O E ( ) A a A A(a) O ( ) (1) O O () 467

Size: px
Start display at page:

Download "O E ( ) A a A A(a) O ( ) (1) O O () 467"

Transcription

1 ( 1 1 ) 1 466

2 O E ( ) A a A A(a) O ( ) (1) O O () 467

3 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a, B) = AB ( ) ( ) A(a) B(b) d d = d(a, B) = b a 468

4 (1) d(a, B) A B A B b a d d(a, B) () A, B AB ( ) (3) d distance d (4) ( ) A(), B( 3) d(a, B) d(a, B) = ( 3) = 5 = 5 ( ) 17 (1) A( 3), B() () P( ), Q( 1) ( ) d(a, B) ( ) d(a, B) > = 0 d(a, B) = 0 A = B ( ) d(a, B) = d(b, A) ( ) d(a, B) < = d(a, C) + d(c, B) ( ) A(a), B(b) ( ) d(a, B) = b a d(a, B) > = 0 d(a, B) = 0 A = B ( ) a = a d(a, B) = 0 b a = 0 b a = 0 b = a A = B d(a, B) = b a = (a b) = a b = d(b, A) 469

5 ( ) a + b < = a + b d(a, B) = b a = (b c) + (c a) < = b c + c a = d(a, C) + d(c, B) ( ) (1) () A B B A (3) a + b < = a + b a + b < = a + b C (d(a, C) + d(c, B)) (d(a, B)) (< = ) ( ) ( ) P AB AP PB = m : n P AB m : n P AB m : n m > 0, n > 0 ( ) A m P n B A B ( ) 470

6 A B 5 x AB ( ) 4 3 AB 1 P p A P B 1 p 5 x AP PB = : 1 AP = p PB= 5 p p : 5 p = : 1 1 p = 5 p a : b = x : y b x a y bx ay bx = ay a : b = x : y a b, x y a b = x y bx = ay ( ) 471

7 < p < 5 p = p, 5 p = 5 p p = (5 p) p = ( ) A(a) B(b) AB m : n P p p = na + mb m + n na + mb a, b, m, n AB m : n na mb A a m P p n B b x ( ) (I) a < b a < p < b AP = p a, PB = b p AP PB = m : n (p a) : (b p) = m : n m(b p) = n(p a) p p = na + mb m + n 118 a > b 47

8 p = na + mb m + n ( ) AB 1 1 ( ) A(a) B(b) M m m = a + b A( 1) B(4) AB 3 P p p = 3 ( 1) = 1 P(1) M m m = = 3 ( ) M 3 ( ) 18 A( ) B( 9) (1) AB 3 4 () AB ( ) Q AB AQ QB = m : n Q AB m : n Q AB m : n m > 0, n > 0 m n ( ) (1) AB () m = n 473

9 ( ) AB A B m, n m n m n m < n m > n m > n Q AQ QB = m : n AQ QB Q AB A A B n Q m m < n B Q 119 ( ) ( ) A(a) B(b) AB m : n Q q q = na + mb m n (I) a < b m > n Q B a < b < q (q a) : (q b) = m : n m(q b) = n(q a) q q = na + mb m n 474

10 10 3 (II) a < b m < n (III) a > b m > n (IV) a > b m < n q = na + mb m n (I) (IV) q = na + mb m n ( ) A() B(8) AB 4 3 Q q q = = 6 Q(6) ( ) 19 A( ) B(4) (1) AB () AB q = na + mb m n ( n)a + mb q = m + ( n) AB m : ( n) m > 0, n > 0 n < 0 m > 0, n > 0 AB m : ( n) ( ) P AB AP PB = m : n P AB m : n P AB m : n ( ) 475

11 P AB m, n m n ( ) P(p) AB m : n p = na + mb m + n 11 m > 0, n > 0 m : ( n) ( m) : n ? A (a 1, a ) 3 ( x y ) A (a 1, a ) A A(a 1, a ) (0, 0) x y (a 1, a ) a 1 x a x y ( ) y x y 3 476

12 y a A O a 1 x ( ) ( ) ( ) x y x y 477

13 ( ) 4 x y ( ) A B d d = d(a, B) = AB AB AB ( ) ( ) A(a 1, b ) B(b 1, b ) d d = d(a, B) = (b 1 a 1 ) + (b a ) 4 478

14 A d d = a 1 + a A x B y C y b B a A C O a 1 b 1 x ABC C 90 ( ) AB = AC + BC AB = AC + BC AC = b 1 a 1, BC = b a a = a AB = (b 1 a 1 ) + (b a ) B O(0, 0) A OA = a 1 + a ( ) A B x A(a 1, 0) B(b 1, 0) AB = (b 1 a 1 ) + (0 0) = (b 1 a 1 ) 479

15 a = a AB = b 1 a 1 ( ) A(1, 4) B(4, ) d d = (4 1) + ( 4) = = 45 = 3 5 ( ) O A( 4, 3) d d = ( 4) + ( 3) = 5 = 5 ( ) 0 (1) A(, 5) B( 4, 4) () A( 1, 3) O A(a 1, a ) B(b 1, b ) AB m : n P(p 1, p ) ( ) 3 l, l, l m, n AA : A A = BB : B B 480

16 m n A B l A B l A B l y P B A O A P B a 1 p 1 b 1 x P AB m : n AP : PB = m : n AP : PB = A P : P B P A B m : n p 1 = na 1 + mb 1 m + n A P B y p = na + mb m + n 481

17 13 ( ) A(a 1, a ) B(b 1, b ) AB m : n P ( ) na1 + mb 1 m + n, na + mb m + n M ( a1 + b 1, a + b ) A(, 5) B(, 3) AB : ( ) x = y = 1 ( ) , ( ) x = 0 y = 4 (0, 4) ( ) 1 A(, 3) B(4, 1) (1) AB 1 3 () AB ( ) A(a 1, a ) B(b 1, b ) AB m : n Q ( na1 + mb 1, m n na + mb m n ) 14 A(, 3) B(4, 1) AB

18 AM 8 ABC BC M AB + AC = (AM + BM )? ABC 3 A(a 1, a ) B(b 1, b ) C(c 1, c ) M AB 15 B C BC 0? AB + AC = (AM + BM ) 483

19 ABC BC x M BC y A(a 1, a ) B( b 1, 0) C(b 1, 0) y A(a 1, a ) B( b 1, 0) O (M) C(b 1, 0) x AB + AC = {(a 1 + b 1 ) + a } + {(a 1 b 1 ) + a } = (a 1 + b 1 + a ) AM = a 1 + a, BM = b 1 (AM + BM ) = (a 1 + a + b 1 ) AB + AC = (AM + BM ) ( ) 3 ABC BC 1 D AB + AC = 3(AD + BD ) 16 D m : n 484

20 14 ( ) ( ) ( ) ( ) 3 A(a 1, a ) B(b 1, b ) C(c 1, c ) ABC G G ( a1 + b 1 + c 1 3, a + b + c 3 ) AB? 5 ( ) ABC BC M G AM 1 M ( b1 + c 1, b + c ) 1 a 1 + b 1 + c 1 G x + 1 y = a 1 + b 1 + c

21 G ( a1 + b 1 + c 1 3, a + b + c 3 ) ( ) ( ) 3 A(0, 6) B(6, ) C(9, 5) ABC G G(5, 3) x : = 5, y : = 3 ( ) 4 3 A(, 8) B( 3, ) C(7, 3) ABC G 83 ABC AB BC CA L M N ABC LMN A(a 1, a ) B(b 1, b ) C(c 1, c ) ABC G ( ) a1 + b G 1 + c 1 a, + b + c 3 3 L ( a1 + b 1, a + b ) ( b1 + c, M 1, b + c LMN G a 1 + b 1 + b 1 + c 1 x 3 + c 1 + a 1 ) ( c1 + a, N 1, = a 1 + b 1 + c 1 3 y ( ) G a1 + b 1 + c 1 a, + b + c 3 3 c + a ABC LMN ( ) ) 486

22 5 ABC AB BC CA m : n L M N ABC LMN ( ) ( ) 1 ax + by + c = 0 (a, b 0 ) A(a 1, a ), B(b 1, b ) ax+by+c = 0 A(a 1, a ), B(b 1, b ) ax + by + c = 0 a, b, c A(, 1), B(6, 7) ax + by + c = 0 a, b, c 487

23 A B 1 A(, 1) x y 1 a b + c = 0 (1) B(6, 7) 6a + 7b + c = 0 () a, b, c (1) 3 a () (1) 3 10b c = 0 c c = 5b (1) c a b + 5b = 0 a a = b a : b : c = b : b : 5b = : 1 : 5 a = b, c = 5b 1 bx + by + 5b = 0 (3) b = 0 a = b a = 0 a, b 0 b 0 (3) b x + y + 5 = 0 488

24 ( ) 0 a, b, c ( ) 6 (1) A(1, ), B( 1, 1) () A(, 0), B( 3, 5) A(, 1) B( 3, 1) x y = ( ) ( y = 1 ) ax + by + c = 0 A(, 1) a + b + c = 0 (1) B( 3, 1) 3a + b + c = 0 () (1) () b c a = 0 (1) b = c cy + c = 0 (3) c = 0 b = 0 c 0 (3) c y + 1 = 0 y = 1 ( ) 7 (1) A(3, ), B(100, ) () A( 3, 4), B( 3, ) 489

25 18 ( ) A(a 1, a ), B(b 1, b ) ax + by + c = 0 8 m 1 A(a 1, a ) 1 y n y = mx + n m n m a 1, a 1 A(a 1, a ) a = ma 1 + n n = a ma 1 y = mx + a ma 1 ( ) A(a 1, a ) m y a = m(x a 1 ) (, 1) y 1 = (x ) y = x 3 ( ) 8 (, 3) (1) 1 () 1 (3)

26 8 (1 ) 1 1 (x, y) A m = y a x a 1 (x, y) A ( ) ( ) (a 1, a ), (b 1, b ) a 1 b 1 y a = b a a 1 = b 1 x = a 1 b 1 a 1 (x a 1 ) b a b 1 a 1 (1, 3), (3, 1) y ( 3) = 1 ( 3) 3 1 y = x 5 (x 1) ( ) (a 1, a ), (b 1, b ) a 1 = 1, a = 3, b 1 = 3, b = 1 ( ) 19? 491

27 (, 1), (, 4) x x = ( ) 9 (1) (1, 4), (4, 7) () (, 1), (1, 1) (3) ( 1, 4), ( 1, 0) (4) (7, 3), ( 11, 3) ( ) y = mx + n, y = m x + n m = m ( BC B C x AB=A B ) l l C C A B A B x l l CAB= C A B BC B C x AB=A B ABC A B C BC=B C BC AB = B C A B 49

28 AB=A B BC=B C BC B C x ABC A B C CAB= C A B l l ( ) 1 y = mx + n ax + by + c = 0 ( ) ax + by + c = 0, a x + b y + c = 0 ab a b = 0 ax + by + c = 0, a x + b y + c = 0 ( ) 84 (, 1) 3x y + 1 = 0 3x y + 1 = 0 y = 3x y + 1 = 0 y = 3x (, 1) y 1 = 3(x ) y = 3x 5 ( ) ( ) 30 (1) ( 1, ) y = x 1 () (, 1) x + 3y 1 = 0 493

29 1..3 ( ) l : y = mx + n, l : y = m x + n mm = 1 ( ) 6 ( AB x OH 1 ) y l A O H x B l l AOB= 90 AB = OA + OB AOH BOH OA = OH + AH OB = OH + BH AB = OH + AH + BH (1) l 6 494

30 OH = 1, AH = m, BH = m AB = m m 7 (1) (m m ) = + m + ( m ) mm = mm = 1 mm = 1 AB = (m m ) = + m + m OA + OB = + m + ( m ) = + m + m AB = OA + OB AOB O 90 l l ( ) 1 ax + by + c = 0 ( ) ax + by + c = 0, a x + b y + c = 0 aa + bb = 0 ( ) ( ) ( ) 7 BH = m l BH 495

31 85 (, 1) x 3y + 1 = 0 y = x 3y + 1 = m m 1 3 = 1 m = 3 y + 1 = 3(x ) y = 3x + 5 ( ) ( ) 31 (1) (, 1) x y + 1 = 0 () (, 3) x + y + 1 = 0 (3) (1, 3) 3x y + 1 = A(4, 5), B(, 3) AB AB AB AB M ( 4 +, 5 3 M(3, 4) ) 496

32 AB m m = = 1 1 y + 4 = x 3 y = x 7 ( ) ( ) 3 A(6, 3), B(, 7) AB 87 x 5y 16 = 0 A(1, 3) B(x, y) AB x, y AB AB x, y B(x, y) AB x y = 0 x 5y = 45 (1) 5 AB 5 y 3 x 1 = 1 497

33 5x + y = 11 () (1) () x = 5, y = 7 ( ) ( ) 33 x y = 0 A( 1, 1) 1..5 ( ) A l d A l H d = AH ( ) (1) ( ) A l l ( ) l A H () l P AP A l

34 ( ) ( ) (x 0, y 0 ) ax + by + c = 0 d d = ax 0 + by 0 + c a + b (x 0, y 0 ) ax + by + c = 0 H(x 1, y 1 ) ( ) AH AH = (x 1 x 0 ) + (y 1 y 0 ) (I) b 0, a 0 a b AH y 1 y 0 x 1 x 0 ( y 1 y 0 a ) = 1 x 1 x 0 b y 1 y 0 x 1 x 0 x 1 x 0 a k x 1 = x 0 + ak, = b a = y 1 y 0 b x 1 x 0 = ak, y 1 y 0 = bk (1) y 1 = y 0 + bk (x 1, y 1 ) ax + by + c = 0 a(x 0 + ak) + b(y 0 + bk) + c = 0 k k = ax 0 + by 0 + c a + b () 499

35 (1) AH AH = (ak) + (bk) = (a + b )k () (ax0 + by AH = 0 + c) a + b AH> 0 AH = ax 0 + by 0 + c a + b (II) b = 0 ( a 0) ax + c = 0 ( c ) a, 0 d ( d = x 0 c ) ax = 0 + c a a ax 0 + by 0 + c a + b = ax 0 + c a (III) a = 0 ( b 0) y = ax 0 + c a 130 ( ) (1, ) 4x 3y 3 = 0 d ( ) 3 d = 4 + ( 3) = 7 5 = 7 5 ( ) 34 (1) (, ) 4x 3y 3 = 0 () ( 1, 3) x + y 3 = 0 (3) 3x y + 1 = 0 500

36 ??? ( ) ( ) C (a, b) r P(x, y) CP = r (x a) + (y b) = r (x a) + (y b) = r P(x, y) CP = r 9 ( ) C(a, b) r 9 P (x a) + (y b) = r 501

37 (x a) + (y b) = r ( 1, 3) {x ( 1)} + (y 3) = (x + 1) + (y 3) = 4 ( ) 35 (1) (, 1) 3 () ( 1, 1) 5 (3) 1 (x 1) + (y + ) = 9 (x 1) + {y ( )} = 3 (1, ) 3 ( ) 36 (1) (x ) +(y 1) = 1 () (x+) +(y 3) = (3) (x + 1) + y = 16 (x a) + (y b) = r r x + y ax by + (a + b r ) = 0 l = a, m = b, n = a + b r x + y + lx + my + n = 0 50

38 x + y + lx + my + n = 0 x + y + lx + my + n = 0? 131 x + y 6x 4y 3 = 0 x 6x y 4y 9 4 ( 3 3 ) (x 6x + 9) + (y 4y + 4) = (x 3) + (y ) = 4 (3, ) 4 ( )? x + y 6x 4y + 13 = 0 (x 3) + (y ) = 0 0? ( ) a, b a + b = 0 a = b = 0 x 3 = 0, y = 0 503

39 x = 3, y = x + y 6x 4y + 13 = 0 (3, ) ( ) x + y + lx + my + n = 0? x + y 6x 4y + 14 = 0 (x 3) + (y ) = ( ) 88 (1) x + y + x 4y 4 = 0 () x + y + 4x y + 6 = 0 (3) x + y x y + 1 = 0 0 (1) (x + 1) + (y ) = 9 ( 1, ) 3 () (x + ) + (y 1) = 1 (3) ( x 1 ) ( + y 1 ) = 0 ( ) 1, 1 ( ) 10 ( ) 504

40 37 (1) x + y x + y 1 = 0 () x + y 4y + 4 = 0 13 ( ) x + y + lx + my + n = 0 l, m, n x + y + lx + my + n = 0 1 y = mx + n m, n l, m, n l, m, n (1, 1), (, ), (4, ) x + y + lx + my + n = 0 3 l, m, n x + y + lx + my + n = 0 (1, 1) l 1 + m 1 + n = 0 l + m + n + = 0 (1) 505

41 (, ) l m + n + 8 = 0 () (4, ) 4l + m + n + 0 = 0 (3) (1), (), (3) l = 6, m = 0, n = 4 x + y 6x + 4 = 0 ( ) ( ) 38 3 (1, 1), (3, 5), (5, 1) ( ) d d < 0 d = 0 d > 0 506

42 4x 3y + 5 = 0 x + y = 3 x + y = 3 ( ) 4x 3y + 5 = 0 d d = ( 3) = = d < 3 ( ) 39 (1) x + y + 1 = 0 x + y = 1 () y = 3x (x + 1) + (y + 1) = 1 (3) x + y 5 = 0 x + y = 5 ( ) D D > 0 D = 0 D < 0 ( ) y = 3x (x + 1) + (y + 1) = 1? 507

43 (x + 1) + (3x 1) = 1 10x 4x + 1 = 0 D D/4 = ( ) 10 1 = 6 < 0 ( ) 40 (1) x + y + 1 = 0 x + y = 1 () x + y 5 = 0 x + y = 5 ( ) ) ( ) 1 ( ) ( ) x + y = r (x 0, y 0 ) x 0 x + y 0 y = r (1) x x 0 y y 0 508

44 () (3) ( ) (I) x 0 0 y 0 0 m m y 0 = 1 x 0 m = x 0 y 0 y y 0 = x 0 y 0 (x x 0 ) x 0 x + y 0 y = x 0 + y 0 (x 0, y 0 ) x + y = r x 0 + y 0 = r x 0 x + y 0 y = r (II) x 0 = 0 (0, ±r) x y = ±r x 0 x + y 0 y = r x 0 = 0, y 0 = ±r ±ry = r y = ±r ( ) (III) y 0 = 0 (II) 509

45 133 (II) ( ) 134 (I) x 0 0 y 0 0 x + y = 5 (3, 4) 3x 4y = 5 ( ) (3, 4) ( ) 41 x + y = 5 (1) ( 4, 3) () (0, 5) (3) ( 5, 0) ( ) ( ) 1 ( )

46 1.4. A B A B AB A B P P AB H APH BPH 13 AH=BH P A H B P AB P AB AB H APH BPH AP=BP 14 P A B ( ) 13! 14! 511

47 ? p : P A B q : P AB p q ( ) p p q p P q Q P Q Q P p q q p ( ) ( ) A B A(c, 0), B( c, 0) c 0 P (x, y) AP = BP AP, BP AP = BP a = b = a = b (!) 51

48 (x c) + y = (x + c) + y 4cx = 0 c 0 x = 0 y AB A(c, 0), B( c, 0) AB ( ) (1) () AP = BP AP = BP ( ) 4 (, 1), ( 1, ) 90 A( 6, 0), B(3, 0) AP : BP = : 1 P P (x, y) AP : BP = : 1 BP = AP 4BP = AP a, b a = b a = b 513

49 4{(x 3) + y } = (x + 6) + y 3x 36x + 3y = 0 3 x 1x + y = 0 (x 6) + y = 36 P (6, 0) 6 ( ) ( ) A B AP : BP = m : n (m > 0, n > 0, m n) P AB m : n (!) ( ) 43 A(, 0), B(3, 0) AP : BP = 3 : P

50 ( ) 515

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7

繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7 30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a [] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

, ,279 w

, ,279 w No.482 DEC. 200315 14 1754,406 100.0 2160,279 w 100 90 80 70 60 50 40 30 20 10 28.9 23.8 25.0 19.3 30.4 25.0 29.5 80.7 75.0 75.0 70.5 71.1 69.6 76.2 7 8 9 10 11 12 13 23.2 76.8 14 14 1751,189 100.0 2156,574

More information

13ィェィ 0002ィェィ 00ィヲ1 702ィョ ィーィ ィイ071 7ィ 06ィヲ02, ISSN

13ィェィ 0002ィェィ 00ィヲ1 702ィョ ィーィ ィイ071 7ィ 06ィヲ02, ISSN 13 13ィェィ 0002ィェィ 00ィヲ1 702ィョ050702 0709ィーィ ィイ071 7ィ 06ィヲ02, ISSN 1992-6138 1 70306070302071 70307090303 07030209020703 1 7 03000009070807 01090803010908071 7030709030503 0300060903031 709020705 ィヲ0302090803001

More information

000 001

000 001 all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

道路施設基本データ作成入力書式マニュアル(中国地方整備局版)平成20年10月

道路施設基本データ作成入力書式マニュアル(中国地方整備局版)平成20年10月 道 路 BOX 等 に 関 する 調 査 表 記 入 マニュアル D080 D080 道 路 B O X 基 本 この 調 査 表 は 道 路 BOX 等 に 関 する 基 本 的 データを 登 録 するためのものであ る なお ここで 取 扱 う 道 路 BOX 等 とは 管 理 する 道 路 に 対 し 平 行 ( 縦 断 方 向 ) しているアンダーパス 等 の 箇 所 などに 設 けられたボックスカルバート

More information

21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13

More information

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2) (1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46

More information

i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii

More information

Taro10-名張1審無罪判決.PDF

Taro10-名張1審無罪判決.PDF -------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -1- 39 12 23 36 4 11 36 47 15 5 13 14318-2-

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

学習の手順

学習の手順 NAVI 2 MAP 3 ABCD EFGH D F ABCD EFGH CD EH A ABC A BC AD ABC DBA BC//DE x 4 a //b // c x BC//DE EC AD//EF//BC x y AD DB AE EC DE//BC 5 D E AB AC BC 12cm DE 10 AP=PB=BR AQ=CQ BS CS 11 ABCD 1 C AB M BD P

More information

05秋案内.indd

05秋案内.indd 1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b

More information

12~

12~ R A C D B F E H I J K A A A A A A A A A A AD B C BD AD E A DB DB ADB D D DB BD A C D B F E AD B B B B BF AD B B DB B B B B DB B DB D D ADB D D D D D AB AD D DB AB B B B F D D B B D D BF DBF B B B FD

More information

untitled

untitled ( ) 200133 3 3 3 3, 7 347 57 10 i ii iii -1- -2- -3- -4- 90011001700mm -5- 4.2 1991 73.5 44.4 7.4 10.5 10.5 7.4 W 3 H 2.25 H 2.25 7.4 51.8 140.6 88.8 268.8m 5,037.9m 2 2mm 16cm916cm 10.5 W 3 H 2.25 62.8

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

新たな基礎年金制度の構築に向けて

新たな基礎年金制度の構築に向けて [ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9

More information

140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11

More information

y a y y b e

y a y y b e DIGITAL CAMERA FINEPIX F1000EXR BL01893-100 JA http://fujifilm.jp/personal/digitalcamera/index.html y a y y b e 1 2 P 3 y P y P y P y P y P Q R P R E E E E Adv. SP P S A M d F N h Fn R I P O X Y b I A

More information

土壌の観察・実験テキスト −土壌を調べよう!−

土壌の観察・実験テキスト −土壌を調べよう!− ( ) 2006 7 20 i 21 1962 1969 1987 1992 2005 65 1972 1977 1997 1977 1998 1982 1998 2002 2004 2005 SPP 1999 ii 1 g cm m 6378km ( ) 4.2, 4.3 5.1 7.1 8.1 4.1 7.3, 7.4 7.1 1 2 7.1 8.2 2 5 6 1, 2 2.3 4.2, 4.3

More information

水 道 事 業 1. 経 営 の 健 全 性 効 率 性 1 経 常 収 支 比 率 (%): 経 常 収 益 経 常 費 用 当 該 年 度 において 給 水 収 益 や 一 般 会 計 からの 繰 入 金 等 の 収 益 で 維 持 管 理 費 や 支 払 利 息 等 の 費 用 をどの 程 度

水 道 事 業 1. 経 営 の 健 全 性 効 率 性 1 経 常 収 支 比 率 (%): 経 常 収 益 経 常 費 用 当 該 年 度 において 給 水 収 益 や 一 般 会 計 からの 繰 入 金 等 の 収 益 で 維 持 管 理 費 や 支 払 利 息 等 の 費 用 をどの 程 度 表 頭 部 分 の 説 明 : 水 道 下 水 道 共 通 掲 載 項 目 類 似 団 体 区 分 資 金 不 足 比 率 (%) 説 明 < 別 紙 3>のとおり 地 方 公 共 団 体 の 財 政 の 健 全 化 に 関 する 法 律 ( 平 成 19 年 法 律 第 94 号 ) 第 22 条 第 2 項 に 規 定 する 資 金 不 足 比 率 自 己 資 本 構 成 比 率 (%) 普 及

More information

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...

- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8... 取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -

More information

i

i 14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7

More information

PSCHG000.PS

PSCHG000.PS a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a

More information

表紙(社会系)/153024H

表紙(社会系)/153024H ! ""! Sa! "! " # $ % & ' Sa! !! " # $ % & " #! " # $ $ %! " # $ & '! " # $ Sa% "! " # $ Sa! ! " #! " #! " # $ $! " # $ % & % & '! " # $ Sa% ! " # Sa! ! " #! " # $ % & Sa% Sa! ! " # $ % Sa! Sa! Sa! ! "

More information

...J......1803.QX

...J......1803.QX 5 7 9 11 13 15 17 19 21 23 45-1111 48-2314 1 I II 100,000 80,000 60,000 40,000 20,000 0 272,437 80,348 82,207 81,393 82,293 83,696 84,028 82,232 248,983 80,411 4,615 4,757 248,434 248,688 76,708 6,299

More information

技能継承に関するアンケートの結果概要

技能継承に関するアンケートの結果概要 I 1 1 1 1 1 1 2 1 3 1 II 2 1 2 2 2 3 2007 2 4 3 III 4 1 4 4 5 6 2 7 7 8 9 3 10 _10 11 _12 _13 _14 15 4 2007 16 2007 16 17 2007 18 5 19 19 I 2007 1 2005 6 21 8 3 3000 2 292 292 9.7 3 100 1 II 1 86 2 OJT

More information

第1部 一般的コメント

第1部 一般的コメント (( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12

More information

福岡大学人文論叢47-3

福岡大学人文論叢47-3 679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

卒論 提出用ファイル.doc

卒論 提出用ファイル.doc 11 13 1LT99097W (i) (ii) 0. 0....1 1....3 1.1....3 1.2....4 2....7 2.1....7 2.2....8 2.2.1....8 2.2.2....9 2.2.3.... 10 2.3.... 12 3.... 15 Appendix... 17 1.... 17 2.... 19 3.... 20... 22 (1) a. b. c.

More information

2 1 17 1.1 1.1.1 1650

2 1 17 1.1 1.1.1 1650 1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy

More information

表1票4.qx4

表1票4.qx4 iii iv v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 10 11 24 25 26 27 10 56 28 11 29 30 12 13 14 15 16 17 18 19 2010 2111 22 23 2412 2513 14 31 17 32 18 33 19 34 20 35 21 36 24 37 25 38 2614

More information

第1章 国民年金における無年金

第1章 国民年金における無年金 1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20

More information

目 次 1 当 座 口 振 込 通 知 書 P1 ( 機 械 様 式 第 87 号 A) ( 平 成 25 年 1 月 診 療 (3 月 支 払 分 ) 以 降 ) 2 増 減 点 連 絡 書 P4 ( 機 械 様 式 第 20 号 の1) 3 返 戻 内 訳 書 P6 ( 機 械 様 式 第 20

目 次 1 当 座 口 振 込 通 知 書 P1 ( 機 械 様 式 第 87 号 A) ( 平 成 25 年 1 月 診 療 (3 月 支 払 分 ) 以 降 ) 2 増 減 点 連 絡 書 P4 ( 機 械 様 式 第 20 号 の1) 3 返 戻 内 訳 書 P6 ( 機 械 様 式 第 20 増 減 点 連 絡 書 各 種 通 知 書 の 見 方 医 療 機 関 薬 局 平 成 25 年 4 月 社 会 保 険 診 療 報 酬 支 払 基 金 目 次 1 当 座 口 振 込 通 知 書 P1 ( 機 械 様 式 第 87 号 A) ( 平 成 25 年 1 月 診 療 (3 月 支 払 分 ) 以 降 ) 2 増 減 点 連 絡 書 P4 ( 機 械 様 式 第 20 号 の1) 3 返

More information

- 2 -

- 2 - - 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -

More information

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1

2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1 1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4

More information

1 (1) (2)

1 (1) (2) 1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)

More information

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o

o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o 78 2 78... 2 22201011... 4... 9... 7... 29 1 1214 2 7 1 8 2 2 3 1 2 1o 2o 3o 3 1. I 1124 4o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o 72 1. I 2o 3o 4o 5o 6o 7o 2197/6 9. 9 8o 1o 1 1o 2o / 3o 4o 5o 6o

More information

ÿþ

ÿþ I O 01 II O III IV 02 II O 03 II O III IV III IV 04 II O III IV III IV 05 II O III IV 06 III O 07 III O 08 III 09 O III O 10 IV O 11 IV O 12 V O 13 V O 14 V O 15 O ( - ) ( - ) 16 本 校 志 望 の 理 由 入 学 後 の

More information

男 子 755 目 標 77"95 77"B5 77"95 79"59 通 7A"79 夏 7A"C9 6 77 D7 063A 三 橋 亮 介 7A5B 瀬 田 8 D3B 近 畿 総 体 万 博 7 78 58 0735 長 野 ワ 696D 玉 園 8 C376 通 信 陸 上 彦 根 8 7

男 子 755 目 標 7795 77B5 7795 7959 通 7A79 夏 7AC9 6 77 D7 063A 三 橋 亮 介 7A5B 瀬 田 8 D3B 近 畿 総 体 万 博 7 78 58 0735 長 野 ワ 696D 玉 園 8 C376 通 信 陸 上 彦 根 8 7 7567 年 滋 賀 県 中 学 65 傑 男 子 男 子 年 655 目 標 66"D5 66"95 67"65 67"C9 通 68"99 夏 68"A9 6 66 C7 063A 目 宮 口 龍 二 7A88 瀬 田 6 65369 秋 季 総 体 皇 子 山 7 66 D6 063A 押 谷 健 斗 BC75 浅 井 6 65369 秋 季 総 体 皇 子 山 8 66 99 063A 川

More information

provider_020524_2.PDF

provider_020524_2.PDF 1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24

More information

あさひ indd

あさひ indd 2006. 0. 2 2006. 0. 4 30 8 70 2 65 65 40 65 62 300 2006. 0. 3 7 702 22 7 62802 7 385 50 7 385 50 8 385 50 0 2 390 526 4 2006. 0. 0 0 0 62 55 57 68 0 80 5000 24600 37200 0 70 267000 500000 600 2 70 70 267000

More information

150MHz 28 5 31 260MHz 24 25 28 5 31 24 28 5 31 1.... 1 1.1... 1 1.2... 1 1.3... 1 2.... 2 2.1... 2 2.2... 3 2.3... 7 2.4... 9 2.5... 11 3.... 12 3.1... 12 3.2... 13 3.3... 16 3.4... 24 4.... 32 4.1...

More information

「産業上利用することができる発明」の審査の運用指針(案)

「産業上利用することができる発明」の審査の運用指針(案) 1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)

More information

i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13

More information

憲法h1out

憲法h1out m n mnm mnn m m m m m m. x x x ax bxc a x x bb ac a fxax bxc fxx x ax bxca b ac x x ax bxca x x x.x x x x x x xxx x x xxx x x xxx x x xx x x x axbcxdacx adbcxbd x xxx m n mnm mnn m m m m m m m m

More information

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21

178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (

More information

untitled

untitled 1 2 1 2 1 1 2 2 18 1 1990 2 3 4 5 6 2006 1 19981995 1999 1993 20002004 2006 2004 2006 1 2 1970 70 1980 71 86 01 71 86 01 4 4 2 5 12 8 7 1 3 10 8 9 2 3 4 11 10 10 6 5 6 14 14 10 20063 15 4 71 86 01 71 86

More information

BL01622-100 JA DIGITAL CAMERA FINEPIX F770EXR http://fujifilm.jp/personal/digitalcamera/index.html y a y y b e y DISP/BACK 1 2 P 3 y P y P y P y P y P Q R P R E d F N h Fn b R I P O X Y n E E E I Adv.

More information

2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................

More information

1-1 - 2 3-2 - - 3 - i - 4 - ii - 5 - c - 6 - 4 1-7 - 2 1-8 - 2-9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - 3-18 - - 19 - - 20 - - 21 - - 22 - - 23 - iii i - 24 - - 25 - - 26 - 4-27 - 5

More information

vol.31_H1-H4.ai

vol.31_H1-H4.ai http://www.jmdp.or.jp/ http://www.donorsnet.jp/ CONTENTS 29 8,715 Vol. 31 2 3 ac ad bc bd ab cd 4 Point! Point! Point! 5 Point! Point! 6 7 314 611 122 4 125 2 72 2 102 3 2 260 312 0 3 14 3 14 18 14 60

More information

‡¢‡¿‡«‰øŒØŒì_2„”“ƒ

‡¢‡¿‡«‰øŒØŒì_2„”“ƒ qwr q BB w MQ e MQ MQ r A A 1 1 Z Z q w e 1 1 { a s d f g h j a s d f g h a s d f g h 1 1 1 1 1 q w e r t y u q w e r t y q w e 1 1 1 1 1 1 1 1 1 1 a s d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

More information

cm H.11.3 P.13 2 3-106-

cm H.11.3 P.13 2 3-106- H11.3 H.11.3 P.4-105- cm H.11.3 P.13 2 3-106- 2 H.11.3 P.47 H.11.3 P.27 i vl1 vl2-107- 3 h vl l1 l2 1 2 0 ii H.11.3 P.49 2 iii i 2 vl1 vl2-108- H.11.3 P.50 ii 2 H.11.3 P.52 cm -109- H.11.3 P.44 S S H.11.3

More information

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2

1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =

More information

中学校学習指導要領解説数学編

中学校学習指導要領解説数学編 20 1 1 3 7 16 16 16 22 31 31 40 67 67 67 77 87 93 98 104 104 109 117 121 124 129 129 140 149 152 155 161 161 163 168 170 -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -16- -17- -18- -19- -20- -21-

More information

B-D044 未 公 開 株 取 引 者 4 4,764 B-D045 分 譲 住 宅 居 住 者 624,093 B-D047 先 物 商 品 取 引 者 2 2,687 B-D048 FX 投 資 家 6,029 B-D049 和 牛 オーナー 投 資 家 34,094 B-D050 未 公 開

B-D044 未 公 開 株 取 引 者 4 4,764 B-D045 分 譲 住 宅 居 住 者 624,093 B-D047 先 物 商 品 取 引 者 2 2,687 B-D048 FX 投 資 家 6,029 B-D049 和 牛 オーナー 投 資 家 34,094 B-D050 未 公 開 コード タイトル 件 数 住 所 自 宅 TEL 携 帯 生 年 性 別 勤 務 先 名 勤 務 TEL D: 住 宅 不 動 産 投 資 関 連 A-D001 不 動 産 ( 土 地 ) 投 資 家 8,504 A-D002 財 テク 実 践 者 投 資 家 8,452 A-D003 投 資 家 層 442,415 A-D005 住 宅 購 入 条 件 適 合 者 168,667 A-D007 土

More information

1. (1) 1/

1. (1) 1/ 2005 11 30 2006 03 31 1-1-2 [ ] 7-12 SMBC 4 1 27 1 18 1. (1) 1/5 1 2 32 1/5 1 2006 3 11 200 2006 1 1/5 20 20 30 CM 10 TVCM15 BB 2006 3 31 26 3 5 2 1 4 3 2 3 (2) (1) 2. (1) 1 2006/03/31 1,680,877,606 1

More information

......1201-P1.`5

......1201-P1.`5 2009. No356 2/ 5 6 a b b 7 d d 6 ca b dd a c b b d d c c a c b - a b G A bb - c a - d b c b c c d b F F G & 7 B C C E D B C F C B E B a ca b b c c d d c c d b c c d b c c d b d d d d - d d d b b c c b

More information

i

i i 1 1 1 1...................................................... 2...................................................... 2 2 5 5.................................................. 6...................................................

More information

3年間総仕上げ数学.indd

3年間総仕上げ数学.indd 数 と 式 () 学 習 日 月 日 注 00 年 春,0 年 春 に 受 験 する 人 は,この 単 元 を 学 習 する 必 要 はありません 四 則 計 算 の 可 能 性 自 然 数 の 範 囲 加 法 と 乗 法 はいつでもできる が, 減 法 と 除 法 はいつでもできるとは 限 らない 整 数 の 範 囲 加 法, 減 法, 乗 法 はいつでもで きるが, 除 法 はいつでもできるとは

More information

i

i i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (

More information

EP760取扱説明書

EP760取扱説明書 D D D # % ' ) * +, B - B / 1 Q&A B 2 B 5 B 6 Q & A 7 8 $ % & ' B B B ( B B B B B B B B B B B ) B B B A # $ A B B * 1 2 # $ % # B B % $ # $ % + B B 1 B 2 B B B B B B B B B B , B B B - 1 3 2 2 B B B B B

More information

A a b c d a b a b c d e a b c g h f i d e f g h i M a b c a b c d M a M b c d a b a b a M b a b a b c a b a M a a M a c d b a b c d a b a b a M c d a b e c M f a b c d e f E F d e a f a M bm c d a M b

More information

補足情報

補足情報 1 危 険 警 告 注 意 2 3 4 5 6 7 8 1 2 3 4 5 9 6 7 8 9 10 10 1 2 11 1 12 1 2 13 3 4 14 1 2 15 3 4 5 16 1 2 3 17 1 2 3 4 18 19 20 21 22 23 1 2 3 4 5 24 6 7 8 9 10 25 26 27 28 6 1 2 7 8 9 3 4 5 29 1 2 警 告 3 4 5

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

2002.N.x.h.L.......g9/20

2002.N.x.h.L.......g9/20 1 2 3 4 5 6 1 2 3 4 5 8 9 1 11 11 12 13 k 14 l 16 m 17 n 18 o 19 k 2 l 2 m 21 n 21 o 22 p 23 q 23 r 24 24 25 26 27 28 k 28 l 29 m 29 3 31 34 42 44 1, 8, 6, 4, 2, 1,2 1, 8 6 4 2 1, 8, 6, 4, 2, 1,2 1, 8

More information

2.ポイント 表 ポイントランキングのポイントは 記 のポイント 表 を 使 用 いたします ク レート A B C D E F G H I J K L M N 優 勝 8192 7168 6144 5120 4096 3584 3072 2560 2048 1792 1536 1280 1024

2.ポイント 表 ポイントランキングのポイントは 記 のポイント 表 を 使 用 いたします ク レート A B C D E F G H I J K L M N 優 勝 8192 7168 6144 5120 4096 3584 3072 2560 2048 1792 1536 1280 1024 ダンロップ 大 阪 府 テニスジュニアランキングシステムについて ダンロップ 大 阪 府 テニスジュニアランキングポイントは 選 手 が 過 去 1 年 間 に 開 催 され た 基 準 大 会 において 獲 得 したポイントの 合 計 です ランキングは 大 阪 府 テニス 協 会 ホー ムページ またはスコアブックのページにて 発 表 されます 登 録 選 手 は 池 村 杯 から1 年 間 基

More information

... a. b. c. a b c : - a b iphone CD DVD a, b 2

... a. b. c. a b c : - a b iphone CD DVD a, b 2 . a. b. c. a b a,b c a,b c a b c ab,c a-ca a a-c 1 ... a. b. c. a b c : - a b iphone CD DVD a, b 2 c : - : -.. a-c a. b. i ii iii iv v c. d. a 3 : b. i v i ii iii iv negligence v conspiracy of silence

More information

2006/6/16 2006/9/1 2007/11/9 () 2011/4/21 2005 2006 3 (2005 12 ())2005 12 13 2011 4 21 2011 4 ii

2006/6/16 2006/9/1 2007/11/9 () 2011/4/21 2005 2006 3 (2005 12 ())2005 12 13 2011 4 21 2011 4 ii 2011 4 2006/6/16 2006/9/1 2007/11/9 () 2011/4/21 2005 2006 3 (2005 12 ())2005 12 13 2011 4 21 2011 4 ii 1 2 A 3 B C IT NISD-K304-101 NISD-K305-101 iii ST ST DM6-08-101 2011 4 ST ST NISD-K304-101 NISD-K305-101

More information

日本経済新聞社編『経済学の巨人危機と闘う─達人が読み解く先人の知恵』

日本経済新聞社編『経済学の巨人危機と闘う─達人が読み解く先人の知恵』 2012 309pp. Yasuo Suzuki / I 2008 4 3-16 1 2 3 174 2013 winter / No.398 4 5 6 7 8 J S 9 10 11 12 13 14 15 16 17 II 9 2011 11 9 9 16 175 6-8 1 1 1 2 7 13 15 10 280 281-286 176 2013 winter / No.398 281 286-298

More information