Size: px
Start display at page:

Download ""

Transcription

1 4

2

3 3 1 Introduction Fokker-Planck

4 A BSS-S

5 ev ev GHz (C.L.Carili.et al 1992) r 0 =(0, 0, 5kpc) F (E,R E 0, r 0 ) r 0 =(0, 0, 5kpc) r 0 =(0, 0, 5kpc) r 0 =(0, 0, 5kpc) E 0 =1TeV κ =10 29 (E/GeV) 0.3 cm 2 /s κ =10 29 (E/GeV) 0.5 cm 2 /s F (E,R E 0, r 0 ) r 0 =(0, 0, 5kpc) κ =10 29 (E/GeV) 0.3 cm 2 /s κ =10 29 (E/GeV) 0.5 cm 2 /s r 0 =(0, 0, 5kpc)

6 3.9 r 0 =(0, 0, 5kpc) ( ) ( ) F (E,R E 0, r 0 ) (3.2.12) r 0 = (0, 0, 5kpc) µ =0.5 µ =0.3 (3.2.13) r 0 =(0, 0, 5kpc) r 0 =(0, 0, 9kpc) TeV Bohm Diffusion Bohm Diffusion Bohm Diffusion κ B 100 1TeV Bohm Diffusion κ B GeV κ = (E/GeV) 0.6 cm 2 /s κ = (E/GeV) 0.6 cm 2 /s 1TeV κ = (E/GeV) 0.6 cm 2 /s 10GeV

7 4.2 κ com = (E/GeV) 0.6 cm 2 /s r 0 =(0, 0, 5kpc) F (E,R E 0, r 0 ) κ com = (E/GeV) 0.6 cm 2 /s r 0 =(0, 0, 10kpc) F (E,R E 0, r 0 ) κ Bs = 100 κ B cm 2 /s r 0 =(0, 0, 5kpc) F (E,R E 0, r 0 ) κ Bs = 100 κ B cm 2 /s r 0 =(0, 0, 10kpc) F (E,R E 0, r 0 ) κ com = (E/GeV) 0.6 cm 2 /s r 0 =(0, 0, 5kpc) F (E,R E 0, r 0 ) κ com = (E/GeV) 0.6 cm 2 /s r 0 =(0, 0, 5kpc) r 0 =(0, 0, 5kpc) κ com = (E/GeV) 0.6 cm 2 /s r 0 =(0, 0, 10kpc) r 0 =(0, 0, 10kpc)

8 4.9 κ Bs = 100 κ B cm 2 /s r 0 =(0, 0, 5kpc) r 0 =(0, 0, 5kpc) κ Bs = 100 κ B cm 2 /s r 0 =(0, 0, 10kpc) r 0 =(0, 0, 10kpc) κ = (E/GeV) 0.6 cm 2 /s r 0 = (0, 0, 5kpc) κ = (E/GeV) 0.6 cm 2 /s r 0 = (0, 0, 10kpc) Bohm Diffusion 100 r 0 =(0, 0, 5kpc) Bohm Diffusion 100 r 0 =(0, 0, 10kpc) κ = (E/GeV) 0.6 cm 2 /s (10GeV 1TeV) Bohm Diffusion κ B 100 (10GeV 1TeV) A.1 BSS-S

9 Ginzburg Stecker ( 10kpc) NGC4631 NGC891 NGC253 CANGAROO (Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Out back) NGC253 [Itoh,Enomoto,Yanagita,Yoshida,and Tsuru 2003] π 0 X 1

10 Fokker-Planck Fokker-Planck 2

11 1 Introduction ( ) 1eV/cm 3 0.3eV/cm 3 RXJ π 0 SN pc Ginzburg Stecker Ginzburg Stecker ( 10kpc) 3

12 10kpc 5g/cm 2 n 1atom/cm 3 5g/cm ( 10 Be) Be n 1atom/cm 3 NGC4631 NGC891 NGC253 NGC253 CANGAROO 4

13 ( ) X π 0 3 Fokker-Planck Fokker-Planck 5

14

15 Hess ( ) MeV GeV (> ev) (< MeV) 7

16 2.1.1 (2.1) 10 5 ev ev [Jokipii & Kota,1988] (2.1) ev E ev knee ev ev 3.0 knee ev/n ev ev ev 10 9 ev (path length) Fe MeV/n GeV/n (2.2) IMP

17 2.1: 10 5 ev ev 9

18 (1) (Li Be B(L )) Z (2) H He H He (1) L sub-fe C, N, O L (Path Length) erg/s ev [Yanagita,Nomoto,Hayakawa 1990,Yanagita Nomoto 1999] 10

19 2.2: : ( MeV/n) : ( MeV/n) simpson[1983] 11

20 X ASCA TeV CANGAROO (the Collaboration of Australia and Nippon for a GAmma-Ray Observatory in the Outback) SN TeV [Koyama et al.1995;tanimori et al.,1998] CANGAROO RXJ π 0 [H.Muraishi et al2000] ( ) de = N(3 ln γ +19.8) dt i ev s 1 12

21 γ =(1 v 2 /c 2 ) 1/2 N τ = E (de/dt) i = E(eV) N(3 ln γ +19.8) X 1 E ( de dt ) brems =4NZ 2 r 2 e αcḡ r e α ḡ Gaunt Factor Gaunt Factor ḡ =ln(2γ) 1 3 =lnγ Gaunt Factor ḡ = ln(183z 1 3 )

22 2.2.3 ( ) de dt ad = 1 3 ( v)e ( ) de = 4 dt 3 σ T cγ 2H2 8π sync σ T Thomson γ H 2 /8π X 14

23 ( de dt ) IC = 4 3 σ T cγ 2 U ph σ T Thomson γ U ph ( ) 0.6eV/cm eV/cm 3 (T 2.728K) 3µG (de/dt) IC (de/dt) sync = U rad U mag 1 τ = E de/dt = E 4 3 σ = T cγ 2 U CMBR γ U CMBR 0.262eV/cm 3 15

24

25 3 3.1 Ginzburg Stecker ( 10kpc) NGC4631 NGC891 NGC253 CANGAROO (Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Out back) NGC253 [Itoh,Enomoto,Yanagita,Yoshida,and Tsuru 2003] NGC253 (3.1) [Carili,Holdaway,Ho,and De Pree 1992] 0.33GHz NGC Mpc 19kpc(16 ) 17

26 π 0 X Fokker-Planck Fokker-Planck 3.2 E E

27 ApJ...399L 3.1: 0.33GHz (C.L.Carili.et al 1992) 19

28 Fokker-Placnk (3.2) 10kpc 1kpc 1µG 0.262eV/cm 3 (T=2.728K) 250km/s E E Fokker-Planck 1 [Yamada,1999] Full 20

29 Z I.C. Synchrotron Galactic Wind 250km/s Electron radius:10kpc thickness:1kpc Y Galactic Disk X Magnetic Field : 1 ug Photon Density : 0.262eV/cc 3.2: 21

30 Zhang [Zhang,1999] Fokker-Placnk 2 1 Fokker-Placnk Brown Fokker-Placnk f t = ( κ f Vf)+ 1 3 ( V ) 1 p 2 p (p3 f) (3.2.1) f( r, p, t) κ V Fokker-Planck Full- 22

31 (3.2.1) Fokker-Placnk dx i = V i dt + 2κdW i (i x,y,z) (3.2.2) dp = (dp adi + dp IC + dp syn ) (3.2.3) dx i 1 dp 1 V i 250km/s κ (E/GeV) µ cm 2 /s dp adi dp IC dp syn dw Gauss Wiener P (dw )= ( ) 1 2πdt exp dw 2 2dt (3.2.4) 3 ( ) de = 1 dt 3 ( V )E ad (3.2.5) ( de dt ( de dt ) ) IC sync = 4 3 σ T cγ 2 U ph (3.2.6) = 4 3 σ T cγ 2B2 8π (3.2.7) 23

32 E V 250km/s γ σ T cm 2 U ph 0.262eV/cm 3 B 1µG c cm/s (3.2.2)(3.2.3) Euler t i+1 x i+1 p i+1 x i+1 = x i + V i δt + 2κ(p i )δw (3.2.8) p i+1 = p i + dp adi (t i )+dp IC (t i )+dp syn (t i ) (3.2.9) t i (x i,p i ) δw (3.2.4) Gauss Fokker-Placnk (3.2.1) (3.2.2)(3.2.3) 2 [Yamada 1999] (3.3) 2 ( ) 24

33 Forward in Time Z Final State Fixed Initial Condition Y Galactic Disk X Backward in Time Z Fixed FinalCondition E0,r0 Galactic Disk Y Initial State EnergyDistribution : F(E,R E0,r0) X 3.3: 25

34 (3.2.2)(3.2.3) (3.2.2)(3.2.3) V V dp syn dp IC dp syn dp IC dx i = V i dt + 2κdW i (i x,y,z) (3.2.10) dp = dp adi + dp IC + dp syn (3.2.11) (3.2.10)(3.2.11) r 0 E 0 E F (E,R E 0, r 0 ) r 0 E 0 (3.2.10)(3.2.11) Euler R R (3.2.10)(3.2.11) E (E 0, r 0 ) r 0 E 0 r 0 (3.4) E 0 =1TeV r 0 =(0, 0, 5kpc) E 0 =1TeV r 0 =(5kpc, 0, 5kpc) 2 z x y z (0,0,5kpc) 26

35 : (5kpc,0,5kpc) (0,0,5kpc) (5kpc,0,5kpc) (3.5) r 0 =(0, 0, 5kpc) E 0 =10GeV 100GeV 1TeV 10TeV F (E,R E 0, r 0 ) κ =10 29 (E/GeV ) 0.5 cm 2 /s F (E,R E 0, r 0 ) E <E 0 F (E,R E 0, r 0 )=0 r 0 =(0, 0, 5kpc) E 0 r 0 =(0, 0, 5kpc) E 0 (3.2.11) r 0 =(0, 0, 5kpc) (3.5) ( r 0 =(0, 0, 5kpc) E 0 =10GeV 100GeV 1TeV 10TeV) r 0 =(0, 0, 5kpc) (3.6) (3.2.10)(3.2.11) 27

36 0.3 F(E,R E0,R0) (0,0,5kpc) Kinetic Energy (GeV) 3.5: r 0 =(0, 0, 5kpc) F (E,R E 0, r 0 ) 28

37 0.25 Arrival Time Distribution (0,0,5kpc) Arrival Time (Year) 3.6: r 0 =(0, 0, 5kpc) r 0 = (0, 0, 5kpc) 29

38 0.14 F(E,R 1TeV,5kpc) Kinetic Energy (GeV) 3.7: r 0 = (0, 0, 5kpc) E 0 =1TeV κ =10 29 (E/GeV) 0.3 cm 2 /s κ =10 29 (E/GeV) 0.5 cm 2 /s F (E,R E 0, r 0 ) 30

39 0.25 Arrival Time Distribution(0,0,5kpc) Arrival Time (Year) 3.8: r 0 =(0, 0, 5kpc) κ =10 29 (E/GeV) 0.3 cm 2 /s κ =10 29 (E/GeV) 0.5 cm 2 /s r 0 =(0, 0, 5kpc) 31

40 (3.5) (3.6) r 0 =(0, 0, 5kpc) r 0 =(0, 0, 5kpc) 10GeV 100GeV 1TeV 10TeV (3.7) r 0 =(0, 0, 5kpc) E 0 =1TeV κ =10 29 (E/GeV) 0.3 cm 2 /s κ =10 29 (E/GeV) 0.5 cm 2 /s F (E,R E 0, r 0 ) 3000 µ µ =0.3 µ =0.5 µ =0.3 (3.8) (3.7) κ =10 29 (E/GeV) 0.3 cm 2 /s κ =10 29 (E/GeV) 0.5 cm 2 /s r 0 =(0, 0, 5kpc) µ =0.3 µ = TeV (3.5) (3.7) F (E,R E 0, r 0 ) r 0 =(0, 0, 5kpc) 32

41 r 0 =(0, 0, 5kpc) E 0 r 0 f r0 (E 0 ) F (E,R E 0, r 0 )( (3.5) (3.7)) f R (E) f r0 (E 0 )= E 0 f R (E)F (E,R E 0,r 0 )de (3.2.12) f R (E) f R (E) E 2.2 (3.2.13) (3.9) r 0 =(0, 0, 5kpc) κ =10 29 (E/GeV) 0.3 cm 2 /s κ =10 29 (E/GeV) 0.5 cm 2 /s ( ) ( ) (3.2.12) E 0 =10GeV 32GeV 100GeV 320GeV 1TeV 3.2TeV 10TeV κ =10 29 (E/GeV) 0.3 cm 2 /s κ = (E/GeV) 0.5 cm 2 /s (3.2.13) (3.9) 2 µ =0.3 µ =0.5 µ =0.3 z (3.10) (3.9) 33

42 κ =10 29 (E/GeV) 0.5 cm 2 /s ( ) r 0 =(0, 0, 5kpc) E 0 =10GeV 32GeV 100GeV 320GeV 1TeV 3.2TeV 10TeV ( ) r 0 =(0, 0, 9kpc) E 0 =10GeV 32GeV 100GeV 320GeV 1TeV 3.2TeV 10TeV (3.9) r 0 =(0, 0, 5kpc) r 0 =(0, 0, 9kpc) r 0 =(0, 0, 9kpc) kpc <x<20kpc 20kpc <y<20kpc 20kpc <z<20kpc (3.11) 2kpc yz (3.11) x (3.12) κ =10 29 (E/GeV) 0.5 cm 2 /s (3.12) 10GeV 100GeV 1TeV 10TeV kpc 34

43 Energy Spectrum (0,0,5kpc) GeV 3.9: r 0 =(0, 0, 5kpc) ( ) ( ) F (E,R E 0, r 0 ) (3.2.12) r 0 =(0, 0, 5kpc) µ =0.5 µ =0.3 (3.2.13) 35

44 10-7 Energy Spectrum GeV 3.10: r 0 =(0, 0, 5kpc) r 0 =(0, 0, 9kpc) ( ) ( ) F (E,R E 0, r 0 ) (3.2.12) r 0 =(0, 0, 5kpc) r 0 =(0, 0, 9kpc) (3.2.13) 36

45 1 10GeV GeV TeV TeV GeV z 10kpc 10GeV GeV z 10kpc 100GeV 5 1TeV z 10kpc 10TeV z 10kpc 1 z 10kpc R L 2(κt cool ) 1/2 [C.Ito,R.Enomoto,S.yanagita,T.Yoshida,T.G.Tsuru 2003] t cool Gauss Gauss (κt cool ) 1/2 2(κt cool ) 1/ z 10GeV 100GeV 1TeV 10TeV 12.1kpc 6.8kpc 3.8kpc 2.2kpc 37

46 0.1 z 10GeV 100GeV 1TeV 10TeV 13kpc 8kpc 4kpc 3kpc (3.13) 1TeV µ (3.12) (3.13) µ =0.4 µ =0.5 µ =0.6 µ =0.7 (3.12) µ =0.4 µ =0.5 µ = µ = µ =0.4 z 10kpc 1TeV 1 µ =0.5 µ =0.6 1TeV 1 µ = µ z 10kpc µ z 10kpc (3.12) R L 2(κt cool ) 1/2 0.1 z R L 1TeV µ =0.4 µ =0.5 µ =0.6 µ = kpc 3.83kpc 5.41kpc 7.64kpc 1TeV 0.1 z µ =0.4 µ =0.5 µ =0.6 µ =0.7 3kpc 4kpc 4.5kpc 9kpc R L (3.13) 38

47 z x 2kpc 2kpc y 3.11: 39

48 kpc kpc kpc kpc kpc kpc 3.12: 10GeV 100GeV 1TeV 10TeV κ =10 29 (E/GeV) 0.5 cm 2 /s 40

49 20 20 kpc kpc kpc kpc kpc kpc kpc kpc 3.13: 1TeV µ =0.4 µ =0.5 µ =0.6 µ =0.7 41

50 3.3 (3.12) (3.13) Ginzburg Stecker TeV 10kpc κ =10 29 (E/GeV) µ cm 2 /s 2 λ r L ξ ξ = λ r L (3.3.1) ξ [Terasawa 2002] Bohm Diffusion Bohm Diffusion κ B 42

51 v κ B = 1 3 r Lv (3.3.2) (3.14) (3.15) Bohm Diffusion κ B z 5kpc Bohm Diffusion κ B 1µG 10GeV 100GeV 1TeV 10TeV cm 2 /s cm 2 /s cm 2 /s cm 2 /s κ =10 29 (E/GeV) µ cm 2 /s Bohm Diffusion κ B ( (3.14)) (3.9) 10GeV 100GeV GeV 10 9 (0,0,5kpc) 100GeV 1000 κ B ( (3.15)) (3.16) (3.17) Bohm Diffusion κ B 100 1TeV 10GeV (3.16) 1TeV (3.17) 10GeV (3.16) z 2kpc 1TeV 0.1 Bohm Diffusion κ B kpc 1TeV 43

52 (3.17) z 6kpc 10GeV 1 Bohm Diffusion κ B 100 6kpc 10GeV Bohm Diffusion κ B 100 Ginzubulg Stecker TeV 10 Be 26 Al 36 Cl 54 Mn Be/B Al/Mg Cl/Ar Mn/Fe B/C κ = (E/GeV) 0.6 cm 2 /s [Webber and Soutoul 1997] (3.18) z 5kpc 3000 (3.18) ( ) κ = (E/GeV) 0.6 cm 2 /s κ =10 29 (E/GeV) 0.6 cm 2 /s ( ) κ = (E/GeV) 0.6 cm 2 /s κ =10 29 (E/GeV) µ cm 2 /s 1/5 (3.19) κ = (E/GeV) 0.6 cm 2 /s κ =10 29 (E/GeV) 0.6 cm 2 /s 1/5 44

53 10-7 Electron Energy Spectrum (0,0,5kpc) GeV 3.14: Bohm Diffusion

54 10-7 Electron Energy Spectrum (0,0,5kpc) GeV 3.15: Bohm Diffusion

55 20 10 kpc kpc 3.16: Bohm Diffusion κ B 100 1TeV

56 20 kpc kpc 3.17: Bohm Diffusion κ B GeV

57 10-7 Electron Energy Spectrum (0,0,5kpc) GeV 3.18: κ = (E/GeV)cm 2 /s ( ) κ =10 29 (E/GeV) 0.6 cm 2 /s 49

58 6kpc TeV (3.20) κ = (E/GeV) 0.6 cm 2 /s 10GeV (3.19) 1TeV (κ = (E/GeV) 0.6 cm 2 /s) 10GeV z 10kpc kpc 10GeV κ = (E/GeV) 0.6 cm 2 /s Ginzbrug Stecker 6kpc TeV 50

59 20 kpc kpc 20 kpc kpc 3.19: κ = (E/GeV) 0.6 cm 2 /s 1TeV κ =10 29 (E/GeV) 0.6 cm 2 /s 1TeV 51

60 20 kpc kpc 3.20: κ = (E/GeV) 0.6 cm 2 /s 10GeV 52

61 Bohm Diffusion κ B B/C κ = (E/GeV) 0.6 cm 2 /s (4.1) 3 10kpc 1kpc xyz 1µG 300km/s E E

62 Z Adiabatic Loss Galactic Wind 300km/s Proton radius:10kpc thickness:1kpc Y Galactic Disk X Magnetic Field : 1uG 4.1: 54

63 4.2 Fokker- Planck Full- dx i = V i dt + 2κdW i (i x,y,z) (4.2.1) dp = dp adi (4.2.2) dx i 1 dp 1 V i 300km/s κ 2 2 κ Bs = 100 κ B cm 2 /s κ com = (E/GeV) 0.6 cm 2 /s κ B Bohm Diffusion (dp adi ) dw Gauss Wiener (3.2.4) (4.2) κ com = (E/GeV) 0.6 cm 2 /s r 0 =(0, 0, 5kpc) E 0 =10GeV 100GeV 1TeV 10TeV F (E,R E 0, r 0 ) (4.4) κ Bs = 100 κ B cm 2 /s r 0 =(0, 0, 5kpc) E 0 =10GeV 100GeV 1TeV 10TeV F (E,R E 0, r 0 ) (4.6) (4.2) r 0 =(0, 0, 5kpc) E 0 =10GeV 100GeV 1TeV 10TeV F (E,R E 0, r 0 ) κ Bs 55

64 κ com (4.2) (4.6) κ com (4.3) κ com r 0 =(0, 0, 10kpc) E 0 =10GeV 100GeV 1TeV 10TeV F (E,R E 0, r 0 ) (4.3) r 0 =(0, 0, 10kpc) (4.4) (4.2) κ com (10GeV 100GeV) (4.4) κ Bs r 0 =(0, 0, 5kpc) E 0 =10GeV 100GeV 1TeV 10TeV F (E,R E 0, r 0 ) (4.2) (4.4) µ 1 µ (4.4) 4 5 κ Bs κ com kpc 56

65 0.9 F(E,R E0,R0) (0,0,5kpc) Kinetic Energy (GeV) 4.2: κ com = (E/GeV) 0.6 cm 2 /s r 0 = (0, 0, 5kpc) F (E,R E 0, r 0 ) 57

66 0.7 F(E,R E0,R0) (0,0,10kpc) Kinetic Energy (GeV) 4.3: κ com = (E/GeV) 0.6 cm 2 /s r 0 = (0, 0, 10kpc) F (E,R E 0, r 0 ) 58

67 0.7 F(E,R E0,R0) (0,0,5kpc) Kinetic Energy (GeV) 4.4: κ Bs = 100 κ B cm 2 /s r 0 =(0, 0, 5kpc) F (E,R E 0, r 0 ) 59

68 0.7 F(E,R E0,R0) (0,0,10kpc) Kinetic Energy (GeV) 4.5: κ Bs = 100 κ B cm 2 /s r 0 =(0, 0, 10kpc) F (E,R E 0, r 0 ) 60

69 0.2 Electron F(E,R E0,R0) (0,0,5kpc) Kinetic Energy (GeV) 4.6: κ com = (E/GeV) 0.6 cm 2 /s r 0 = (0, 0, 5kpc) F (E,R E 0, r 0 ) 61

70 (4.5) κ Bs r 0 =(0, 0, 10kpc) E 0 =10GeV 100GeV 1TeV 10TeV F (E,R E 0, r 0 ) r 0 =(0, 0, 10kpc) (4.5) (4.2) (4.4) κ Bs (4.7) (4.2) r 0 =(0, 0, 5kpc) τ r 0 =(0, 0, 5kpc) (4.8) (4.3) r 0 =(0, 0, 10kpc) (4.9) (4.4) r 0 =(0, 0, 5kpc) (4.4) µ 1 r 0 =(0, 0, 5kpc) (4.10) (4.5) r 0 =(0, 0, 10kpc) 62

71 0.1 Arrival Time Distribution (0,0,5kpc) Arrival Time (Year) 4.7: κ com = (E/GeV) 0.6 cm 2 /s r 0 = (0, 0, 5kpc) r 0 =(0, 0, 5kpc) 63

72 0.1 Arrival Time Distribution (0,0,10kpc) Arrival Time (Year) 4.8: κ com = (E/GeV) 0.6 cm 2 /s r 0 = (0, 0, 10kpc) r 0 =(0, 0, 10kpc) 64

73 0.8 Arrival Time Distribution (0,0,5kpc) Arrival Time (Year) 4.9: κ Bs = 100 κ B cm 2 /s r 0 =(0, 0, 5kpc) r 0 =(0, 0, 5kpc) 65

74 1 Arrival Time Distribution (0,0,10kpc) Arrival Time (Year) 4.10: κ Bs = 100 κ B cm 2 /s r 0 =(0, 0, 10kpc) r 0 =(0, 0, 10kpc) 66

75 4.3 (4.2) (4.5) F (E,R E 0, r 0 ) r 0 =(0, 0, 5kpc) r 0 =(0, 0, 10kpc) r 0 =(0, 0, 5kpc) r 0 =(0, 0, 10kpc) E 0 r 0 f r0 (E 0 ) F (E,R E 0, r 0 )( (4.2) (4.5)) f R (E) (3.2.12) E E 2.2 (4.11) (4.2) κ com r 0 =(0, 0, 5kpc) (4.12) (4.3) κ com r 0 =(0, 0, 10kpc) r 0 =(0, 0, 5kpc) (4.12) (4.11) (4.12) κ com (4.13) (4.4) κ Bs r 0 =(0, 0, 5kpc) (4.14) (4.5) κ Bs 67

76 r 0 =(0, 0, 10kpc) κ com (4.11) (4.13) κ Bs κ com 10 4 (4.13) (4.13) (4.13) E 2.2 (4.13) 1TeV 10TeV (4.4) µ 1 µ (4.13) (4.14) (4.14) κ Bs 4.4 (4.15) κ com (4.15) 10GeV 1TeV 1 10GeV ( ) TeV ( ) 10GeV z 10kpc GeV z 10kpc 1TeV z 10kpc 68

77 10-7 Proton Energy Spectrum (0,0,5kpc) GeV 4.11: κ = (E/GeV)cm 2 /s r 0 =(0, 0, 5kpc) 69

78 10-7 Proton Energy Spectrum (0,0,10kpc) GeV 4.12: κ = (E/GeV)cm 2 /s r 0 = (0, 0, 10kpc) 70

79 10-7 Proton Energy Spectrum (0,0,5kpc) GeV 4.13: Bohm Diffusion 100 r 0 =(0, 0, 5kpc) 71

80 10-7 Proton Energy Spectrum (0,0,10kpc) GeV 4.14: Bohm Diffusion 100 r 0 =(0, 0, 10kpc) 72

81 TeV z 10kpc 10GeV 1TeV 1TeV (3.12) κ = (E/GeV) 0.6 cm 2 /s TeV 10kpc (4.16) κ Bs (4.16) 10GeV 1TeV 1 10GeV ( ) TeV ( ) GeV z 10kpc 1 10GeV z 10kpc 1TeV z 10kpc 2 1TeV z 10kpc Bohm Diffusion κ B 100 TeV 10kpc 73

82 kpc kpc kpc kpc 4.15: κ = (E/GeV) 0.6 cm 2 /s 10GeV κ = (E/GeV) 0.6 cm 2 /s 1TeV 74

83 kpc kpc kpc kpc 4.16: Bohm Diffusion κ B GeV Bohm Diffusion κ B 100 1TeV 75

84

85 5 Ginzburg Stecker ( 10kpc) ( ) Fokker-Placnk Fokker-Placnk (3.12) (3.13) (3.12) 2 (3.13) µ (3.12) (3.13) κ =10 29 (E/GeV) µ cm 2 /s Bohm Diffusion 77

86 100 κ Bs = 100 κ B B/C κ com = (E/GeV) 0.6 cm 2 /s (3.16) (3.19) κ Bs κ com 1TeV (3.16) κ Bs 10kpc TeV κ com (3.19) 10kpc TeV NGC253 TeV CANGAROO [Itoh,Enomoto,Yanagita,Yoshida,and Tsuru 2003] 10kpc TeV TeV TeV 10kpc TeV NGC253 κ com (3.17) (3.20) κ Bs κ com 10GeV (3.17) κ Bs 10GeV (3.20) 10kpc 10GeV µg GHz (3.1) 10kpc 78

87 µg κ com 10GeV TeV NGC253 κ com κ com Ginzburg Stecker TeV NGC253 10kpc π 0 10kpc (4.15) (4.16) κ com κ Bs 10GeV 1TeV Ginzburg Stecker 79

88 ( 10kpc) 80

89 A BSS-S [Neill,Olinto,Blasi 2001] (A.1) (A.1) bisymmetric even-parity field model(bss-s) (z=0) 0 6µG 3µG B sp = B 0 (r)cos(θ β ln(r/r 0 )) (A.0.1) B 0 (r) = 3ρ 0 r tanh3 ( r )µg r 1 (A.0.2) B(r, θ, z =0)=B sp (sin pˆρ +cospˆθ) (A.0.3) ( B S (r, θ, z) =B(r, θ, z =0) 1 2cosh( z z 1 ) + 1 2cosh( z z 2 ) ) (A.0.4) r 0 =10.55kpc β =1/ tan p p = 10 ρ 0 =8.5kpc r 1 =2kpc z 1 =0.3kpc z 2 =4kpc (κ ) (κ ) 2 d x = ( κ V V d )dt + α σ dw σ (t) (A.0.5) dp = dp adi + dp IC + dp syn (A.0.6) 81

90 A.1: BSS-S z 0 kpc 82

91 (A,0,5) κ x x y z (A,0,7) κ 0 0 κ = 0 κ κ (A.0.7) (A,0,6) dw σ Gauss Wiener (3.2.4) α σ dw σ ασ dw σ (t) = α 1 dw 1 + α 2 dw 2 + α 3 dw 3 (A.0.8) = 2κ dw 1 + 2κ dw 2 + 2κ dw 3 (A.0.9) (r, θ, z) ê r cos χ sin χ 0 ê θ = sin χ cos χ ê φ ê b ê ê z (A.0.10) ê x cos θ sin θ 0 ê r ê y = sin θ cos θ 0 ê θ (A.0.11) ê z ê x cos θ cos χ sin θ sin χ cos θ sin chi sin θ cos χ 0 ê b ê y = cos θ sin chi +sinθcos χ cos θ cos χ sin θ sin χ 0 ê ê z ê z (A.0.12) ê z 83

92 dw x cos θ cos χ sin θ sin χ cos θ sin chi sin θ cos χ 0 2κ dw 1 dw y = cos θ sin chi +sinθcos χ cos θ cos χ sin θ sin χ 0 2κ dw 2 dw z κ dw 3 (A.0.13) χ cos χ = B r B r (A,0,5) V d ( ) V d = pv B 3q B 2 (A.0.14) (A.0.15) (A,0,1) (A,0,4) V dx = pv 2coth 3 ( r r 1 )sec(θ β ln( r r 0 ))(x cos p + y sin p)(z 2 sin( z z 1 )+z 1 sin( z z 2 )) 3q 3r 0 z 1 z 2 (cos( z z 1 )+cos( z z 2 )) 2 (A.0.16) V dy = pv 2coth 3 ( r r 1 )sec(θ β ln( r r 0 ))(y cos p x sin p)(z 2 sin( z z 1 )+z 1 sin( z z 2 )) 3q 3r 0 z 1 z 2 (cos( z z 1 )+cos( z z 2 )) 2 (A.0.17) V dz = pv 3q coth2 ( r )csch 2 ( r )sec 2 (θ β ln( r ))( 12r cos p cos(θ β ln( r )) r 1 r 1 r 0 r 0 +r 1 (3 cos(p + θ β ln( r )) 2β cos p sin(θ β ln( r ))) sinh( 2r )) r 0 r 0 r 1 /6r 0 r 1 (cos( z z 1 )+cos( z z 2 )) (A.0.5) κ (A.0.7) (r, θ, z) κ 84

93 κ 0 0 κ = 0 κ κ = κ ê θ ê θ + κ ê ê + κ ê b ê b (A.0.18) κ cos 2 χ + κ sin 2 χ (κ κ )cosχsin χ 0 κ = (κ κ )cosχsin χ κ cos 2 χ + κ sin 2 χ κ (A.0.19) κ xx κ xy 0 κ = κ yx κ yy κ zz (A.0.20) κ xx = (κ cos 2 χ + κ sin 2 χ)cos 2 θ +(κ cos 2 χ + κ sin 2 χ)sin 2 θ (κ κ )sin2χ κ xy = (κ κ )cosχsin χ(cos 2 θ sin 2 θ)+(κ κ )cos2χ κ yx = (κ κ )cosχsin χ(cos 2 θ sin 2 θ)+(κ κ )cos2χ κ yy = (κ cos 2 χ + κ sin 2 χ)cos 2 θ +(κ cos 2 χ + κ sin 2 χ)sin 2 θ +(κ κ )sin2χ κ zz = κ (A.0.20) κ κ 85

94

95 NGC253 87

96

97 [1] Andrew W. Strong,and Igor V.Moskalenko,Astrophys.J,509, ,1998 [2] C.Itoh.,et al,a&a,396,l1-l4,2002 [3] C.Itoh,R.Enomoto,S.Yanagita,T.Yoshida,and T.G.Tsuru,Astrophys.J,584,L000- L000,2003 [4] D.Breitschwerdt,J.F.McKenzie,and H.J.Volk,A&A,269,54-66,1993 [5] F.W.Stecker,IAUS,84, ,1979 [6] Jokipii,J.R.,and J.Kota,J.Geophys.Res.91, ,1986 [7] Koyama,K.,et al.,nature 378, ,1995 [8] Ming Zhang,Astrophys.J 513, ,1999 [9] R.Enomoto.,et al,nature,416, ,2002 [10] Simpson,J.A.,Ann.Rev.Nucl.Part.Sci.,33, ,1983. [11] S.O Neill,A.Olinto,and P.Blasi,ICRC2001 [12] V.L.Ginzburg,IAUS,84, ,1979 [13] W.R.Webber,and A.Soutoul,Astrophys.J,506, ,1998 [14] Yamada,Y.,S.Yanagita,and T.Yoshida,Adv.Space Res.in press 1999 [15] Yanagita,S.,and N.Nomoto,Proc.3rd Integral Workshop, The Extreme Universe,pub.Kluwer Academic Publishers,in press [16], 10,

98 [17], 12,2000 [18], 14,2002 [19],,,, (1983) [20],, (2002) [21] M.S.Longair,High Energy Astrophysics Second Edition Vol.1 [22] M.S.Longair,High Energy Astrophysics Second Edition Vol.2 [23] Thomas K.Gaisser,Cosmic Rays and Particle Physics, (1997) 90

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

untitled

untitled .. 3. 3 3. 3 4 3. 5 6 3 7 3.3 9 4. 9 0 6 3 7 0705 φ c d φ d., φ cd, φd. ) O x s + b l cos s s c l / q taφ / q taφ / c l / X + X E + C l w q B s E q q ul q q ul w w q q E E + E E + ul X X + (a) (b) (c)

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x =

d dt A B C = A B C d dt x = Ax, A 0 B 0 C 0 = mm 0 mm 0 mm AP = PΛ P AP = Λ P A = ΛP P d dt x = P Ax d dt (P x) = Λ(P x) d dt P x = 3 MATLAB Runge-Kutta Butcher 3. Taylor Taylor y(x 0 + h) = y(x 0 ) + h y (x 0 ) + h! y (x 0 ) + Taylor 3. Euler, Runge-Kutta Adams Implicit Euler, Implicit Runge-Kutta Gear y n+ y n (n+ ) y n+ y n+ y n+

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

-1-

-1- -1- 19 4 5 20 9 45 3 12 JAL1014 12 30 JAL1016 1014 1014 5 11 3 2 2 10 10 40 12-2- 14 15 2 3 15 20 18 45 3 3 30,018 340 1 88.29 2 18 18 45 27kg Heavy ETAS ETAS ETAS ETAS 4,200 ETAS 2001 2 45 19 11 20 QF022

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru 1 17 object 1 observation 17.1 X electromagnetic wave photon 1 = c (17.1) c =3 10 8 ms ;1 m mm = 10 ;3 m m =10 ;6 m nm = 10 ;9 m 1 Hz 17.1 spectrum radio 2 infrared 3 visual light optical light 4 ultraviolet

More information

(1) (2)

(1) (2) 3 3.1 3.1.1 3.1.2 (1) (2) 3.1.3 3-3.1.3.1 3.1.3.1 1 2 3.1.4 3.23.4 NATM 1980-3.1.4.1-3.1.4.2 NATM 20 1) NATM No.1235, 1983. 2) No.A-84-511984. -3.1.4.1 NATM -3.1.4.2 NATM Vp Vp 23/2882% 1983 : 0 A i X

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

.....Z...^.[.......\..

.....Z...^.[.......\.. 15 10 16 42 55 55 56 60 62 199310 1995 134 10 8 15 1 13 1311 a s d f 141412 2 g h j 376104 3 104102 232 4 5 51 30 53 27 36 6 Y 7 8 9 10 8686 86 11 1310 15 12 Z 13 14 15 16 102193 23 1712 60 27 17 18 Z

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1...........................

i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1........................... 2008 II 21 1 31 i 0 1 0.1 I................................................ 1 0.2.................................................. 2 0.2.1............................................. 2 0.2.2.............................................

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

213 2 katurada AT meiji.ac.jp http://nalab.mind.meiji.ac.jp/~mk/pde/ 213 9, 216 11 3 6.1....................................... 6.2............................. 8.3................................... 9.4.....................................

More information

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

96 7 1m =2 10 7 N 1A 7.1 7.2 a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A 7 Lorentz 7.1 Ampère I 1 I 2 I 2 I 1 L I 1 I 2 21 12 L r 21 = 12 = µ 0 2π I 1 I 2 r L. (7.1) 7.1 µ 0 =4π 10 7 N A 2 (7.2) magnetic permiability I 1 I 2 I 1 I 2 12 21 12 21 7.1: 1m 95 96 7 1m =2 10 7 N

More information

, 02 4] 0908 縺 閨 陦縺03 縺 縺05 縺 (00) チ

, 02 4] 0908 縺 閨 陦縺03 縺 縺05 縺 (00) チ 13030607050208 2007 03. 070503 177, 02 4 0806 タ07 09 090908090107060109 04030801 080607040500 0505 タ080601 ァ080504030203 "0806 タ07 09 090908090107060109 04030801" 0908050107050905040905 05.02. 閨090408010007030503

More information

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization)

[ ] = L [δ (D ) (x )] = L D [g ] = L D [E ] = L Table : ħh = m = D D, V (x ) = g δ (D ) (x ) E g D E (Table )D = Schrödinger (.3)D = (regularization) . D............................................... : E = κ ............................................ 3.................................................

More information

内科96巻3号★/NAI3‐1(第22回試験問題)

内科96巻3号★/NAI3‐1(第22回試験問題) µ µ α µ µ µ µ µ µ β β α γ µ Enterococcus faecalis Escherichia coli Legionella pneumophila Pseudomonas aeruginosa Streptococcus viridans α β 正解表正解記号問題 No. 正解記号問題 No. e(4.5) 26 e 1 a(1.2) 27 a 2

More information

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2

PRML pdf PRML (http://critter.sakura.ne.jp) N x t y(x, w) = w 0 + w 1 x + w 2 x w M x m = M w j x j (1.1) j=0 E(w) = 1 {y(x n, w) t n } 2 critter twitter ( PRML) PRML PRML PRML PRML 1. 2. 3. PRML PRML 110 PRML 700 1 PRML pdf PRML (http://critter.sakura.ne.jp) 1 1.1 N x t y(x, w) = w 0 + w 1 x + w 2 x 2 + + w M x m = M w j x j (1.1) j=0 E(w)

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

untitled

untitled 24 2016 2015 8 26,,,,,,,,,,,, D.,,, L.,,, E.,,,,,, 1 1,,,,, 2,,, 7 1 2, 3 4 5 6 7 Contribution No.: CB 15-1 20 40,,,,,,,, 3,,,,, 10,,,,,,, 2, 3 5, 7 ,,, 2,, 3,, 4,,,,,,,,,,,,, 4,,,,,,,,, 1, 50, 1, 50 50,

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

ィェィ ィョ02ィヲィー ィェ ィャ0200ィ ィェ 08ィ ィィ ィョ07ィー D ィョ0007 T, ィヲィ 06ィョ0002: D 6メ6 (x; y) 6モ1 f (x; y

ィェィ ィョ02ィヲィー ィェ ィャ0200ィ ィェ 08ィ ィィ ィョ07ィー D ィョ0007 T, ィヲィ 06ィョ0002: D 6メ6 (x; y) 6モ1 f (x; y 130005ィィ04ィャィ 14 0709010905080507030707 040309090201 00030809000905080201 14.1 03ィヲィョィ 00ィエ00ィヲィコ06ィー 06ィェィェ07ィヲ02ィー 070007 ィャ05ィィ04ィャィ ィ 0100ィケ ィィィ 0008ィェ02ィヲ ィャィヲィ 0002ィェ08ィコ0201ィョ04 0004ィー 070104 00ィェィエィョ0007ィー

More information

ppt

ppt No2 8 2011-2-3 (Voyager voyager ) NASA 1977 721.9kg 2 1 (The Sounds of Earth) 55 2 1977 1 1977 9 5 1979 3 5 1980 11 12 2007 7 19 154 8000 km 17.132km/s 2 1977 8 20 1979 7 9 1981 8 25 1986 1 24 1989 8 25

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

Hz

Hz ( ) 2006 1 3 3 3 4 10 Hz 1 1 1.1.................................... 1 1.2.................................... 1 2 2 2.1.................................... 2 2.2.................................... 3

More information

17 3 31 1 1 3 2 5 3 9 4 10 5 15 6 21 7 29 8 31 9 35 10 38 11 41 12 43 13 46 14 48 2 15 Radon CT 49 16 50 17 53 A 55 1 (oscillation phenomena) e iθ = cos θ + i sin θ, cos θ = eiθ + e iθ 2, sin θ = eiθ e

More information

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li 2004.3.28 物理学会シンポジウム 磁気プラズマセイル の可能性と 深宇宙探査への挑戦 宇宙航空研究開発機構 船木一幸 Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production

More information

2

2 1 2 3 4 5 6 ( ) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 6+ 6-5 2 6-5- 6-5+ 5-5- 5- 22 6+ 6-6+ 6-6- S-P time 10 5 2 23 S-P time 5 2 5 2 ( ) 5 2 24 25 26 1 27 28 29 30 95 31 ( 8 2 ) http://www.kishou.go.jp/know/shindo/kaisetsu.html

More information

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656

E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8 8.0 5656 SPring-8 PF( ) ( ) UVSOR( HiSOR( SPring-8.. 3. 4. 5. 6. 7. E B m e ( ) γma = F = e E + v B a m = 0.5MeV γ = E e m =957 E e GeV v β = v SPring-8 γ β γ E e [GeV] [ ] NewSUBARU.0 957 0.999999869 SPring-8

More information

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p

(w) F (3) (4) (5)??? p8 p1w Aさんの 背 中 が 壁 を 押 す 力 垂 直 抗 力 重 力 静 止 摩 擦 力 p8 p F 1-1................................... p38 p1w A A A 1-................................... p38 p1w 1-3................................... p38 p1w () (1) ()?? (w) F (3) (4) (5)??? -1...................................

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

2

2 16 1050026 1050042 1 2 1 1.1 3 1.2 3 1.3 3 2 2.1 4 2.2 4 2.2.1 5 2.2.2 5 2.3 7 2.3.1 1Basic 7 2.3.2 2 8 2.3.3 3 9 2.3.4 4window size 10 2.3.5 5 11 3 3.1 12 3.2 CCF 1 13 3.3 14 3.4 2 15 3.5 3 17 20 20 20

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

コロイド化学と界面化学

コロイド化学と界面化学 x 25 1 kg 1 kg = 1 l mmol dm -3 ----- 1000 mg CO 2 -------------------------------------250 mg Li + --------------------------------1 mg Sr 2+ -------------------- 10

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

Appendix 1. CRC 13 Appendix Appendix LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE(

Appendix 1. CRC 13 Appendix Appendix LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE( CRC 22 1 3 2 4 2-1 2-2 2-3 2-4 3 9 3-1 3-2 3-3 3-4 3-5 4 12 Appendix 1. CRC 13 Appendix 2. 14 Appendix 3. 17 LCGT 18 DECIGO 18 XMASS 19 GADZOOKS! 20 NEWAGE( ) 21 22 24 CTA (Cherenkov Telescope Array) 25

More information

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED)

( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) rational number p, p, (q ) q ratio 3.14 = 3 + 1 10 + 4 100 ( ) a, b c a 2 + b 2 = c 2. 2 1 2 2 : 2 2 = p q, p, q 2q 2 = p 2. p 2 p 2 2 2 q 2 p, q (QED) ( a) ( b) a > b > 0 a < nb n A A B B A A, B B A =

More information