] δ [deg] time [s] time [s] δ P e t e g TP δ P e t e g TP (a) (b) 6.4: PV Y 7

76 6.4. P δ CCT (I) 6. CCT PV CCT 6.: CCT[s] PV.9.7 (II) Y PV Y 6.5(a) Y CCT.37[s] 6.5(b) EF.4[pu] CCT.337[s].5 CCT=.37[s] CCT=.33[s] δ [deg] δ [deg] time [s] δ P e t e g time [s] δ P e t e g (a) (b) 6.5: 6.4. PV PV ( 3.8) 7

77 P P m CCT (I) 6. CCT CCT 6.: CCT [s] (II) Y PV Y 6.6(a) Y CCT.37[s] 6.6(b).5 [MVA] 65[MVA] P P.5[pu].[pu] δ 7[deg] CCT.6[s].5 CCT=.37[s] CCT=.6[s] δ [deg] δ [deg] time [s] δ P e t e g time [s] δ P e t e g EF/ (a) (b) 6.6: Y PV CCT CCT 6. 7

78 CCT PV CCT CCT Y CCT ( 5.4) 6.: CCT[s] PV PV PV PV PV

79 7 7. PV P-δ CCT CCT PV PV CCT P-δ CCT PV CCT P-δ PV PV PV 7. PV PV PCS 74

80 75

81 TA C 76

82 4 77

83 [] Wikipedia, - Wikipedia, %BD%E9%9B%BB%E6%B%A, 3 [] Wikipedia, - Wikipedia, %83%E6%B8%A9%E6%9A%96%E5%8C%96, 3 [3] IEA INTERNATIONAL ENERGY AGENCY, Trends in photovoltaic applications. Survey report of selected IEAcountries between 99 and 8, Report IEA-PVPS T-8, p5, 9 [4],, 9-8 [5], ( ), 9 [6], 3,, 9 [7],, VOL.3, No., [8],, p., 8 [9] Cheng-Chieh Shen, A Voltage Sag Index Considering Compatibility Between Equipment and Supply, IEEE TRANSACTIONS ON POWER DELIVERY, VOL., NO., APRIL 7 [] Tan Tiam Yun, A model of PV generation suitable for stability analysis, IEEE Transactions on Energy Conversion, v 9, n 4, p , December 4 [] Minwon Park, a novel simulation method for PV power generation systems using real weather conditions, ISIE. IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.TH857), p 56-3 vol., [] S. Achilles, Transmission System Performance Analysis for High-Penetration Photoboltaics, NREL/SR-58-43, 8 [3],,, R95, [4], - -L Y S (H9 ), 9 [5], - -,, ISBN , p. 9, 9 [6],,, ISBN , pp , [7],,,,,, (-3) ( ) 78

84 [8],,, vol 536, p5 (995-) [9], - -,, ISBN , p. 49, 9 79

85 .,,,, K. M. Liyanage, - -, (-9).,,,, K. M. Liyanage, - -,, PE--3 PSE-- (-9) 3.,,,,,, PSE--3 (-) 4.,,,,, / /, PE--3/PSE- -4/SPC--77 (-3) ( ) 5.,,,,, (-3) ( ).,,,,,, (-3) ( ) 8

86 A P-δ A. P-δ x.38[pu] P δ s =3[deg].5[pu] PV P.5[pu] P 3 P P.[pu] v 3.[pu] v.8[pu] P P m P c P m δ e P c PV P 3c PV P c v 3c v 3 δ c 76[deg] CCT.33[s].5 P mc.75 P m.5 CCT=.33[s] cap=.[pu] v =.8[pu] P c P c P 3c v 3c δ s δ c δ [deg] δ e A.: P-δ 8

87 B CCT synchronous generator δ v G P δ3 v 3 P 3 CB.34[pu].34[pu] x 3 v CB.3[pu] infinite bus B.: (-) P-δ A. PV i = P v v δ P = v v sin δ x + x (B.) P-δ ( B.) x 3 =.3 x t =.4 δ P c P (-) δ s δ e P 3 = P (B.) P P m P 3 (=.[pu]) P = P m =.[pu] (B.3) δ s P =.[pu] δ (B.) ( B.3) ( ) δ s = sin (x + x 3 )P m (B.4) v v (B.4) 4[deg] 8

88 .5 P P c P [pu] δ [deg] B.: P-δ (PV ) δ e P c =.[pu] δ δ e ( δ s = sin (x + x ) 3)P m (B.5) v v δ e 7[deg].5 P P c P m. P [pu] δ s δ [deg] δ e B.3: P-δ δ s δ e (PV ) (-3) δ c δ c 83

89 ( ) ( ) δ δ c CCT c (P m )dδ e s c (P c P m )dδ = (B.6) (B.6) 6 δ c NR δ c 53[deg] P [pu].5 P m..5 up down P P c δ s δ c δ [deg] δ e B.4: P-δ δ s (PV ) (-4) T c P m δ s δ c (B.7) T c M(δ c δ s ) T c = (B.7) πf P m M [s] f 5[Hz].7[s] 84

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo

More information

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u

1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u ( ) LPV( ) 1 y(t)m b k u(t) ẋ = [ 0 1 k m b m x + [ 0 1 m u, x = [ ẏ y (1) y b k m u m 1 m m 2, b 1 b b 2, k 1 k k 2 (2) [m b k ( ) k 0 b m ( ) 2 ẋ = Ax, x(0) 0 (3) (x(t) 0) ( ) V (x) V (x) = x T P x >

More information

c 2009 i

c 2009 i I 2009 c 2009 i 0 1 0.0................................... 1 0.1.............................. 3 0.2.............................. 5 1 7 1.1................................. 7 1.2..............................

More information

Gmech08.dvi

Gmech08.dvi 51 5 5.1 5.1.1 P r P z θ P P P z e r e, z ) r, θ, ) 5.1 z r e θ,, z r, θ, = r sin θ cos = r sin θ sin 5.1) e θ e z = r cos θ r, θ, 5.1: 0 r

More information

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1 5. 5.1,,, 5.2 5.2.1,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 31, 22, 13,,, L1, L3, L2, 0 5.2.4,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1 D C 1 0 0 A C 2 2 0 j X E 0 5.3: 5.5: f,, (),,,,, 1, 5.2.6

More information

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V

More information

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2

,, 2. Matlab Simulink 2018 PC Matlab Scilab 2 (2018 ) ( -1) TA Email : ohki@i.kyoto-u.ac.jp, ske.ta@bode.amp.i.kyoto-u.ac.jp : 411 : 10 308 1 1 2 2 2.1............................................ 2 2.2..................................................

More information

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37

(1) θ a = 5(cm) θ c = 4(cm) b = 3(cm) (2) ABC A A BC AD 10cm BC B D C 99 (1) A B 10m O AOB 37 sin 37 = cos 37 = tan 37 4. 98 () θ a = 5(cm) θ c = 4(cm) b = (cm) () D 0cm 0 60 D 99 () 0m O O 7 sin 7 = 0.60 cos 7 = 0.799 tan 7 = 0.754 () xkm km R km 00 () θ cos θ = sin θ = () θ sin θ = 4 tan θ = () 0 < x < 90 tan x = 4 sin

More information

85 4

85 4 85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

JIS Z803: (substitution method) 3 LCR LCR GPIB

JIS Z803: (substitution method) 3 LCR LCR GPIB LCR NMIJ 003 Agilent 8A 500 ppm JIS Z803:000 50 (substitution method) 3 LCR LCR GPIB Taylor 5 LCR LCR meter (Agilent 8A: Basic accuracy 500 ppm) V D z o I V DUT Z 3 V 3 I A Z V = I V = 0 3 6 V, A LCR meter

More information

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ 1 (1) ( i ) 60 (ii) 75 (iii) 15 () ( i ) (ii) 4 (iii) 7 1 ( () r, AOB = θ 0 < θ < ) OAB A OB P ( AB ) < ( AP ) (4) 0 < θ < sin θ < θ < tan θ 0 x, 0 y (1) sin x = sin y (x, y) () cos x cos y (x, y) 1 c

More information

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n ( 3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc

More information

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13:

B. 41 II: 2 ;; 4 B [ ] S 1 S 2 S 1 S O S 1 S P 2 3 P P : 2.13: B. 41 II: ;; 4 B [] S 1 S S 1 S.1 O S 1 S 1.13 P 3 P 5 7 P.1:.13: 4 4.14 C d A B x l l d C B 1 l.14: AB A 1 B 0 AB 0 O OP = x P l AP BP AB AP BP 1 (.4)(.5) x l x sin = p l + x x l (.4)(.5) m d A x P O

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

CV CV CV --

CV CV CV -- 30 4 30 0 30 60 V/Hz V/Hz CV CV -- CV CV CV -- CV 3 AVR -3- 5m/ 0.5G 3m/ 0.3G 3 0.5Hz 0Hz 0.5Hz 0Hz 3 54kV 3 5 m/ 0.5G 3 3 5m/ 0.5G -4- V & bc 0.0VPT Z & G Z & L V& bc Z & L j0.50 0.0 0.0 5.7 V Z & + Z

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin 2 2.1 F (t) 2.1.1 mẍ + kx = F (t). m ẍ + ω 2 x = F (t)/m ω = k/m. 1 : (ẋ, x) x = A sin ωt, ẋ = Aω cos ωt 1 2-1 x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

0.1 I I : 0.2 I

0.1 I I : 0.2 I 1, 14 12 4 1 : 1 436 (445-6585), E-mail : sxiida@sci.toyama-u.ac.jp 0.1 I I 1. 2. 3. + 10 11 4. 12 1: 0.2 I + 0.3 2 1 109 1 14 3,4 0.6 ( 10 10, 2 11 10, 12/6( ) 3 12 4, 4 14 4 ) 0.6.1 I 1. 2. 3. 0.4 (1)

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

- 1 -

- 1 - Study on installation environment in consideration of electromagnetic compatibility of electrical equipment in direct current power distribution for consumers - 1 - - 2 - 1

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

LD

LD 989935 1 1 3 3 4 4 LD 6 7 10 1 3 13 13 16 0 4 5 30 31 33 33 35 35 37 38 5 40 FFT 40 40 4 4 4 44 47 48 49 51 51 5 53 54 55 56 Abstract [1] HDD (LaserDopplerVibrometer; LDV) [] HDD IC 1 4 LDV LDV He-Ne Acousto-optic

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年) 77 (..3) 77- A study on disturbance compensation control of a wheeled inverted pendulum robot during arm manipulation using Extended State Observer Luis Canete Takuma Sato, Kenta Nagano,Luis Canete,Takayuki

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

LMC6022 Low Power CMOS Dual Operational Amplifier (jp) Low Power CMOS Dual Operational Amplifier Literature Number: JAJS754 CMOS CMOS (100k 5k ) 0.5mW CMOS CMOS LMC6024 100k 5k 120dB 2.5 V/ 40fA Low Power CMOS Dual Operational Amplifier 19910530 33020 23900

More information

DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IW

DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IW DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IWASE Nobukazu TAKAI Haruo KOBAYASHI Takahiro ODAGUCHI

More information

-1-

-1- -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- -18- -19- -20- -21- -22- kw kw E-mail A4 A4 A4 24 6 22 E-mail 2 V kva kwkw kw Hz Hz *1 Hz 60 () () GD 2 kgm 2 () kgm 2 () MVA

More information

70 : 20 : A B (20 ) (30 ) 50 1

70 : 20 : A B (20 ) (30 ) 50 1 70 : 0 : A B (0 ) (30 ) 50 1 1 4 1.1................................................ 5 1. A............................................... 6 1.3 B............................................... 7 8.1 A...............................................

More information

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O : 2014 4 10 1 2 2 3 2.1...................................... 3 2.2....................................... 4 2.3....................................... 4 2.4................................ 5 2.5 Free-Body

More information

振動と波動

振動と波動 Report JS0.5 J Simplicity February 4, 2012 1 J Simplicity HOME http://www.jsimplicity.com/ Preface 2 Report 2 Contents I 5 1 6 1.1..................................... 6 1.2 1 1:................ 7 1.3

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

K E N Z U 2012 7 16 HP M. 1 1 4 1.1 3.......................... 4 1.2................................... 4 1.2.1..................................... 4 1.2.2.................................... 5................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

i

i i ii 1 6 9 12 15 16 19 19 19 21 21 22 22 23 26 32 34 35 36 3 37 5 5 4 4 5 iii 4 55 55 59 59 7 7 8 8 9 9 10 10 1 11 iv ozein Van Marum 1801 Cruiokshank Marum 1840 Schonbein 3 / atm 1 N 1892 50 1960 1970

More information

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 () - 1 - - 2 - - 3 - - 4 - - 5 - 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

More information

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. K E N Z OU 8 9 8. F = kx x 3 678 ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k. D = ±i dt = ±iωx,

More information

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 : 2016 4 1 1 2 1.1......................................... 2 1.2................................... 2 2 2 2.1........................................ 2 2.2......................................... 3 2.3.........................................

More information

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2

1. ( ) 1.1 t + t [m]{ü(t + t)} + [c]{ u(t + t)} + [k]{u(t + t)} = {f(t + t)} (1) m ü f c u k u 1.2 Newmark β (1) (2) ( [m] + t ) 2 [c] + β( t)2 212 1 6 1. (212.8.14) 1 1.1............................................. 1 1.2 Newmark β....................... 1 1.3.................................... 2 1.4 (212.8.19)..................................

More information

mt_4.dvi

mt_4.dvi ( ) 2006 1 PI 1 1 1.1................................. 1 1.2................................... 1 2 2 2.1...................................... 2 2.1.1.......................... 2 2.1.2..............................

More information

untitled

untitled 3-1 ( sit ) (stead state vibratio) (trasiet vibratio) sit(a)w s ( W s ) W / g C (b) sit ( + s ) ( + s ) c + W + sit W s si t + s + c + si t (3.1) si t (3.1) a C W b sit(respose) () 3- acost+ bsit a sit+

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

Untitled

Untitled http://www.ike-dyn.ritsumei.ac.jp/ hyoo/dynamics.html 1 (i) (ii) 2 (i) (ii) (*) [1] 2 1 3 1.1................................ 3 1.2..................................... 3 2 4 2.1....................................

More information

main.dvi

main.dvi FDTD S A Study on FDTD Analysis based on S-Parameter 18 2 7 04GD168 FDTD FDTD S S FDTD S S S S FDTD FDTD i 1 1 1.1 FDTD.................................... 1 1.2 FDTD..................... 3 2 S 5 2.1 FDTD

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120) 2.6 2.6.1 mẍ + γẋ + ω 0 x) = ee 2.118) e iωt Pω) = χω)e = ex = e2 Eω) m ω0 2 ω2 iωγ 2.119) Z N ϵω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j 2.120) Z ω ω j γ j f j f j f j sum j f j = Z 2.120 ω ω j, γ ϵω) ϵ

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

main.dvi

main.dvi 6 FIR FIR FIR FIR 6.1 FIR 6.1.1 H(e jω ) H(e jω )= H(e jω ) e jθ(ω) = H(e jω ) (cos θ(ω)+jsin θ(ω)) (6.1) H(e jω ) θ(ω) θ(ω) = KωT, K > 0 (6.2) 6.1.2 6.1 6.1 FIR 123 6.1 H(e jω 1, ω

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 信号処理の基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/081051 このサンプルページの内容は, 初版 1 刷発行時のものです. i AI ii z / 2 3 4 5 6 7 7 z 8 8 iii 2013 3 iv 1 1 1.1... 1 1.2... 2 2 4 2.1...

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z + 3 3D 1,a) 1 1 Kinect (X, Y) 3D 3D 1. 2010 Microsoft Kinect for Windows SDK( (Kinect) SDK ) 3D [1], [2] [3] [4] [5] [10] 30fps [10] 3 Kinect 3 Kinect Kinect for Windows SDK 3 Microsoft 3 Kinect for Windows

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

振動工学に基礎

振動工学に基礎 Ky Words. ω. ω.3 osω snω.4 ω snω ω osω.5 .6 ω osω snω.7 ω ω ( sn( ω φ.7 ( ω os( ω φ.8 ω ( ω sn( ω φ.9 ω anφ / ω ω φ ω T ω T s π T π. ω Hz ω. T π π rad/s π ω π T. T ω φ 6. 6. 4. 4... -... -. -4. -4. -6.

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

1).1-5) - 9 -

1).1-5) - 9 - - 8 - 1).1-5) - 9 - ε = ε xx 0 0 0 ε xx 0 0 0 ε xx (.1 ) z z 1 z ε = ε xx ε x y 0 - ε x y ε xx 0 0 0 ε zz (. ) 3 xy ) ε xx, ε zz» ε x y (.3 ) ε ij = ε ij ^ (.4 ) 6) xx, xy ε xx = ε xx + i ε xx ε xy = ε

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ 4 5 ( 5 3 9 4 0 5 ( 4 6 7 7 ( 0 8 3 9 ( 8 t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ S θ > 0 θ < 0 ( P S(, 0 θ > 0 ( 60 θ

More information

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

LM150/LM350A/LM350 3A 可変型レギュレータ

LM150/LM350A/LM350 3A 可変型レギュレータ LM150,LM350,LM350A LM150/LM350A/LM350 3-Amp Adjustable Regulators Literature Number: JAJSBC0 LM350A/LM350 3A LM350 1.2V 33V 3A 3 IC 2 & IC ADJ 6 ADJ LM350 100V ADJ LM350 ADJ 1.2V 3A LM350A 3A LM350 3A

More information

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63> 入門モーター工学 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/074351 このサンプルページの内容は, 初版 1 刷発行当時のものです. 10 kw 21 20 50 2 20 IGBT IGBT IGBT 21 (1) 1 2 (2) (3) ii 20 2013 2 iii iv...

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

262014 3 1 1 6 3 2 198810 2/ 198810 2 1 3 4 http://www.pref.hiroshima.lg.jp/site/monjokan/ 1... 1... 1... 2... 2... 4... 5... 9... 9... 10... 10... 10... 10... 13 2... 13 3... 15... 15... 15... 16 4...

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> マイクロメカトロニクス サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077331 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1984.10 1986.7 1995 60 1991 Piezoelectric Actuators and Ultrasonic Motors

More information

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100 7 7., ) Q, 7. Q ) 7. Z = R +jx Z / Z 7. 7. Abs. admittance x -3 S) 5 4 3 R Series ircuit Y R = Ω = mh = uf Q = 5 5 5 V) Z = R + jx 7. Z 7. ) R = Ω = mh = µf ) 7 V) R Z s = R + j ) 7.3 R =. 7.4) ) f = π.

More information

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

Microsoft PowerPoint - 山形大高野send ppt [互換モード] , 2012 10 SCOPE, 2012 10 2 CDMA OFDMA OFDM SCOPE, 2012 10 OFDM 0-20 Relative Optical Power [db] -40-60 10 Gbps NRZ BPSK-SSB 36dB -80-20 -10 0 10 20 Relative Frequency [GHz] SSB SSB OFDM SSB SSB OFDM OFDM

More information

S1C60N05データシート

S1C60N05データシート PF19-2 Micro MN 4-bit Single Chip Microcomputer µ µ 1 SC2 SC1 RESET RM 1,56 words x 12 bits SC System Reset Control Core CPU S1C6B RAM 8 words x 4 bits nterrupt Generator CM~ SEG~19 LCD Driver nput Port

More information

charpter0.PDF

charpter0.PDF Kutateladze Zuber C 0 C 1 r eq q CHF A v /A w A v /A w q CHF [1] [2] q CHF A v /A w [3] [4] A v : A w : A : g : H fg : Q : q : q CHF : T : T 1 : T 2 : T 3 : c 100 T 4 : c 100 T b : T sat : T w : t : V

More information

all.dvi

all.dvi 38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1: 5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds 40 5 Cauchy t l n mds df n 5.3: t

More information