表1-表4_No78_念校.indd

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "表1-表4_No78_念校.indd"

Transcription

1

2 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

3 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

4

5

6

7

8

9

10

11

12

13

14

15

16

17 Fs = tan + tan. sin(1.5) tan sin. cos Fs

18

19

20 ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

21 ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

産廃振興財団ニュース第70号

産廃振興財団ニュース第70号 ë mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

untitled

untitled No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46

More information

untitled

untitled Web - - - - - - - - - - - - - - - - () () () sin θ,cosθ, tanθ () 3 5 () 4 () 12 5 r y 13 x x = r cosθ () y = r sinθ y = x tanθ P P () () A C 2,24 C -9- -10- -11- -12- 9 9 10 10-13- 4 4 4 1 0.5 4 10 30

More information

...............y.\....07..

...............y.\....07.. 150 11.512.0 11.812.0 12.013.0 12.514.0 1 a c d e 1 3 a 1m b 6 20 30cm day a b a b 6 6 151 6 S 5m 11.511.8 G 515m 11.812.0 SG 10m 11.812.0 10m 11.511.8 1020m 11.812.0 SF 5m 11.511.8 510m 11.812.0 V 5m

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

untitled

untitled 4-1 4-2 3 X 4 2 2 3 Y 1 1 4 5 4-3 4-4 4-5 { P} K { U} = T { P} = [ L][ K][ L] { U} { P} K { U} = K = [ L][ D][ U] { p 0 } { p} = [ K]{ u} + { p } 0 T [ L] = [ U] 4-6 4-7 sin θ,cosθ 0 4-8 K = [ L][ D][

More information

14 6 153

14 6 153 10 152 14 6 153 154 155 ESCO ESCO ESCO ESCO ESCO ESCO 34 ESCO ESCO ESCO ESCO ESCO ESCO ESCO 156 ESCO ESCO ESCO ESCO ESCO ESCO ESCO ESCO ESCO 157 ESCO 158 159 ESCO 160 161 162 2010 CO 163 164 ( ) 165 166

More information

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1...

...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1... DT-870/5100 &DT-5042RFB ...3 1-1...3 1-1...6 1-3...16 2....17...21 3-1...21 3-2...21 3-2...22 3-3...23 3-4...24...25 4-1....25 4-2...27 4-3...28 4-4...33 4-5...36...37 5-1....39 5-2...40 5-3...43...49

More information

Microsoft Word - 07_屋代091207.doc

Microsoft Word - 07_屋代091207.doc 18 1943 9 1. (1) 16 1941 11 2 1 11 15 2 1 2 1968 642 2 [ ] 82 (1) (3) (1) (2) ( ) ( ) (1) (2) (3) 9 6 3 4 3 1 2 3 3 3 4 1998 57 83 (2) 1 17 1942 3 7 5 5 17.3.7 84 6 1 7 8 (3) 9 45 25 10 11 6 1 1951 111

More information

http://know-star.com/ 3 1 7 1.1................................. 7 1.2................................ 8 1.3 x n.................................. 8 1.4 e x.................................. 10 1.5 sin

More information

2 3 4 mdv/dt = F cos(-)-mg sin- D -T- B cos mv d/dt = F sin(-)-mg cos+ L- B sin I d 2 /dt 2 = Ms + Md+ Mn FMsMd MnBTm DLg 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Hm H h

More information

競技スポーツの科学研究 ~ アトランタ五輪を終えて ~ 新潟大学・山崎 健

競技スポーツの科学研究  ~ アトランタ五輪を終えて ~ 新潟大学・山崎  健 1997 3 1998 12 sin cos 1997 3 1998 12 1997 3 1998 12 1997 3 1998 12 4 1997 3 1998 12 1964!? 100m 94 100m 100mH 10 100m 1964 1997 3 1998 12 1996 100m 7 0.174 0.14 9 84 1988 200m 25m 1986 1997 3 1998 12

More information

1

1 1 2 B 3 4 5 6 10 Ss 1.5 G 7 1G 1G 1G 1G 1G G 8 2 9 10 11 12 SSs Sd Ss LOCA AS Sd AS Sd 13 14 15 16 SsSd Ss Sd X Y X Y 1 IC16 2 IC16 SsSd Ss Sd X Y X Y 1 IC16 2 IC16 17 18 19 20 21 22 AB F 23 D 24 1.2~1.3

More information

untitled

untitled .m 5m :.45.4m.m 3.m.6m (N/mm ).8.6 σ.4 h.m. h.68m h(m) b.35m θ4..5.5.5 -. σ ta.n/mm c 3kN/m 3 w 9.8kN/m 3 -.4 ck 6N/mm -.6 σ -.8 3 () :. 4 5 3.75m :. 7.m :. 874mm 4 865mm mm/ :. 7.m 4.m 4.m 6 7 4. 3.5

More information

untitled

untitled 1 1 1. 2. 3. 2 2 1 (5/6) 4 =0.517... 5/6 (5/6) 4 1 (5/6) 4 1 (35/36) 24 =0.491... 0.5 2.7 3 1 n =rand() 0 1 = rand() () rand 6 0,1,2,3,4,5 1 1 6 6 *6 int() integer 1 6 = int(rand()*6)+1 1 4 3 500 260 52%

More information

untitled

untitled 1 1 11 12 2 21 22 23 3 31 32 33 34 4 41 42 5 2 1 2 2 3 3 1 4 5 3 111 43 142 32.8km 27.3km 600.972 15 10 1 7 112 11 4 1m 23 11 6.8 34.125.5 1,418 1,192mm 2 3 7 9 200 00 113 4 11 12 16 26,252 25,452 12,528

More information

kuikiso1-sample.xdw

kuikiso1-sample.xdw 計 算 法 -A 支 柱 基 礎 の 根 入 れ 長 計 算 ( 極 限 地 盤 反 力 法 による 最 小 根 入 れ 長 を 確 保 する) 柵 の 支 柱 基 礎 設 置 箇 所 : NO.12+15(L) 計 算 条 件 項 目 記 号 単 位 数 値 摘 要 水 平 力 H kn 9.126 作 用 荷 重 曲 げモーメント M kn m 4.563 支 柱 寸 法 支 柱 の 幅 ( 直

More information

F8302D_1目次_160527.doc

F8302D_1目次_160527.doc N D F 830D.. 3. 4. 4. 4.. 4.. 4..3 4..4 4..5 4..6 3 4..7 3 4..8 3 4..9 3 4..0 3 4. 3 4.. 3 4.. 3 4.3 3 4.4 3 5. 3 5. 3 5. 3 5.3 3 5.4 3 5.5 4 6. 4 7. 4 7. 4 7. 4 8. 4 3. 3. 3. 3. 4.3 7.4 0 3. 3 3. 3 3.

More information

JGA

JGA JGA -101-1 JGA 101 14 * i * * * ii 1 1 ( ) 3 3 1. 6 1. 4 4-11 N mm 4-11 N mm 4-11 N mm N mm N mm N mm N mm (4)(b) *1 (3)(c) (4)(b) 1 (c) ( i ) cos (ii) 4..3.(3)(b) sin N mm (3)() (3)(b) 4..3.(3)(b)

More information

DII_カタログ.pdf

DII_カタログ.pdf DIRECT IMAGING INDENTER OINT m A = 2 3 E* = E 2 E d * R tan A 2 3 E* H M = A H M E 2 tan Y = C A f - 2 E tan E (t) = 2 tan (t) A ve (0) D(t) = tan 2 0 A ve (t) D(t)= tan 2k p da ve (t) dt E H M Y H(=C

More information

光部品関連技術における基盤技術との題を与えられたが、光部品は広範囲の分野であり、その全てを網羅する時間も無いし、それだけの力量...

光部品関連技術における基盤技術との題を与えられたが、光部品は広範囲の分野であり、その全てを網羅する時間も無いし、それだけの力量... .. 6.610.. (Photo Multiplier Tube ) MCP PMT 100 PMT.. (Avalanche Photo Diode). APD A PD A PD APD APD. APD PMT.. APD V.. 5.. - 屈 折 率 1.5 ブルスター 角 56.31 s 偏 光 反 射 率 0.1479 45 方 向 の 反 射 率 (1 面 ) p 偏 光 0.0085

More information

3 1 1.1 1 1.2 4 1.3 7 1.4 7 1.5 10 1.6 11 2 2.1 27 2.2 27 2.3 28 2.4 35 2.5 35 3.1 58 3.2 58 3.3 59 3.4 65 4 4.1 87 4.2 87 4.3 88 4.4 93 5 5.1 110 5.2

3 1 1.1 1 1.2 4 1.3 7 1.4 7 1.5 10 1.6 11 2 2.1 27 2.2 27 2.3 28 2.4 35 2.5 35 3.1 58 3.2 58 3.3 59 3.4 65 4 4.1 87 4.2 87 4.3 88 4.4 93 5 5.1 110 5.2 11 11 3 1 1.1 1 1.2 4 1.3 7 1.4 7 1.5 10 1.6 11 2 2.1 27 2.2 27 2.3 28 2.4 35 2.5 35 3.1 58 3.2 58 3.3 59 3.4 65 4 4.1 87 4.2 87 4.3 88 4.4 93 5 5.1 110 5.2 110 5.3 111 - i - 5.4 113 5.5 115 6 6.1 133

More information

中国沿岸部・蘇州における

中国沿岸部・蘇州における http://ringring-keirin.jp /// - 1 - 24 12 / - 2 - 2005 /// 1 1995 1 13-3 - 1 1 2 2 1 3 2 08 1 2 4 2 2 2 1 10 2 82 3 14 3 4 14 2 3-4 - 2005 8 28 12 1 17-5 - 1990 1 1 5 300 5 6-6 - - 7 - IP B 6 B 6 3 52-8

More information

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の

最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます.  このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 の 最 新 測 量 学 ( 第 3 版 ) サンプルページ この 本 の 定 価 判 型 などは, 以 下 の URL からご 覧 いただけます. http://www.morikita.co.jp/books/mid/047143 このサンプルページの 内 容 は, 第 3 版 1 刷 発 行 時 のものです. 3 10 GIS 3 1 2 GPS GPS GNSS GNSS 23 3 3 2015

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2

A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday) 1864 (C. Maxwell) 1871 (H. R. Hertz) 1888 2.2 1 7 (G. Galilei) 1638 2 1 2012.8 e-mail: tatekawa (at) akane.waseda.jp 1 2005-2006 2 2009 1-2 3 x t x t 2 2.1 17 (I. Newton) C. Huygens) 19 (T. Young) 1 A. Fresnel) 19 1900 (M. Planck) 1905 (A. Einstein) X (A. Ampère) (M. Faraday)

More information

16 6 12 1 16 6 23 23 11 16 START 1 Out Ok 1,2 Ok END Out 3 1 1/ H24.2 2 1 L2-1 L2-2 H14.3 3 H9.10 PHC SC 19 1 24 3 18N/mm 2 24N/mm 2 30N/mm 2 25 10 13 12 13 12 11 11 11 11 19 7 25 10 24N 8cm 25(20)mm 45

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

有機性産業廃棄物の連続炭化装置の開発

有機性産業廃棄物の連続炭化装置の開発 ( ) Development of the apparatus conveyer type which carbonizes continuously organic industrial waste (About the form of blade in conveyer) 1055047 1 1-1 1 1-2 1-3 2 2 2-1 2-2 2-3 2-4 7 3 3-1 20 3-2 3-3

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

662/04-直立.indd

662/04-直立.indd l l q= / D s HTqq /L T L T l l ε s ε = D + s 3 K = αγk R 4 3 K αγk + ( α + β ) K 4 = 0 γ L L + K R K αβγ () ㅧ ర ㅧ ర (4) (5) ()ᑼ (6) (8) (9) (0) () () (3) (3) (7) Ƚˎȁ Ȇ ၑა FYDFM වႁ ޙ 䊶䊶 䊶 䊶䊶 䊶 Ƚˏȁζ υ ίυέρθ

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information

.....................................................................

..................................................................... ............ / /.......................................... ..................................................................... CADSUPER FX FX FX FX FX FX DWG/DXF FX FX FX FX 1-1 CADSUPER FX CADSUPER

More information

., a = < < < n < n = b, j = f j j =,,, n, C P,, P,,, P n n, n., P P P n = = n j= n j= j j + j j + { j j / j j } j j, j j / j j f j 3., n., Oa, b r > P

., a = < < < n < n = b, j = f j j =,,, n, C P,, P,,, P n n, n., P P P n = = n j= n j= j j + j j + { j j / j j } j j, j j / j j f j 3., n., Oa, b r > P . ϵριµϵτρoζ perimetros 76 Jones, Euler. =.,.,,,, C, C n+ P, P,, P n P, P n P n, P P P P n P n n P n,, C P, P j P j j =,,, n P n P., C.,, C. f [a, b], f. C = f a b, C l l = b a + f d P j P j a b j j j j

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

5988_3484JA.ppt

5988_3484JA.ppt Part 2: 1 1 Part 2: 2 2 (BTS) (MS) Part 2: 3 3 Part 2: 4 4 6 26.666 ms PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q PN-I/ PN-Q

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

D:/BOOK/MAIN/MAIN.DVI

D:/BOOK/MAIN/MAIN.DVI 8 2 F (s) =L f(t) F (s) =L f(t) := Z 0 f()e ;s d (2.2) s s = + j! f(t) (f(0)=0 f(0) _ = 0 d n; f(0)=dt n; =0) L dn f(t) = s n F (s) (2.3) dt n Z t L 0 f()d = F (s) (2.4) s s =s f(t) L _ f(t) Z Z ;s L f(t)

More information

つばさ杭®(建築編) 先端翼付き回転貫入鋼管杭

つばさ杭®(建築編) 先端翼付き回転貫入鋼管杭 1 2 1 2 5 3 6 4 3 4 5 6 7 8 9 10 N t 2D w D w D w N D w D p D p D p D w D p D p D D p D p 1 R N Ap N L 3 s s qu L c N A p N s L s q u L c D w D w N D w D p D wi 0.5D p N D p D N N N N N N D w qu qu qu

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

body.dvi

body.dvi ..1 f(x) n = 1 b n = 1 f f(x) cos nx dx, n =, 1,,... f(x) sin nx dx, n =1,, 3,... f(x) = + ( n cos nx + b n sin nx) n=1 1 1 5 1.1........................... 5 1.......................... 14 1.3...........................

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

MISプロトコル仕様書(中野版)

MISプロトコル仕様書(中野版) 2004 6 30 MISAUTH MBA MBA 0301 MISAUTH www.mbassoc.org 2 / 39 ...2...5...5...5 MISAUTH...5...5...5...6 MIS...6...6...7...8 MISAUTH...9 MISAUTH... 11...13 NAI...13 IPv4...14...15 IPv6...16...17...18...19...20...21...22...23...24...24...24...25...26...26...27...28...30

More information

5990-7569JAJP.indd

5990-7569JAJP.indd Agilent 33503A BenchLink Waveform Builder Pro/Basic Agilent InfiniiVision Data Sheet DC FFT CCDF Agilent 33503A BenchLink Waveform Builder Pro Agilent BenchLink Waveform Builder Pro Microsoft Windows BenchLink

More information

Microsoft PowerPoint - せん断強さ

Microsoft PowerPoint - せん断強さ 土 の 強 さ 土 が 外 力 を 受 けると 土 の 中 にせん 断 応 力 ([kn/m 2 ]) が 生 じて,その 中 でせん 断 抵 抗 を 越 える 箇 所 があると, 図 に 示 したようなせん 断 破 壊 が 起 こる 破 壊 する 面 をす べり 面 といい,せん 断 応 力 に 抵 抗 する 最 大 のせん 断 抵 抗 をせん 断 強 さ(s[kN/m 2 ])という せん 断

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

i,j=1,2,3. xi(t)=s(t-di)+ni(t),i=1,2,3. (1) ~~.x=(f)=2~55(f)+~~~(f), (4) `)~ixj(f)=4~ss(f)exp(-j27rf(di-di)),(5) Tdi~J)=T3-?'i=otan-1Im2 U)](6) ~rfre4

i,j=1,2,3. xi(t)=s(t-di)+ni(t),i=1,2,3. (1) ~~.x=(f)=2~55(f)+~~~(f), (4) `)~ixj(f)=4~ss(f)exp(-j27rf(di-di)),(5) Tdi~J)=T3-?'i=otan-1Im2 U)](6) ~rfre4 i,j=1,2,3. xi(t)=s(t-di)+ni(t),i=1,2,3. (1) ~~.x=(f)=2~55(f)+~~~(f), (4) `)~ixj(f)=4~ss(f)exp(-j27rf(di-di)),(5) Tdi~J)=T3-?'i=otan-1Im2 U)](6) ~rfre4)xx3(f)] ~~3yiT3Pi T3-r2(7) ri+r22=2ro2+rodsinsin+d2,(8)

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

AD5934 R I MCLK AVDD DVDD DAC R OUT VOUT SCL SDA Z(ω) AD5934 RFB LPF VDD/2 VIN AGND DGND 5325-1 SDA t 9 t 3 t 1 t 11 t 4 SCL t 4 t6 t 2 t 5 t 7 t 1 t 8 5325-2 NC 1 NC 2 NC 3 RFB 4 VIN 5 VOUT 6 NC 7

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

縺02 縺07 縺 , 縺05 [

縺02 縺07 縺 , 縺05 [ 1309ィ 0408 2003 03. 070503 173, 02 6 0806 タ07 09 090908090107060109 04030801 030707 縺0609010706010907 08030307070109 縺08050105040405080909 0402090705040909 030008090902 02 ィ 020501090705030003040909040500

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

1 23 1 2 2 3 3 2 26 1 3 3 2 3 4 55 50 1 1 2 3 2 108 5 297

1 23 1 2 2 3 3 2 26 1 3 3 2 3 4 55 50 1 1 2 3 2 108 5 297 2 860 8555 2 39 1 e-mail: keitaro@sci.kumamoto-u.ac.jp 1 3 2 1 * 1 * 1 296 2015 5 1 23 1 2 2 3 3 2 26 1 3 3 2 3 4 55 50 1 1 2 3 2 108 5 297 10 2 24 3 3 298 2015 5 50 7 A B C D A B C D A α cos s B α sin

More information

X-FUNX ワークシート関数リファレンス

X-FUNX ワークシート関数リファレンス X-FUNX Level.4a xn n pt 1+ 1 sd npt Bxn3 cin + si + sa ( sd xn) 3 n t1 + n pt xn sd ( t1+ n pt) Bt t t cin + xn si sa ( sd xn) n 1 + +

More information

128 18 2 2012 2 2.1 v8 Mathematica ( ) [ ], { } Expand[(a+b)^2] Plot[Sin[x], {x, 0, 2Pi}] Windows Mathematica Mathematica 2.2 v8 Mathematica = ( ) = s

128 18 2 2012 2 2.1 v8 Mathematica ( ) [ ], { } Expand[(a+b)^2] Plot[Sin[x], {x, 0, 2Pi}] Windows Mathematica Mathematica 2.2 v8 Mathematica = ( ) = s Bulletin of JSSAC(2012) Vol. 18, No. 2, pp. 127-137 : Mathematica v8 Wolfram Research Asia Limited 1 Mathematica R v8 2010 11 v8 12 v8 2007 v6 Mathematica v6 v7 v8 v6 OpenGL R Direct3D R Mathematica v8

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

2 1 F M m r G F = GMm r 2 (1.1) (1.1) (r = r ) F = GMmr r 3 (1.2) a F m F = kma k 1 F = ma (1.3) (1.2) (1.3) ma = GMmr r 3 (1.4)

2 1 F M m r G F = GMm r 2 (1.1) (1.1) (r = r ) F = GMmr r 3 (1.2) a F m F = kma k 1 F = ma (1.3) (1.2) (1.3) ma = GMmr r 3 (1.4) 1 1 1.1 2 1 F M m r G F = GMm r 2 (1.1) (1.1) (r = r ) F = GMmr r 3 (1.2) a F m F = kma k 1 F = ma (1.3) (1.2) (1.3) ma = GMmr r 3 (1.4) 1.1 3 M m r a a = d2 r dt 2 (1.4) r d 2 r dt 2 = GM r 3 r (1.5)

More information

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z

z z x = y = /x lim y = + x + lim y = x (x a ) a (x a+) lim z z f(z) = A, lim z z g(z) = B () lim z z {f(z) ± g(z)} = A ± B (2) lim {f(z) g(z)} = AB z Tips KENZOU 28 6 29 sin 2 x + cos 2 x = cos 2 z + sin 2 z = OK... z < z z < R w = f(z) z z w w f(z) w lim z z f(z) = w x x 2 2 f(x) x = a lim f(x) = lim f(x) x a+ x a z z x = y = /x lim y = + x + lim y

More information

        Ⅱ

        Ⅱ Ⅱ. いろいろな 関 数 の 微 分 ( 続 ) (2) 合 成 関 数 の 微 分 慶 應 義 塾 大 学 医 学 部 5 年 藤 田 成 晴 e- mail : fi9506@med.keio.ac.jp URL : http://www.med.keio.ac.jp/~fi9506 現 URL : http://homepage2.nifty.com/ta-fuj/ 第 Ⅱ 章 第 節 で 微

More information

23 24 10 35 11 40 12 44 13 46 14 48 15 49 16 53 17 54 18 56 19 63 20 66 21 68 22 69 23 70 1

23 24 10 35 11 40 12 44 13 46 14 48 15 49 16 53 17 54 18 56 19 63 20 66 21 68 22 69 23 70 1 23 24 10 35 11 40 12 44 13 46 14 48 15 49 16 53 17 54 18 56 19 63 20 66 21 68 22 69 23 70 1 2005 6 22 12 21 15 2005 2 160km 30 16 120 12 66% 26 8 16.2 15.5 1500 1,915.3mm 155 113.6 1,750 55 2 30 3 30 17

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

3 3 1 35.00 35 * Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 PS Y1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 1 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 5.0/10 5.0/10 5.0/10 5.0/10 X0 X1 X2 X3 X4

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション カム リンク 機 構 の 設 計 2010/02/02 テクファ ジャパン( 株 ) 香 取 英 男 カム 機 構 は 半 導 体 や 電 子 部 品 などを 高 速 かつ 多 量 に 製 造 する 機 械 に 数 多 く 用 いられている 重 要 な 機 構 の 一 つである カム 機 構 の 設 計 製 作 を 正 しく 行 えば 長 期 間 にわたって 信 頼 性 の 高 い 性 能 を 発

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

時間インタリーブ方式ADCシステム向け高精度クロックの生成

時間インタリーブ方式ADCシステム向け高精度クロックの生成 LMK03000,LMK03001 Literature Number: JAJA429 SIGNAL PATH designer Tips, tricks, and techniques from the analog signal-path experts No. 109...1-7...2 /....4...6...8 James Catt, Applications Engineer v(t)

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

untitled

untitled Messages 2 Vol.18 Vol.18 3 Vol.18 4 Vol.18 5 Frontier Sciences http://park.itc.u-tokyo.ac.jp/pls/index.html http://www.it.k.u-tokyo.ac.jp/~kunihiro/index-j.html A Fertilization B Vol.18 6 Vol.18 7 http://sbk.k.u-tokyo.ac.jp/

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

A

A SKR A A A A A A PE = PR (PL) + PT A A A A A A A A A A A C0 fs = Pmax C0a fs = Fmax A L = 3 fc C 50 fw PC A A A Pm = K M Pm = KC MC 2 PE = Pm + P L 10 6 Lh = 2 l S n1 60 l A 3 Ca L = 10 6 fw Fa A L l Lh

More information

A大扉・騒音振動.qxd

A大扉・騒音振動.qxd H21-30 H21-31 H21-32 H21-33 H21-34 H21-35 H21-36 H21-37 H21-38 H21-39 H21-40 H21-41 H21-42 n n S L N S L N L N S S S L L log I II I L I L log I I H21-43 L log L log I I I log log I I I log log I I I I

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

Fortran90/95 [9]! (1 ) " " 5 "Hello!"! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1

Fortran90/95 [9]! (1 )   5 Hello!! 3. (line) Fortran Fortran 1 2 * (1 ) 132 ( ) * 2 ( Fortran ) Fortran ,6 (continuation line) 1 Fortran90/95 2.1 Fortran 2-1 Hello! 1 program example2_01! end program 2! first test program ( ) 3 implicit none! 4 5 write(*,*) "Hello!"! write Hello! 6 7 stop! 8 end program example2_01 1 program 1!

More information

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac *1 1.1 1.1 Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12

2 1 Mathematica Mathematica Mathematica Mathematica Windows Mac *1 1.1 1.1 Mathematica 9-1 Expand[(x + y)^7] (x + y) 7 x y Shift *1 Mathematica 1.12 Chapter 1 Mathematica Mathematica Mathematica 1.1 Mathematica Mathematica (Wolfram Research) Windows, Mac OS X, Linux OS Mathematica 88 2012 11 9 2 Mathematica 2 1.2 Mathematica Mathematica 2 1 Mathematica

More information

NE25.indb

NE25.indb * 1 W. Somerset Maugham, 1874-1965 Cosmopolitans, 1936 The Ant and the Grasshopper, 1924 2 4 5 6 7 8 * 5 Fortuna 24, 2013 3 Cap Ferrat, 2013 3 * 14-27 2015 14 2 Jean de La Fontaine, 1621-95 Fables, 1668,

More information

[ , , ィ

[ , , ィ 13040509010708 1999 03. 070503 169, 02 11 0806 タ07 09 090908090107060109 04030801 縺0408 縺0505 030107080302060405 タ05 縺04020703 05000409050600020808000707 05.06. 040508010904 縺01080507 0605080209050504

More information

ィェィ ィョ02ィヲィー ィェ ィャ0200ィ ィェ 08ィ ィィ ィョ07ィー D ィョ0007 T, ィヲィ 06ィョ0002: D 6メ6 (x; y) 6モ1 f (x; y

ィェィ ィョ02ィヲィー ィェ ィャ0200ィ ィェ 08ィ ィィ ィョ07ィー D ィョ0007 T, ィヲィ 06ィョ0002: D 6メ6 (x; y) 6モ1 f (x; y 130005ィィ04ィャィ 14 0709010905080507030707 040309090201 00030809000905080201 14.1 03ィヲィョィ 00ィエ00ィヲィコ06ィー 06ィェィェ07ィヲ02ィー 070007 ィャ05ィィ04ィャィ ィ 0100ィケ ィィィ 0008ィェ02ィヲ ィャィヲィ 0002ィェ08ィコ0201ィョ04 0004ィー 070104 00ィェィエィョ0007ィー

More information

1 1 2 1 2.1................................. 1 2.2............................... 2 2.3 3............................ 3 2.4...........................

1 1 2 1 2.1................................. 1 2.2............................... 2 2.3 3............................ 3 2.4........................... 11 2 5 1 1 2 1 2.1................................. 1 2.2............................... 2 2.3 3............................ 3 2.4................................. 3 2.5...............................

More information