ディジタル信号処理

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "ディジタル信号処理"

Transcription

1 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ

2 LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]* [ ] [ ] [ 4. ] [ ] [ 4. ] [ ] [ ] [ 4.9 ] [ ] [ ] [ ] [ と表すことができる は任意の離散時間信号 h h L L y δ δ δ 変数 に対して Liear ime Ivariat

3 畳み込み : gτ τ a フィルタ関数 インパルス応答 f t* g t f τ g t τ dτ たとえば ガウス関数による信号の平滑化ウェーブレット変換 g τ を原点を中心に反転し tだけ平行移動した関数 g τ 積和計算によって τ τ f τ との類似度を計算 τ g t τ t τ τ 積和 f t f t f τ b 処理対象の信号 τ

4 離散的 次元ラプラシアン 連続な場合 ラプラシアンは これより 離散的な場合のラプラシアンは 非因果的 因果的 と定義計算の注目点が中心となるように差分の取り方を調整. これは結局 となる

5 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ

6 IIR フィルタ ] [ ] [ ] [ システム関数は両辺を 変換すると N M m m m M N N M b a H X a Y b y b a y IIR フィルタを設計するには これらのパラメータの値を決めればよい 時間領域でフィードバック係数を直接求めるのはむずかしい

7 3. アナログフィルタを基にした ディジタル IIR フィルタの設計法 I. アナログ LPF の設計. 周波数変換によるアナログ BPF HPF の設計 3. 双 次変換 S-Z 変換 によるディジタルフィルタの設計

8 アナログ LPF の特性 : 透過域周波数 : 阻止域周波数 r : 透過域リプル r: 阻止域リプル p p

9 . 代表的なアナログ LPF 全極型フィルタ 次のバターワース Butterworth フィルタ H 極は 左半平面の単位円周上にπ / 間隔で分布 安定 H j c / ep{ jπ } ただし p H / H / p 特徴 振幅特性は > で急激に減衰 の変わりに / p を代入することでカットオフ周波数 p を任意に設定可能 伝達関数は 階から - 階までの全ての導関数が において この性質を最大平坦と呼ぶ

10 次のバターワース Butterworth フィルタ / / / } / ep{ H H j H j c H p p π π ただし安定間隔で分布極は 左半平面の単位円周上に より転載 3~9 次のバターワースフィルタの周波数特性

11 次のチェビシェフ chebychev フィルタ 双曲線正弦 余弦関数 ここで のときのときはチェビシェフ多項式ここで までの整数 ここで は ~ coh ih coh coh co co ih / i coh co ih e e e e j H j H > ± ε ε ν π ν π ν

12 チェビシェフ多項式なる直交数列が得られる とし に対してここで ある正の整数を に代入するととなることが知られている は の根次のチェビシェフ多項式はの多項式となる これをチェビシェフ多項式という たとえば と定義すると すなわち の多項式の倍角の公式を反復適用 co ] [ ] [ co co } co co{ co co co co co M m M M m m m M m m i M M M i M i M i M i i i i M π π α α π α α θ θ θ θ DC

13 次のチェビシェフ chebychev フィルタ チェビシェフフィルタの周波数特性 より転載 特徴 振幅特性は > で急激に減衰 リプルを許容することで急峻なカットオフ特性を実現

14 次のチェビシェフ chebychev フィルタ r A r A p p p を満たす最小の正整数は次式で計算される チェビシェフフィルタのパラメータ を設計仕様として与えた時 として ε ε ε coh coh

15 次の逆チェビシェフ chebychev フィルタ より転載逆チェビシェフフィルタチェビシェフフィルタ ε ε ε ε j H j H

16 . 周波数変換による HPFBPFBEF の設計 基準となる LPF: アナログカットオフ周波数 c の LPF H LPF LPF カットオフ周波数の変換 これは 元の周波数区間 - を - c c に移す c 注意 変数変換は複素数! 注意 周波数軸は実数!

17 演習課題 6 次のバターワースフィルタを基に 遮断周波数が H の低域通過フィルタを設計しなさい

18 LPF HPF c これは 元の周波数区間 - を c に を ー ー c に移す

19 c 複素数変換 : 周波数変換 : j c j j c j c の実数変換 c c

20 演習課題 6 次のバターワースフィルタを基に 遮断周波数が H の高域通過フィルタを設計し 振幅特性のグラフを描きなさい

21 3LPF BPF Ω Ω Ω Ω W j j j W j j W W W c c c c c c c c c c c c c c と置くことにより となり となり 両辺にを掛けると 段目の変換 とすると 下図 とし の通過帯域幅を 3 段目の変換 として実数の変数変換 下図 まず BPF

22 演習課題 63 次のバターワースフィルタを基に 通過周波数が 4H~8H の帯域通過フィルタを設計し 振幅特性のグラフを描きなさい

23 4LPF BEF LPF HPFの議論から すなわち c c W c とすれば BPFからBEFが実現できる

24 演習課題 64 次のバターワースフィルタを基に 遮断周波数が 4H~8H の帯域遮断フィルタを設計し 振幅特性のグラフを描きなさい

25 3. 双 次変換 S-Z 変換 によるディジタルフィルタの設計. 目的 設計したアナログフィルタの安定性を損なうことなく 同様の特性を持つディジタルフィルタを求める 安定性を保つ条件

26 定義 e 条件 周波数特性 e ラプラス変換と Z 変換 jω また < < π < Ω < πへの周期的変換によって フィルタの特性に折り返し歪み誤差が発生しないようにしたい 双 次変換 つまり jができるだけ線形に保たれるようにしたい 設計したアナログフィルタの伝達関数 H からディジタルフィルタ の伝達関数 G を G で求める H

27 双 次変換の意味が得られる からとなり この離散時間システムの伝達関数はこれを離散時間信号間の関係と見なすと の間の積分値を台形近似すると のが十分小さいとして 一方 となり 伝達関数ラプラス変換をすると とすると の積分値をのアナログ信号 ]} [ ] [ ] [ ] [ } { ] [ ] [ G H G y y d y y t H X Y d t y t y t t t τ τ τ τ

28 双 次変換の持つ非線形性

29 演習課題 65 次のバターワースフィルタを基に. 遮断周波数が H の低域通過ディジタルフィルタ. 遮断周波数が H の高域通過ディジタルフィルタ 3. 通過周波数が 4H~8H の帯域通過ディジタルフィルタ 4. 遮断周波数が 4H~8H の帯域遮断ディジタルフィルタを設計し 振幅特性のグラフを描きなさい また 基になるバターワースフィルタの次数を高くすることによって 振幅特性がどのように変化するかも調べなさい

30 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ

31 4. アナログフィルタを基にした ディジタル IIR フィルタの設計法 II. アナログ LPF の設計 3. 双 次変換 S-Z 変換 によるディジタルフィルタの設計.Z 領域における周波数変換による BPF HPF の設計

32 .Z 領域における周波数変換によるBPF HPFの設計 I FIR FIRの場合 FIRフィルタ LPF H[ ] a LPFの通過帯域 ~ p 例 : { a a a M m LPF HPF 係数をa m a m 3 a m 4 m a m に変換 4.34 HPFの通過帯域 / ~ / } {..5.5.} {..5.5.} p p H H p / p / / / p p

33 演習課題 66 FIR低域通過フィルタの代表例として 移動平均フィルタ H がある 3 これを基に遮断周波数がHの 高域通過フィルタを設計しなさい

34 LPF BPF 係数をa LPFの通過帯域 ~ 例 : / 4とすると { a a a m a co a 3 a 4 p m に変換 を通過帯域の中心とするBPF } {..5.5.} {..} H H p / p /

35 演習課題 67 FIR低域通過フィルタの代表例として 移動平均フィルタ H がある 3 これを基に通過周波数帯域が4H 帯域通過フィルタを設計しなさい ~ 8Hの

36 3 LPF BEF 係数をa LPFの通過帯域 ~ { a a a a 例 : / 4とすると a 3 a 4 p a m co a m に変換 } {..5.5.} {.8.} を遮断帯域の中心とするBEF m H H p / p /

37 演習課題 68 FIR低域通過フィルタの代表例として 移動平均フィルタ H がある 3 これを基に遮断周波数帯域が4H 帯域遮断フィルタを設計しなさい ~ 8Hの

38 .Z 領域における周波数変換による HPF の設計 II FIR IIR IIR の場合 LPF HPF を α に変換 α LPFの通過帯域 ~ p ここで α HPFの通過帯域 q q p co q p co ~ / H H p / p q / q

39 演習課題 69 FIR低域通過フィルタの代表例として 移動平均フィルタ H がある 3 これを基に遮断周波数がHの 高域通過フィルタを設計しなさい

40 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ

41 5. 双 次フィルタ H b b b a a a 特徴 フィルタ設計が容易である 設計手法が確立されたものである 多様な特性のフィルタが実現可能 直列接続で多様な特性が実現可能 双 次フィルタは非常によく利用される

42 双 次フィルタで実現可能な特性 より転載

43 LPF カットオフ特性指数遮断周波数ここで 変換に対して元のアナログフィルタ : i co co co co Q Q a a a b b b Q H α α α

44 HPF α α co co co co a a a b b b Q H 変換に対して元のアナログフィルタ

45 BPF α α co i i a a a b b b Q H 変換に対して 元のアナログフィルタ α α α α co a a a b b b Q Q H 変換に対して 元のアナログフィルタ

46 Peaig Filter : ピークの利得ここで 変換に対して元のアナログフィルタ A A a a A a A b b A b AQ Q A H α α α α co co

47 Low/High Shelf Filter Q A A A Q A A H Filter Shelf Low 元のアナログフィルタ A Q A Q A A A H Filter Shelf High 元のアナログフィルタ

48 演習課題 7 双 次フィルタによる LPF HPF と他の設計法によるものとの特性を比較しなさい 具体的には 同一遮断周波数を定めて設計した場合の両者の周波数特性を比較して 議論をしなさい

49 演習課題 7

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

画像解析論(2) 講義内容

画像解析論(2) 講義内容 画像解析論 画像解析論 東京工業大学長橋宏 主な講義内容 信号処理と画像処理 二次元システムとその表現 二次元システムの特性解析 各種の画像フィルタ 信号処理と画像処理 画像解析論 処理の応答 記憶域 入出力の流れ 信号処理系 実時間性が求められる メモリ容量に対する制限が厳しい オンラインでの対応が厳しく求められる 画像処理系 ある程度の処理時間が許容される 大容量のメモリ使用が容認され易い オフラインでの対応が容認され易い

More information

作成日 : 2016 年 1 月 28 日 作成者 : 吉澤清 Remez ガウシアン FIR フィルタ 目次 概要 Remez ガウシアンFIRフィルタの特徴 一般的なFIRフィルタはオーバーシュートを生じる オーバーシュートを生じないFIRフィルタ.

作成日 : 2016 年 1 月 28 日 作成者 : 吉澤清 Remez ガウシアン FIR フィルタ 目次 概要 Remez ガウシアンFIRフィルタの特徴 一般的なFIRフィルタはオーバーシュートを生じる オーバーシュートを生じないFIRフィルタ. 1 作成日 : 2016 年 1 月 28 日 作成者 : 吉澤清 Remez ガウシアン FIR フィルタ 目次 概要... 3 1.Remez ガウシアンFIRフィルタの特徴... 4 2. 一般的なFIRフィルタはオーバーシュートを生じる... 7 3. オーバーシュートを生じないFIRフィルタ... 8 4. ガウシアンFIRフィルタ...10 5.Remez-ガウシアンFIRフィルタ...13

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計

8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性 座標独立性 曲線上の点を直接に計算可能 多価の曲線も表現可能 gx 低次の多項式は 計 8. 自由曲線 曲面. 概論. ベジエ曲線 曲面. ベジエ曲線 曲面の数学. OeGLによる実行. URS. スプライン関数. スプライン曲線 曲面. URS 曲線 曲面 4. OeGLによる実行 8. 自由曲線と曲面の概要 陽関数 陰関数 f x f x x y y y f f x y z g x y z パラメータ表現された 次元曲線 パラメータ表現は xyx 毎のパラメータによる陽関数表現 形状普遍性

More information

DVIOUT-n_baika

DVIOUT-n_baika 1 三角関数の n 倍角の公式とその応用について述べます. なお Voyage 200 の操作の詳細は http://sci-tech.ksc.kwansei.ac.jp/~yamane にある はじめての数式処理電卓 Voyage 200 をご覧下さい. 2 倍角の公式 cos 2x =2cos 2 x 1=1 2sin 2 x sin 2x =2sinxcos x はよく知られています.3 倍角の公式

More information

統計的データ解析

統計的データ解析 統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c

More information

Microsoft PowerPoint - 9.Analog.ppt

Microsoft PowerPoint - 9.Analog.ppt 9 章 CMOS アナログ基本回路 1 デジタル情報とアナログ情報 アナログ情報 大きさ デジタル信号アナログ信号 デジタル情報 時間 情報処理システムにおけるアナログ技術 通信 ネットワークの高度化 無線通信, 高速ネットワーク, 光通信 ヒューマンインタフェース高度化 人間の視覚, 聴覚, 感性にせまる 脳型コンピュータの実現 テ シ タルコンヒ ュータと相補的な情報処理 省エネルギーなシステム

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

のスペクトル ( 実部と虚部 ) をスケッチせよ. Re c n Δω = π T Im c n Δω = π T 問題 例題 では, 虚部のスペクトルに負の振動数が現れる. 負の振動数は何を意味するか. また, 原点について対称 ( 奇関数 ) となるのはどのような意味があるか. 例題 において,

のスペクトル ( 実部と虚部 ) をスケッチせよ. Re c n Δω = π T Im c n Δω = π T 問題 例題 では, 虚部のスペクトルに負の振動数が現れる. 負の振動数は何を意味するか. また, 原点について対称 ( 奇関数 ) となるのはどのような意味があるか. 例題 において, 3 章フーリエ変換 テーマと目標 単発現象に含まれる振動数を分析する方法とその考え方 フーリエ係数からフーリエ変換への橋渡しの数学的操作 フーリエ変換とフーリエ逆変換の定義 フーリエ変換の実例 デルタ関数の定義と使い方 フーリエ変換の性質 たたみ込み積分とフーリエ変換 パーセバルの等式 3. フーリエ変換の定義 [ 周期現象から非周期現象へ ] 前章まで, 周期現象を扱う数学の道具を学んだ. 周期現象には基本振動数があり,

More information

Microsoft PowerPoint - 2.ppt [互換モード]

Microsoft PowerPoint - 2.ppt [互換モード] 0 章数学基礎 1 大学では 高校より厳密に議論を行う そのために 議論の議論の対象を明確にする必要がある 集合 ( 定義 ) 集合 物の集まりである集合 X に対して X を構成している物を X の要素または元という 集合については 3 セメスタ開講の 離散数学 で詳しく扱う 2 集合の表現 1. 要素を明示する表現 ( 外延的表現 ) 中括弧で 囲う X = {0,1, 2,3} 慣用的に 英大文字を用いる

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未

今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未 力学 III GA 工業力学演習 X5 解析力学 5X 5 週目 立命館大学機械システム系 8 年度後期 今週の内容 後半全体のおさらい ラグランジュの運動方程式の導出 リンク機構のラグランジュの運動方程式 慣性行列 リンク機構のエネルギー保存則 エネルギー パワー 速度 力の関係 外力が作用する場合の運動方程式 粘性 粘性によるエネルギーの消散 慣性 粘性 剛性と微分方程式 拘束条件 ラグランジュの未定乗数法

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

( 工 ~ ~m-j ~ ~ndoped =~ Pl サすく 2π ケ l k ~)γ(1+3z (at~/.) ~~i Mn(a~~/o) ~ ~~,~ ここで採用した T m (l~ )AJ~. J と ()' を適当なパラメータにとると, 式 M の α'm=aj~ を 温度 T の関数で表すことができる O ここでは Snl~xMnxTe 系の ~ 見積もられる O 一方, われわれの磁性半導体は,

More information

15群(○○○)-8編

15群(○○○)-8編 群 画像 音 言語 - 6 編 音響信号処理 章基礎技術 計測技術 概要 電子情報通信学会 知識の森 http://www.ieice-hbkb.org/ 群 - 6 編 - 章 執筆者 : 金田豊 [0 年 月受領 ] スピーカやマイクロホンなどの音響機器や, また, 音が伝播する空間系などの多くは線形 系とみなすことができる. したがって, 音響信号処理の多くは線形システム理論をその基本 理論としている.

More information

書式に示すように表示したい文字列をダブルクォーテーション (") の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf(" 情報処理基礎 "); printf("c 言語の練習 "); printf

書式に示すように表示したい文字列をダブルクォーテーション () の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf( 情報処理基礎 ); printf(c 言語の練習 ); printf 情報処理基礎 C 言語についてプログラミング言語は 1950 年以前の機械語 アセンブリ言語 ( アセンブラ ) の開発を始めとして 現在までに非常に多くの言語が開発 発表された 情報処理基礎で習う C 言語は 1972 年にアメリカの AT&T ベル研究所でオペレーションシステムである UNIX を作成するために開発された C 言語は現在使われている多数のプログラミング言語に大きな影響を与えている

More information

英語                                    英-1

英語                                    英-1 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

システム工学実験 パラメータ推定手順

システム工学実験 パラメータ推定手順 システム工学実験パラメータ推定手順 大木健太郎 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 1 アウトライン 1. 線形システムと周波数情報 2. パラメータ推定 3. 実際の手順 2014/11/14 2014 年度システム工学実験 : フレキシブルリンク 2 線形時不変システムと伝達関数 入力と出力の関係が線形な定係数微分方程式で与えられるとき, この方程式を線形時不変システムという

More information

カメラレディ原稿

カメラレディ原稿 IS2-A2 カメラを回転させた時の特徴点軌跡を用いた魚眼カメラの内部パラメータ推定 - モデルと評価関数の変更による改良 - 田中祐輝, 増山岳人, 梅田和昇 Yuki TANAKA, Gakuto MASUYAMA, Kazunori UMEDA : 中央大学大学院理工学研究科,y.tanaka@sensor.mech.chuo-u.ac.jp 中央大学理工学部,{masuyama, umeda}@mech.chuo-u.ac.jp

More information

Microsoft PowerPoint - 集積デバイス工学7.ppt

Microsoft PowerPoint - 集積デバイス工学7.ppt 集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

スライド 1

スライド 1 アナログ検定 2014 1 アナログ検定 2014 出題意図 電子回路のアナログ的な振る舞いを原理原則に立ち返って解明できる能力 部品の特性や限界を踏まえた上で部品の性能を最大限に引き出せる能力 記憶した知識や計算でない アナログ技術を使いこなすための基本的な知識 知見 ( ナレッジ ) を問う問題 ボーデ線図などからシステムの特性を理解し 特性改善を行うための基本的な知識を問う問題 CAD や回路シミュレーションツールの限界を知った上で

More information

Microsoft PowerPoint - LogicCircuits01.pptx

Microsoft PowerPoint - LogicCircuits01.pptx 論理回路 第 回論理回路の数学的基本 - ブール代数 http://www.info.kindai.ac.jp/lc 38 号館 4 階 N-4 内線 5459 takasi-i@info.kindai.ac.jp 本科目の内容 電子計算機 computer の構成 ソフトウェア 複数のプログラムの組み合わせ オペレーティングシステム アプリケーション等 ハードウェア 複数の回路 circuit の組み合わせ

More information

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の

分析のステップ Step 1: Y( 目的変数 ) に対する値の順序を確認 Step 2: モデルのあてはめ を実行 適切なモデルの指定 Step 3: オプションを指定し オッズ比とその信頼区間を表示 以下 このステップに沿って JMP の操作をご説明します Step 1: Y( 目的変数 ) の JMP によるオッズ比 リスク比 ( ハザード比 ) の算出と注意点 SAS Institute Japan 株式会社 JMP ジャパン事業部 2011 年 10 月改定 1. はじめに 本文書は JMP でロジスティック回帰モデルによるオッズ比 比例ハザードモデルによるリスク比 それぞれに対する信頼区間を求める操作方法と注意点を述べたものです 本文書は JMP 7 以降のバージョンに対応しております

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

丹沢のブナの立ち枯れと東名高速道路にっいて 図3 夏型の高気圧におおわれ 風の弱い日の南関東 東海道の風の1日変化 矢は風向を 矢先の数字は風速 m s を示す この地区のアメダス地点は御殿場のみ 風向の方向に長軸をもっ楕円で囲んだ 午後から夕方に かけて南 南西風が卓越している 全体に午後に海風と谷風 平地から山地へ が卓越している 東名高速道路と国道246号線および地方道 まとめて東 名高速道路という

More information

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った

連続講座 断層映像法の基礎第 34 回 : 篠原 広行 他 放射状に 線を照射し 対面に検出器の列を置いておき 一度に 1 つの角度データを取得する 後は全体を 1 回転しながら次々と角度データを取得することで計測を終了する この計測で得られる投影はとなる ここで l はファンビームのファンに沿った 連続講座 断層映像法の基礎第 34 回 : 篠原広行 他 篠原 広行 桑山 潤 小川 亙 中世古 和真 断層映像法の基礎第 34 回スパイラルスキャン CT 1) 軽部修平 2) 橋本雄幸 1) 小島慎也 1) 藤堂幸宏 1) 3) 首都大学東京人間健康科学研究科放射線科学域 2) 東邦大学医療センター大橋病院 3) 横浜創英短期大学情報学科 1) はじめに第 33 回では検出確率 C ij の関係を行列とベクトルの計算式に置き換えて解を求める最小二乗法を利用した方法について解説した

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466>

<4D F736F F D2089FC92E82D D4B CF591AA92E882C CA82C982C282A282C42E727466> 11 Application Note 光測定と単位について 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです しかし 測定の方法は多種存在し 何をどのような測定器で測定するかにより 測定結果が異なってきます 本書では光測定とその単位について説明していきます 2. 色とは

More information

15群(○○○)-8編

15群(○○○)-8編 2 群 ( 画像 音 言語 )-5 編 ( 画像符号化 ) 1 章画像 映像信号の性質 概要 対象物体の像を記録したものを画像あるいは映像と呼び, これを信号として捉えて画像 映像信号と呼ぶ. アナログ / ディジタル画像, カラー / モノクロ画像, 静止 / 動画像などに分類される. 画像符号化が対象とするディジタル画像は, 物体像を空間サンプリングして画素の配列として表現するとともに, 各画素値を量子化することでディジタル表示を可能としている.

More information

umeda_1118web(2).pptx

umeda_1118web(2).pptx 選択的ノード破壊による ネットワーク分断に耐性のある 最適ネットワーク設計 関西学院大学理工学部情報科学科 松井知美 巳波弘佳 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 0 / 20 現実のネットワーク 現実世界のネットワークの分析技術の進展! ネットワークのデータ収集の効率化 高速化! 膨大な量のデータを解析できる コンピュータ能力の向上! インターネット! WWWハイパーリンク構造

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 担当教員名 単位数西田健 2 単位 教室 時間 4-1A 教室火曜 4 限 目的不確定性を有する対象の制御に有効な確率システム制御理論について解説する また 確率的要因を考慮した状態推定のために 宇宙ロケットや自律ロボットなどの幅広い分野で利用されているカルマンフィルタやパーティクルフィルタについて解説し それらを用いる制御系の構成手法を教授する 授業計画 (1) ガイダンスと導入 (2) 線形動的システムの時系列モデリング

More information

15群(○○○)-8編

15群(○○○)-8編 4 群 ( モバイル 無線 )- 1 編 ( 無線通信基礎 ) 2 章無線伝搬路 概要 無線通信では送受信間の伝送には電波を用いるが, 電波の伝送路は特に用意されているわけではない. これに対して, 有線の場合では同軸ケーブルや光ファイバケーブルといった最適に設計された伝送路が用いられる. 無線通信では伝送路を自前で用意するわけではないので, 自然界に形成される伝搬路の特性をよく理解してそれを最大限に活用する技術が要求される.

More information

Microsoft PowerPoint - DA2_2017.pptx

Microsoft PowerPoint - DA2_2017.pptx // データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (II)/ 全点対最短路 トポロジカル ソート順による緩和 トポロジカル ソート順に緩和 閉路のない有向グラフ限定 閉路がないならトポロジカル ソート順に緩和するのがベルマン フォードより速い Θ(V + E) 方針 グラフをトポロジカル ソートして頂点に線形順序を与える ソート順に頂点を選び, その頂点の出辺を緩和する 各頂点は一回だけ選択される

More information

竹田式数学 鉄則集

竹田式数学  鉄則集 合格への鉄則集 数学 ⅡB 竹鉄 ⅡB-01~23 竹鉄 ⅡB-1 式と証明 (1) 方程式の決定 方程式の決定問題 a+bi が解なら,a-bi も解 解と係数の関係を活用する 例題 クリアー 140 a,b は実数とする 3 次方程式 x 3 +ax 2 +bx+10=0 が 1+2i を解にもつとき, 定数 a,b の値を求めよ また, 他の解を求めよ 鉄則集 21 竹鉄 ⅡB-2 式と証明

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 非線形カルマンフィルタ ~a. 問題設定 ~ 離散時間非線形状態空間表現 x k + 1 = f x k y k = h x k + bv k + w k f : ベクトル値をとるx k の非線形関数 h : スカラ値をとるx k の非線形関数 v k システム雑音 ( 平均値 0, 分散 σ v 2 k ) x k + 1 = f x k,v k w k 観測雑音 ( 平均値 0, 分散 σ w

More information

Title リズム現象の数理 : 縮約理論によるアプローチ ( 第 52 回物性若手夏の学校 (2007 年度 ), 講義ノート ) Author(s) 蔵本, 由紀 Citation 物性研究 (2008), 89(6): 810-840 Issue Date 2008-03-20 URL http://hdl.handle.net/2433/111024 Right Type Departmental

More information

Processingをはじめよう

Processingをはじめよう Processing をはじめよう 第 7 章 動きその 2 目次 フレームレート スピードと方向 移動 回転 拡大 縮小 2 点間の移動 乱数 タイマー 円運動 今回はここまで 2 2 点間の移動 Example 7-6 (EX_08_06) 始点 (startx, starty) から終点 (stopx, stopy) まで移動する 座標更新の計算方法は後述 始点と終点を変更しても動作する 変更して確認

More information

第4回

第4回 Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値

More information

(H8) 1,412 (H9) 40,007 (H15) 30,103 851

(H8) 1,412 (H9) 40,007 (H15) 30,103 851 (H8) 1,412 (H9) 40,007 (H15) 30,103 851 (H3) 1,466 (H3) 9,862 (H15) 4,450 704 9,795 1,677 18,488 402 44,175 3,824 8,592 853 7,635 1,695 2,202 179 5,127 841 27,631 452 35,173 177 123,797 186 45,727 1,735

More information

22 25 34 44 10 12 14 15 11 12 16 18 19 20 21 11 12 22 10 23 24 12 25 11 12 2611 27 11 28 10 12 29 10 30 10 31 32 10 11 12 33 10 11 12 34

22 25 34 44 10 12 14 15 11 12 16 18 19 20 21 11 12 22 10 23 24 12 25 11 12 2611 27 11 28 10 12 29 10 30 10 31 32 10 11 12 33 10 11 12 34 22 25 34 44 10 12 14 15 11 12 16 18 19 20 21 11 12 22 10 23 24 12 25 11 12 2611 27 11 28 10 12 29 10 30 10 31 32 10 11 12 33 10 11 12 34 35 10 12 36 10 12 37 10 38 10 11 12 39 10 11 12 40 11 12 41 10 11

More information

- 1 - - 2 - - 3 - - 4 - H19 H18-5 - H19.7H20.3 8,629 11,600-6 - - 7 - - 8 - - 9 - H20.7 20 / - 10 - - 11 - 1 8,000 16,000 4,000 2 50 12 80-12 - 20 3040 50 18a 19a - 13 - - 14 - 1,000-15 - 3,000 4,500 560

More information

17 12 12 13301515 2F1 P2 1 22 P19 160

17 12 12 13301515 2F1 P2 1 22 P19 160 136 17 12 12 13301515 2F1 P2 1 22 P19 160 161 15 87 15 P5 26 4 162 10 3 60 1/3 3 1 163 137 138 139 % %.%. (. ) ( ) 48 32 13 40 43 30 42 50 13 99 140 39 12 12 42 55 35 6 79 2004 16 17 39 37 53 13 1 1.2

More information

EP7000取扱説明書

EP7000取扱説明書 EP7000 S0109-3012 3 47 811 1213 1419 2021 53 54 5560 61 6263 66 2223 2427 2830 3133 3436 3740 4142 4344 45 46 4750 5152 2 4 5 6 7 1 3 4 5 6 7 8 9 15 16 17 18 13 EP7000 2 10 11 12 13 14 19 20 21 22 23 24

More information

グラフを作成

グラフを作成 Microsoft Office を使ってグラフを作成する方法について 一例です 操作ができなかったら色々試してください 山際 1 グラフ用紙に手書きでグラフを書いた場合の利点 (1) 副目盛があるので プロットした点の座標を確認しやすい (2) 上付きや下付きの文字 分数を書きやすい (3) データ点を結んで線を引くときに 全体の傾向を正しく認識しやすい 2 Office を使って書いたグラフの欠点

More information

Microsoft PowerPoint - DigitalMedia2_2.pptx

Microsoft PowerPoint - DigitalMedia2_2.pptx デジタルメディア処理 担当 : 井尻敬 デジタルメディア処理 7( 前期 ) /3 デジタル画像とは : イントロダクション / フィルタ処理 : 画素ごとの濃淡変換 線形フィルタ, 線形フィルタ /7 フィルタ処理 : フーリエ変換, ローパスフィルタ, ハイパスフィルタ 5/ 画像の幾何変換 : アファイン変換 5/8 画像の幾何変換 : 画像の補間, イメージモザイキング 5/5 画像領域分割

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

Excelによる統計分析検定_知識編_小塚明_1_4章.indd

Excelによる統計分析検定_知識編_小塚明_1_4章.indd 第2章 1 変量データのまとめ方 本章では, 記述統計の手法について説明します 具体的には, 得られたデータから表やグラフを作成し, 意昧のある統計量を算出する方法など,1 変量データのまとめ方について学びます 本章から理解を深めるための数式が出てきますが, 必ずしも, これらの式を覚える必要はありません それぞれのデータの性質や統計量の意義を理解することが重要です 円グラフと棒グラフ 1 変量質的データをまとめる方法としてよく使われるグラフは,

More information

<4D F736F F F696E74202D2091E630358FCDCCAAB0BCDEDDB8DE979D985F2E B8CDD8AB B83685D>

<4D F736F F F696E74202D2091E630358FCDCCAAB0BCDEDDB8DE979D985F2E B8CDD8AB B83685D> 応用電気通信工学 第 5 章フェージング理論 電気 通信工学専攻安達文幸 参考書進士編 : 移動通信 丸善 989 年奥村 進士監修 : 移動通信の基礎 電子情報通信学会 986 年 目次 5. 電波伝搬路の特徴 5.. モデル化 5.. 距離に依存した伝搬損失 5..3 シャドウィング 5..4 マルチパスフェージング 5. 周波数選択性チャネル 5.. 時間領域表現 5.. 周波数領域表現 5..3

More information

Taro-H22T3金沢工大eの導入訂正版

Taro-H22T3金沢工大eの導入訂正版 数学 Ⅲ での対数 e の導入 T3 第 4 回年会於金沢工業大学岡山市立岡山後楽館高校河合伸昭一部対数数学 Ⅱ の復習 作ってみようあなただけの対数表 対数の原理の理解と記号に慣れる.A. グラフ電卓で検算しながら 次の表を完成させよう 3 4 5 6 7 8 9 0 3 4 5 6 B. 暗算で次の値を計算しよう ( ヒント A の表を活用しよう ) 6 3 3 64 3 56 6 4 8 64

More information

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション

314 図 10.1 分析ツールの起動 図 10.2 データ分析ウィンドウ [ データ ] タブに [ 分析 ] がないときは 以下の手順で表示させる 1. Office ボタン をクリックし Excel のオプション をクリックする ( 図 10.3) 図 10.3 Excel のオプション 313 第 10 章 Excel を用いた統計処理 10.1 Excel の統計処理レポートや卒業研究などでは 大量のデータを処理 分析し 報告しなければならない場面が数多く登場する このような場合 手計算では多くの時間を要するため現在では計算機を用いて一括処理することが一般的である これにより 時間短縮だけでなく手軽に詳細な分析を行うことができる Excel ではこのような大量のデータに対する分析を容易に行えるよう

More information

MT2-Slides-04.pptx

MT2-Slides-04.pptx 計測工学 II 第 4 回 アナログ信号の処理 今日の内容 アナログ信号の処理 ブリッジ回路 増幅回路 負帰還回路 演算増幅器の回路 差動増幅 同相弁別比 受動フィルタ 能動フィルタ ロックイン増幅器などについて学習する 教科書では P218 P228 です 微弱な信号の処理 生体の電気信号は微弱 心電図の信号レベル : 1mV 前後 脳波の信号レベル : 数 µv 300µV 筋電図の信号レベル

More information

Microsoft Word - JT-G722.2v3.3

Microsoft Word - JT-G722.2v3.3 JT-G7. 適応マルチレート広帯域 (AMR-WB) 方式を用いた 16 kbit/s 程度の広帯域音声符号化 WIDEBAND CODING OF SPEECH AT AROUND 16 KBIT/S USING ADAPTIVE MULTI-RATE WIDEBAND (AMR-WB) 第 3.3 版 007 年 5 月 31 日制定 社団法人情報通信技術委員会 THE TELECOMMUNICATION

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学 マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG マルチメディア工学 : 講義計画 イントロダクション コンピュータグラフィックス (Computer Graphics: CG) マルチメディアデータの解析 佐藤嘉伸 大阪大学大学院医学系研究科放射線統合医学講座 yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

Microsoft Word - XRD_2010.doc

Microsoft Word - XRD_2010.doc 5.X 線回折. はじめに以下の条件条件を満たさないたさない場合場合 学生実験学生実験を始めない! 予習をしてこない 学生実験ノートを持ってこない ( テキストにデータを書く学生が多い ) レポート 実験実験ノートノートの作り方 実験ノート レポートは ボールペン ( 手書き ) で書くこと! ワープロで書かれたレポートは受け取らない 誰が読んでも分かりやすいレポートを書くこと 3 客観的な記述 考察が要求される

More information

Microsoft Word - 力学PC1.doc

Microsoft Word - 力学PC1.doc 基礎物理コース I 第 5 回 A 7/6/5, :-:, 9-49, 後藤貴行 -5B, -8-56, gotoo-t@sophia.ac.jp パソコンで微分方程式を解く. 基本 ( ( ( これが式で与えられる は微小量とする ( 何に比べて小さいかは後で述べる ( ( (. 簡単な例 ただの積分, ( e ( [ もちろん 解析的に解けて ( e ( ( e 6 前の値 78 となる ] (

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

2. 時系列分析 プラットフォームの使用法 JMP の 時系列分析 プラットフォームでは 一変量の時系列に対する分析を行うことができます この章では JMP のサンプルデ ータを用いて このプラットフォームの使用法をご説明します JMP のメニューバーより [ ヘルプ ] > [ サンプルデータ ]

2. 時系列分析 プラットフォームの使用法 JMP の 時系列分析 プラットフォームでは 一変量の時系列に対する分析を行うことができます この章では JMP のサンプルデ ータを用いて このプラットフォームの使用法をご説明します JMP のメニューバーより [ ヘルプ ] > [ サンプルデータ ] JMP を用いた ARIMA モデルのあてはめ SAS Institute Japan 株式会社 JMP ジャパン事業部 2013 年 2 月作成 1. はじめに JMP の時系列分析では 一変量の時系列データに対する分析や予測を行うことができ 時系列データに対するグラフ表示 時系列モデルのあてはめ モデルの評価 予測まで 対話的に分析を実行することができます 時系列データにあてはめるモデルとしては

More information

第9回 配列(array)型の変数

第9回 配列(array)型の変数 第 12 回 配列型の変数 情報処理演習 ( テキスト : 第 4 章, 第 8 章 ) 今日の内容 1. 配列の必要性 2. 配列の宣言 3. 配列変数のイメージ 4. 配列変数を使用した例 5. 範囲を超えた添字を使うと? 6. 多次元配列変数 7. 多次元配列変数を使用した例 8. データのソーティング 9. 今日の練習問題 多数のデータ処理 1. 配列の必要性 ( テキスト 31 ページ )

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション ロボティックス Robotics 先端工学基礎課程講義 小泉憲裕 2016/5/6 講義情報 当面はこちらのサイト, http://www.medigit.mi.uec.ac.jp/lect_robotics.html ロボットの運動学 ロボットの運動学 ロボットの運動学は現在 ニュートン力学を発展させた解析力学を基盤とすることが多い 解析力学では物体を 剛体としてあらわす 第 4 回 座標変換平行

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Partner logo サイエンス右揃え上部に配置 XLfit のご紹介 マーケティング部 15 年 3 月 23 日 概要 1. XLfit 機能の確認 - 特徴 3 Step Wizard - 主なツールについて - 主なグラフの表現 2. 実用例 % Inhibition 9 7 6 5 3 1-1 Comparison 1 Concentration 2 1. 基本編 1 特徴 (3 Step

More information

ブック 1.indb

ブック 1.indb 20 29 29 18 21 29 10 30 31 10 11 12 30 13 10 30 14 11 30 15 12 16 13 17 14 18 15 19 16 20 17 21 18 10 20 29 82 83 84 85 86 87 88 20 10 89 20 12 11 90 20 13 12 91 20 14 13 92 20 14 14 93 15 15 94 15 16

More information

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1 4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる

More information

5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き

5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き 5 分で解くシリーズ 01 平面図形 1998 年度本試験数学 ⅠA 第 問 [] 四角形 ABCD は円に内接し, ABC は鈍角で 1 AB, BC 6, si ABC 3 とする また, 線分 AC と BD は直角に交わるとする このとき cosabc クケ コ, AC サシ となる 円の半径は スセ ソ であり タツ si CAB チ, si ACB テとなる また,AC と BD の交点を

More information

Microsoft Word - ultrasonic_2010.doc

Microsoft Word - ultrasonic_2010.doc 超音波の基礎 改訂版 機能材料工学科 阿部洋 目次. 音響振動と音場音場. 音圧. 速度ポテンシャル. 音響インピーダンス 5. 超音波の反射と透過 6. 液浸法 ( パルス超音波透過 ). 超音波吸収 8. 減衰定数 8. 音速測定 9. 測定例 9. 横波反射法を用いたずりいたずりインピーダンスインピーダンス測定. 弾性 0. 粘性 0. 粘弾性. 音波の緩和現象 5 付録 A 弾性論 7 参考文献

More information

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A>

<4D F736F F D20837D834E838D97FB8F4B96E291E889F090E091E682528FCD81698FAC97D1816A> 第 3 章 GDP の決定 練習問題の解説 1. 下表はある国の家計所得と消費支出です 下記の設問に答えなさい 年 所得 (Y) 消費支出 (C) 1 年目 25 15 2 年目 3 174 (1) 1 年目の平均消費性向と平均貯蓄性向を求めなさい (2) 1 年面から 2 年目にかけての限界消費性向を求めなさい 解答 (1).6 と.4 (2).48 解説 (3 頁参照 ) (1) 所得に対する消費の割合が平均消費性向です

More information

~ ~ ~ 1. 部ボート ~ ,.., u~p ととて ~" Bv(t)( 五 ~) B~ B~ θ R N= 札 ~ Vp ' ~r ~~. ~ Ej~ ~p 吐 GRB~ ~ ~V), ~, ~n2 -(1+ 会 )( 山 ~) ~) Bi=14( 山 ß~ m)( 川 ~) (~ ß~) 考察する 前節と同様在考え方て ~'\ れ [ 土ーザ +G B(~CT

More information

Microsoft Word - ミクロ経済学02-01費用関数.doc

Microsoft Word - ミクロ経済学02-01費用関数.doc ミクロ経済学の シナリオ 講義の 3 分の 1 の時間で理解させる技術 国際派公務員養成所 第 2 章 生産者理論 生産者の利潤最大化行動について学び 供給曲線の導出プロセスを確認します 2-1. さまざまな費用曲線 (1) 総費用 (TC) 固定費用 (FC) 可変費用 (VC) 今回は さまざまな費用曲線を学んでいきましょう 費用曲線にはまず 総費用曲線があります 総費用 TC(Total Cost)

More information

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード]

Microsoft PowerPoint - multi_media05-dct_jpeg [互換モード] マルチメディア工学マルチメディアデータの解析データ圧縮 : 離散コサイン変換と JPEG 佐藤嘉伸 マルチメディア工学 : 講義計画 マルチメディアデータの解析 基礎数理 代表的解析手法 データ圧縮 : 離散コサイン変換 JPEG データ表現 : 形状の主成分分析 奈良先端科学技術大学院大学情報科学研究科生体医用画像研究室 yoshi@is.naist.jp http://icb lab.naist.jp/members/yoshi/

More information

49Z-12716-2.qxd (Page 1)

49Z-12716-2.qxd (Page 1) www.tektronix.co.jp µ 全 A = 1/4N * ( T 1-T 2 ), (i =1...N) ディスク ドライブ設計のための測定ソリューション アプリケーション ノート 図 6. リード チャンネルの電流を生成するために使用する任意波形ゼネレー タと電流プローブ リード ライト ヘッドの電流 ライト ヘッドの電流振幅は ヘッド リードを電流プ ローブでルーピングすることにより簡単に測定できま

More information

Microsoft PowerPoint - kyoto

Microsoft PowerPoint - kyoto 研究集会 代数系アルゴリズムと言語および計算理論 知識の証明と暗号技術 情報セキュリティ大学大学院学院 有田正剛 1 はじめに 暗号技術の面白さとむずかしさ システムには攻撃者が存在する 条件が整ったときのベストパフォーマンスより 条件が整わないときの安全性 攻撃者は約束事 ( プロトコル ) には従わない 表面上は従っているふり 放置すると 正直者が損をする それを防ぐには 知識の証明 が基本手段

More information

. .. る試みがなされており, 橋本ら [6] は, 浮揚距離は数 μm~ 数百 μ W 崎町川 ~ 々 ~ 約匂デ対 rp たときで, 移動速度は O.7~ l. Omm/m 凶で あった. 実験において, 苅 ~ 毛焚書己情酸合会 z -...--~ :...",. 今 ~eo 細管を垂直に固定して, 印加周波数を 40kHz とし,

More information