O E ( ) A a A A(a) O ( ) (1) O O () 467
|
|
- ありさ たかにし
- 2 years ago
- Views:
Transcription
1 ( 1 1 ) 1 466
2 O E ( ) A a A A(a) O ( ) (1) O O () 467
3 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a, B) = AB ( ) ( ) A(a) B(b) d d = d(a, B) = b a 468
4 (1) d(a, B) A B A B b a d d(a, B) () A, B AB ( ) (3) d distance d (4) ( ) A(), B( 3) d(a, B) d(a, B) = ( 3) = 5 = 5 ( ) 17 (1) A( 3), B() () P( ), Q( 1) ( ) d(a, B) ( ) d(a, B) > = 0 d(a, B) = 0 A = B ( ) d(a, B) = d(b, A) ( ) d(a, B) < = d(a, C) + d(c, B) ( ) A(a), B(b) ( ) d(a, B) = b a d(a, B) > = 0 d(a, B) = 0 A = B ( ) a = a d(a, B) = 0 b a = 0 b a = 0 b = a A = B d(a, B) = b a = (a b) = a b = d(b, A) 469
5 ( ) a + b < = a + b d(a, B) = b a = (b c) + (c a) < = b c + c a = d(a, C) + d(c, B) ( ) (1) () A B B A (3) a + b < = a + b a + b < = a + b C (d(a, C) + d(c, B)) (d(a, B)) (< = ) ( ) ( ) P AB AP PB = m : n P AB m : n P AB m : n m > 0, n > 0 ( ) A m P n B A B ( ) 470
6 A B 5 x AB ( ) 4 3 AB 1 P p A P B 1 p 5 x AP PB = : 1 AP = p PB= 5 p p : 5 p = : 1 1 p = 5 p a : b = x : y b x a y bx ay bx = ay a : b = x : y a b, x y a b = x y bx = ay ( ) 471
7 < p < 5 p = p, 5 p = 5 p p = (5 p) p = ( ) A(a) B(b) AB m : n P p p = na + mb m + n na + mb a, b, m, n AB m : n na mb A a m P p n B b x ( ) (I) a < b a < p < b AP = p a, PB = b p AP PB = m : n (p a) : (b p) = m : n m(b p) = n(p a) p p = na + mb m + n 118 a > b 47
8 p = na + mb m + n ( ) AB 1 1 ( ) A(a) B(b) M m m = a + b A( 1) B(4) AB 3 P p p = 3 ( 1) = 1 P(1) M m m = = 3 ( ) M 3 ( ) 18 A( ) B( 9) (1) AB 3 4 () AB ( ) Q AB AQ QB = m : n Q AB m : n Q AB m : n m > 0, n > 0 m n ( ) (1) AB () m = n 473
9 ( ) AB A B m, n m n m n m < n m > n m > n Q AQ QB = m : n AQ QB Q AB A A B n Q m m < n B Q 119 ( ) ( ) A(a) B(b) AB m : n Q q q = na + mb m n (I) a < b m > n Q B a < b < q (q a) : (q b) = m : n m(q b) = n(q a) q q = na + mb m n 474
10 10 3 (II) a < b m < n (III) a > b m > n (IV) a > b m < n q = na + mb m n (I) (IV) q = na + mb m n ( ) A() B(8) AB 4 3 Q q q = = 6 Q(6) ( ) 19 A( ) B(4) (1) AB () AB q = na + mb m n ( n)a + mb q = m + ( n) AB m : ( n) m > 0, n > 0 n < 0 m > 0, n > 0 AB m : ( n) ( ) P AB AP PB = m : n P AB m : n P AB m : n ( ) 475
11 P AB m, n m n ( ) P(p) AB m : n p = na + mb m + n 11 m > 0, n > 0 m : ( n) ( m) : n ? A (a 1, a ) 3 ( x y ) A (a 1, a ) A A(a 1, a ) (0, 0) x y (a 1, a ) a 1 x a x y ( ) y x y 3 476
12 y a A O a 1 x ( ) ( ) ( ) x y x y 477
13 ( ) 4 x y ( ) A B d d = d(a, B) = AB AB AB ( ) ( ) A(a 1, b ) B(b 1, b ) d d = d(a, B) = (b 1 a 1 ) + (b a ) 4 478
14 A d d = a 1 + a A x B y C y b B a A C O a 1 b 1 x ABC C 90 ( ) AB = AC + BC AB = AC + BC AC = b 1 a 1, BC = b a a = a AB = (b 1 a 1 ) + (b a ) B O(0, 0) A OA = a 1 + a ( ) A B x A(a 1, 0) B(b 1, 0) AB = (b 1 a 1 ) + (0 0) = (b 1 a 1 ) 479
15 a = a AB = b 1 a 1 ( ) A(1, 4) B(4, ) d d = (4 1) + ( 4) = = 45 = 3 5 ( ) O A( 4, 3) d d = ( 4) + ( 3) = 5 = 5 ( ) 0 (1) A(, 5) B( 4, 4) () A( 1, 3) O A(a 1, a ) B(b 1, b ) AB m : n P(p 1, p ) ( ) 3 l, l, l m, n AA : A A = BB : B B 480
16 m n A B l A B l A B l y P B A O A P B a 1 p 1 b 1 x P AB m : n AP : PB = m : n AP : PB = A P : P B P A B m : n p 1 = na 1 + mb 1 m + n A P B y p = na + mb m + n 481
17 13 ( ) A(a 1, a ) B(b 1, b ) AB m : n P ( ) na1 + mb 1 m + n, na + mb m + n M ( a1 + b 1, a + b ) A(, 5) B(, 3) AB : ( ) x = y = 1 ( ) , ( ) x = 0 y = 4 (0, 4) ( ) 1 A(, 3) B(4, 1) (1) AB 1 3 () AB ( ) A(a 1, a ) B(b 1, b ) AB m : n Q ( na1 + mb 1, m n na + mb m n ) 14 A(, 3) B(4, 1) AB
18 AM 8 ABC BC M AB + AC = (AM + BM )? ABC 3 A(a 1, a ) B(b 1, b ) C(c 1, c ) M AB 15 B C BC 0? AB + AC = (AM + BM ) 483
19 ABC BC x M BC y A(a 1, a ) B( b 1, 0) C(b 1, 0) y A(a 1, a ) B( b 1, 0) O (M) C(b 1, 0) x AB + AC = {(a 1 + b 1 ) + a } + {(a 1 b 1 ) + a } = (a 1 + b 1 + a ) AM = a 1 + a, BM = b 1 (AM + BM ) = (a 1 + a + b 1 ) AB + AC = (AM + BM ) ( ) 3 ABC BC 1 D AB + AC = 3(AD + BD ) 16 D m : n 484
20 14 ( ) ( ) ( ) ( ) 3 A(a 1, a ) B(b 1, b ) C(c 1, c ) ABC G G ( a1 + b 1 + c 1 3, a + b + c 3 ) AB? 5 ( ) ABC BC M G AM 1 M ( b1 + c 1, b + c ) 1 a 1 + b 1 + c 1 G x + 1 y = a 1 + b 1 + c
21 G ( a1 + b 1 + c 1 3, a + b + c 3 ) ( ) ( ) 3 A(0, 6) B(6, ) C(9, 5) ABC G G(5, 3) x : = 5, y : = 3 ( ) 4 3 A(, 8) B( 3, ) C(7, 3) ABC G 83 ABC AB BC CA L M N ABC LMN A(a 1, a ) B(b 1, b ) C(c 1, c ) ABC G ( ) a1 + b G 1 + c 1 a, + b + c 3 3 L ( a1 + b 1, a + b ) ( b1 + c, M 1, b + c LMN G a 1 + b 1 + b 1 + c 1 x 3 + c 1 + a 1 ) ( c1 + a, N 1, = a 1 + b 1 + c 1 3 y ( ) G a1 + b 1 + c 1 a, + b + c 3 3 c + a ABC LMN ( ) ) 486
22 5 ABC AB BC CA m : n L M N ABC LMN ( ) ( ) 1 ax + by + c = 0 (a, b 0 ) A(a 1, a ), B(b 1, b ) ax+by+c = 0 A(a 1, a ), B(b 1, b ) ax + by + c = 0 a, b, c A(, 1), B(6, 7) ax + by + c = 0 a, b, c 487
23 A B 1 A(, 1) x y 1 a b + c = 0 (1) B(6, 7) 6a + 7b + c = 0 () a, b, c (1) 3 a () (1) 3 10b c = 0 c c = 5b (1) c a b + 5b = 0 a a = b a : b : c = b : b : 5b = : 1 : 5 a = b, c = 5b 1 bx + by + 5b = 0 (3) b = 0 a = b a = 0 a, b 0 b 0 (3) b x + y + 5 = 0 488
24 ( ) 0 a, b, c ( ) 6 (1) A(1, ), B( 1, 1) () A(, 0), B( 3, 5) A(, 1) B( 3, 1) x y = ( ) ( y = 1 ) ax + by + c = 0 A(, 1) a + b + c = 0 (1) B( 3, 1) 3a + b + c = 0 () (1) () b c a = 0 (1) b = c cy + c = 0 (3) c = 0 b = 0 c 0 (3) c y + 1 = 0 y = 1 ( ) 7 (1) A(3, ), B(100, ) () A( 3, 4), B( 3, ) 489
25 18 ( ) A(a 1, a ), B(b 1, b ) ax + by + c = 0 8 m 1 A(a 1, a ) 1 y n y = mx + n m n m a 1, a 1 A(a 1, a ) a = ma 1 + n n = a ma 1 y = mx + a ma 1 ( ) A(a 1, a ) m y a = m(x a 1 ) (, 1) y 1 = (x ) y = x 3 ( ) 8 (, 3) (1) 1 () 1 (3)
26 8 (1 ) 1 1 (x, y) A m = y a x a 1 (x, y) A ( ) ( ) (a 1, a ), (b 1, b ) a 1 b 1 y a = b a a 1 = b 1 x = a 1 b 1 a 1 (x a 1 ) b a b 1 a 1 (1, 3), (3, 1) y ( 3) = 1 ( 3) 3 1 y = x 5 (x 1) ( ) (a 1, a ), (b 1, b ) a 1 = 1, a = 3, b 1 = 3, b = 1 ( ) 19? 491
27 (, 1), (, 4) x x = ( ) 9 (1) (1, 4), (4, 7) () (, 1), (1, 1) (3) ( 1, 4), ( 1, 0) (4) (7, 3), ( 11, 3) ( ) y = mx + n, y = m x + n m = m ( BC B C x AB=A B ) l l C C A B A B x l l CAB= C A B BC B C x AB=A B ABC A B C BC=B C BC AB = B C A B 49
28 AB=A B BC=B C BC B C x ABC A B C CAB= C A B l l ( ) 1 y = mx + n ax + by + c = 0 ( ) ax + by + c = 0, a x + b y + c = 0 ab a b = 0 ax + by + c = 0, a x + b y + c = 0 ( ) 84 (, 1) 3x y + 1 = 0 3x y + 1 = 0 y = 3x y + 1 = 0 y = 3x (, 1) y 1 = 3(x ) y = 3x 5 ( ) ( ) 30 (1) ( 1, ) y = x 1 () (, 1) x + 3y 1 = 0 493
29 1..3 ( ) l : y = mx + n, l : y = m x + n mm = 1 ( ) 6 ( AB x OH 1 ) y l A O H x B l l AOB= 90 AB = OA + OB AOH BOH OA = OH + AH OB = OH + BH AB = OH + AH + BH (1) l 6 494
30 OH = 1, AH = m, BH = m AB = m m 7 (1) (m m ) = + m + ( m ) mm = mm = 1 mm = 1 AB = (m m ) = + m + m OA + OB = + m + ( m ) = + m + m AB = OA + OB AOB O 90 l l ( ) 1 ax + by + c = 0 ( ) ax + by + c = 0, a x + b y + c = 0 aa + bb = 0 ( ) ( ) ( ) 7 BH = m l BH 495
31 85 (, 1) x 3y + 1 = 0 y = x 3y + 1 = m m 1 3 = 1 m = 3 y + 1 = 3(x ) y = 3x + 5 ( ) ( ) 31 (1) (, 1) x y + 1 = 0 () (, 3) x + y + 1 = 0 (3) (1, 3) 3x y + 1 = A(4, 5), B(, 3) AB AB AB AB M ( 4 +, 5 3 M(3, 4) ) 496
32 AB m m = = 1 1 y + 4 = x 3 y = x 7 ( ) ( ) 3 A(6, 3), B(, 7) AB 87 x 5y 16 = 0 A(1, 3) B(x, y) AB x, y AB AB x, y B(x, y) AB x y = 0 x 5y = 45 (1) 5 AB 5 y 3 x 1 = 1 497
33 5x + y = 11 () (1) () x = 5, y = 7 ( ) ( ) 33 x y = 0 A( 1, 1) 1..5 ( ) A l d A l H d = AH ( ) (1) ( ) A l l ( ) l A H () l P AP A l
34 ( ) ( ) (x 0, y 0 ) ax + by + c = 0 d d = ax 0 + by 0 + c a + b (x 0, y 0 ) ax + by + c = 0 H(x 1, y 1 ) ( ) AH AH = (x 1 x 0 ) + (y 1 y 0 ) (I) b 0, a 0 a b AH y 1 y 0 x 1 x 0 ( y 1 y 0 a ) = 1 x 1 x 0 b y 1 y 0 x 1 x 0 x 1 x 0 a k x 1 = x 0 + ak, = b a = y 1 y 0 b x 1 x 0 = ak, y 1 y 0 = bk (1) y 1 = y 0 + bk (x 1, y 1 ) ax + by + c = 0 a(x 0 + ak) + b(y 0 + bk) + c = 0 k k = ax 0 + by 0 + c a + b () 499
35 (1) AH AH = (ak) + (bk) = (a + b )k () (ax0 + by AH = 0 + c) a + b AH> 0 AH = ax 0 + by 0 + c a + b (II) b = 0 ( a 0) ax + c = 0 ( c ) a, 0 d ( d = x 0 c ) ax = 0 + c a a ax 0 + by 0 + c a + b = ax 0 + c a (III) a = 0 ( b 0) y = ax 0 + c a 130 ( ) (1, ) 4x 3y 3 = 0 d ( ) 3 d = 4 + ( 3) = 7 5 = 7 5 ( ) 34 (1) (, ) 4x 3y 3 = 0 () ( 1, 3) x + y 3 = 0 (3) 3x y + 1 = 0 500
36 ??? ( ) ( ) C (a, b) r P(x, y) CP = r (x a) + (y b) = r (x a) + (y b) = r P(x, y) CP = r 9 ( ) C(a, b) r 9 P (x a) + (y b) = r 501
37 (x a) + (y b) = r ( 1, 3) {x ( 1)} + (y 3) = (x + 1) + (y 3) = 4 ( ) 35 (1) (, 1) 3 () ( 1, 1) 5 (3) 1 (x 1) + (y + ) = 9 (x 1) + {y ( )} = 3 (1, ) 3 ( ) 36 (1) (x ) +(y 1) = 1 () (x+) +(y 3) = (3) (x + 1) + y = 16 (x a) + (y b) = r r x + y ax by + (a + b r ) = 0 l = a, m = b, n = a + b r x + y + lx + my + n = 0 50
38 x + y + lx + my + n = 0 x + y + lx + my + n = 0? 131 x + y 6x 4y 3 = 0 x 6x y 4y 9 4 ( 3 3 ) (x 6x + 9) + (y 4y + 4) = (x 3) + (y ) = 4 (3, ) 4 ( )? x + y 6x 4y + 13 = 0 (x 3) + (y ) = 0 0? ( ) a, b a + b = 0 a = b = 0 x 3 = 0, y = 0 503
39 x = 3, y = x + y 6x 4y + 13 = 0 (3, ) ( ) x + y + lx + my + n = 0? x + y 6x 4y + 14 = 0 (x 3) + (y ) = ( ) 88 (1) x + y + x 4y 4 = 0 () x + y + 4x y + 6 = 0 (3) x + y x y + 1 = 0 0 (1) (x + 1) + (y ) = 9 ( 1, ) 3 () (x + ) + (y 1) = 1 (3) ( x 1 ) ( + y 1 ) = 0 ( ) 1, 1 ( ) 10 ( ) 504
40 37 (1) x + y x + y 1 = 0 () x + y 4y + 4 = 0 13 ( ) x + y + lx + my + n = 0 l, m, n x + y + lx + my + n = 0 1 y = mx + n m, n l, m, n l, m, n (1, 1), (, ), (4, ) x + y + lx + my + n = 0 3 l, m, n x + y + lx + my + n = 0 (1, 1) l 1 + m 1 + n = 0 l + m + n + = 0 (1) 505
41 (, ) l m + n + 8 = 0 () (4, ) 4l + m + n + 0 = 0 (3) (1), (), (3) l = 6, m = 0, n = 4 x + y 6x + 4 = 0 ( ) ( ) 38 3 (1, 1), (3, 5), (5, 1) ( ) d d < 0 d = 0 d > 0 506
42 4x 3y + 5 = 0 x + y = 3 x + y = 3 ( ) 4x 3y + 5 = 0 d d = ( 3) = = d < 3 ( ) 39 (1) x + y + 1 = 0 x + y = 1 () y = 3x (x + 1) + (y + 1) = 1 (3) x + y 5 = 0 x + y = 5 ( ) D D > 0 D = 0 D < 0 ( ) y = 3x (x + 1) + (y + 1) = 1? 507
43 (x + 1) + (3x 1) = 1 10x 4x + 1 = 0 D D/4 = ( ) 10 1 = 6 < 0 ( ) 40 (1) x + y + 1 = 0 x + y = 1 () x + y 5 = 0 x + y = 5 ( ) ) ( ) 1 ( ) ( ) x + y = r (x 0, y 0 ) x 0 x + y 0 y = r (1) x x 0 y y 0 508
44 () (3) ( ) (I) x 0 0 y 0 0 m m y 0 = 1 x 0 m = x 0 y 0 y y 0 = x 0 y 0 (x x 0 ) x 0 x + y 0 y = x 0 + y 0 (x 0, y 0 ) x + y = r x 0 + y 0 = r x 0 x + y 0 y = r (II) x 0 = 0 (0, ±r) x y = ±r x 0 x + y 0 y = r x 0 = 0, y 0 = ±r ±ry = r y = ±r ( ) (III) y 0 = 0 (II) 509
45 133 (II) ( ) 134 (I) x 0 0 y 0 0 x + y = 5 (3, 4) 3x 4y = 5 ( ) (3, 4) ( ) 41 x + y = 5 (1) ( 4, 3) () (0, 5) (3) ( 5, 0) ( ) ( ) 1 ( )
46 1.4. A B A B AB A B P P AB H APH BPH 13 AH=BH P A H B P AB P AB AB H APH BPH AP=BP 14 P A B ( ) 13! 14! 511
47 ? p : P A B q : P AB p q ( ) p p q p P q Q P Q Q P p q q p ( ) ( ) A B A(c, 0), B( c, 0) c 0 P (x, y) AP = BP AP, BP AP = BP a = b = a = b (!) 51
48 (x c) + y = (x + c) + y 4cx = 0 c 0 x = 0 y AB A(c, 0), B( c, 0) AB ( ) (1) () AP = BP AP = BP ( ) 4 (, 1), ( 1, ) 90 A( 6, 0), B(3, 0) AP : BP = : 1 P P (x, y) AP : BP = : 1 BP = AP 4BP = AP a, b a = b a = b 513
49 4{(x 3) + y } = (x + 6) + y 3x 36x + 3y = 0 3 x 1x + y = 0 (x 6) + y = 36 P (6, 0) 6 ( ) ( ) A B AP : BP = m : n (m > 0, n > 0, m n) P AB m : n (!) ( ) 43 A(, 0), B(3, 0) AP : BP = 3 : P
50 ( ) 515
76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(
3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(
04年度LS民法Ⅰ教材改訂版.PDF
?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B
繖 7 縺6ァ80キ3 ッ0キ3 ェ ュ ョ07 縺00 06 ュ0503 ュ ッ 70キ ァ805 ョ0705 ョ ッ0キ3 x 罍陦ァ ァ 0 04 縺 ァ タ0903 タ05 ァ. 7
30キ36ヲ0 7 7 ュ6 70キ3 ョ6ァ8056 50キ300 縺6 5 ッ05 7 07 ッ 7 ュ ッ04 ュ03 ー 0キ36ヲ06 7 繖 70キ306 6 5 0 タ0503070060 08 ョ0303 縺0 ァ090609 0403 閨0303 003 ァ 0060503 陦ァ 06 タ09 ァ タ04 縺06 閨06-0006003 ァ ァ 04 罍ァ006 縺03 0403
> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3
13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
48 * *2
374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC
a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a
[] a x f(x) = ( + a)( x) + ( a)x f(x) = ( a + ) x + a + () x f(x) a a + a > a + () x f(x) a (a + ) a x 4 f (x) = ( + a) ( x) + ( a) x = ( a + a) x + a + = ( a + ) x + a +, () a + a f(x) f(x) = f() = a
122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin
121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos
1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C
0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,
13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x
, ,279 w
No.482 DEC. 200315 14 1754,406 100.0 2160,279 w 100 90 80 70 60 50 40 30 20 10 28.9 23.8 25.0 19.3 30.4 25.0 29.5 80.7 75.0 75.0 70.5 71.1 69.6 76.2 7 8 9 10 11 12 13 23.2 76.8 14 14 1751,189 100.0 2156,574
13ィェィ 0002ィェィ 00ィヲ1 702ィョ ィーィ ィイ071 7ィ 06ィヲ02, ISSN
13 13ィェィ 0002ィェィ 00ィヲ1 702ィョ050702 0709ィーィ ィイ071 7ィ 06ィヲ02, ISSN 1992-6138 1 70306070302071 70307090303 07030209020703 1 7 03000009070807 01090803010908071 7030709030503 0300060903031 709020705 ィヲ0302090803001
000 001
all-round catalogue vol.2 000 001 002 003 AA0102 AA0201 AA0701 AA0801 artistic brushes AA0602 AB2701 AB2702 AB2703 AB2704 AA0301 AH3001 AH3011 AH3101 AH3201 AH3111 AB3201 AB3202 AB2601 AB2602 AB0701 artistic
1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1
I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3
道路施設基本データ作成入力書式マニュアル(中国地方整備局版)平成20年10月
道 路 BOX 等 に 関 する 調 査 表 記 入 マニュアル D080 D080 道 路 B O X 基 本 この 調 査 表 は 道 路 BOX 等 に 関 する 基 本 的 データを 登 録 するためのものであ る なお ここで 取 扱 う 道 路 BOX 等 とは 管 理 する 道 路 に 対 し 平 行 ( 縦 断 方 向 ) しているアンダーパス 等 の 箇 所 などに 設 けられたボックスカルバート
21 1 1 1 2 2 5 7 9 11 13 13 14 18 18 20 28 28 29 31 31 34 35 35 36 37 37 38 39 40 56 66 74 89 99 - ------ ------ -------------- ---------------- 1 10 2-2 8 5 26 ( ) 15 3 4 19 62 2,000 26 26 5 3 30 1 13
44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)
(1) I 44 II 45 III 47 IV 52 44 4 I (1) ( ) 1945 8 9 (10 15 ) ( 17 ) ( 3 1 ) (2) 45 II 1 (3) 511 ( 451 1 ) ( ) 365 1 2 512 1 2 365 1 2 363 2 ( ) 3 ( ) ( 451 2 ( 314 1 ) ( 339 1 4 ) 337 2 3 ) 363 (4) 46
i ii i iii iv 1 3 3 10 14 17 17 18 22 23 28 29 31 36 37 39 40 43 48 59 70 75 75 77 90 95 102 107 109 110 118 125 128 130 132 134 48 43 43 51 52 61 61 64 62 124 70 58 3 10 17 29 78 82 85 102 95 109 iii
Taro10-名張1審無罪判決.PDF
-------------------------------------------------------------------------------- -------------------------------------------------------------------------------- -1- 39 12 23 36 4 11 36 47 15 5 13 14318-2-
A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3
π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p
学習の手順
NAVI 2 MAP 3 ABCD EFGH D F ABCD EFGH CD EH A ABC A BC AD ABC DBA BC//DE x 4 a //b // c x BC//DE EC AD//EF//BC x y AD DB AE EC DE//BC 5 D E AB AC BC 12cm DE 10 AP=PB=BR AQ=CQ BS CS 11 ABCD 1 C AB M BD P
05秋案内.indd
1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b
12~
R A C D B F E H I J K A A A A A A A A A A AD B C BD AD E A DB DB ADB D D DB BD A C D B F E AD B B B B BF AD B B DB B B B B DB B DB D D ADB D D D D D AB AD D DB AB B B B F D D B B D D BF DBF B B B FD
untitled
( ) 200133 3 3 3 3, 7 347 57 10 i ii iii -1- -2- -3- -4- 90011001700mm -5- 4.2 1991 73.5 44.4 7.4 10.5 10.5 7.4 W 3 H 2.25 H 2.25 7.4 51.8 140.6 88.8 268.8m 5,037.9m 2 2mm 16cm916cm 10.5 W 3 H 2.25 62.8
7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6
26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7
新たな基礎年金制度の構築に向けて
[ ] 1 1 4 60 1 ( 1 ) 1 1 1 4 1 1 1 1 1 4 1 2 1 1 1 ( ) 2 1 1 1 1 1 1 1996 1 3 4.3(2) 1997 1 65 1 1 2 1/3 ( )2/3 1 1/3 ( ) 1 1 2 3 2 4 6 2.1 1 2 1 ( ) 13 1 1 1 1 2 2 ( ) ( ) 1 ( ) 60 1 1 2.2 (1) (3) ( 9
140 120 100 80 60 40 20 0 115 107 102 99 95 97 95 97 98 100 64 72 37 60 50 53 50 36 32 18 H18 H19 H20 H21 H22 H23 H24 H25 H26 H27 1 100 () 80 60 40 20 0 1 19 16 10 11 6 8 9 5 10 35 76 83 73 68 46 44 H11
y a y y b e
DIGITAL CAMERA FINEPIX F1000EXR BL01893-100 JA http://fujifilm.jp/personal/digitalcamera/index.html y a y y b e 1 2 P 3 y P y P y P y P y P Q R P R E E E E Adv. SP P S A M d F N h Fn R I P O X Y b I A
土壌の観察・実験テキスト −土壌を調べよう!−
( ) 2006 7 20 i 21 1962 1969 1987 1992 2005 65 1972 1977 1997 1977 1998 1982 1998 2002 2004 2005 SPP 1999 ii 1 g cm m 6378km ( ) 4.2, 4.3 5.1 7.1 8.1 4.1 7.3, 7.4 7.1 1 2 7.1 8.2 2 5 6 1, 2 2.3 4.2, 4.3
description Dibutyl A7BS <0.1 <0.1 <0.1 <0.1 <0.1 A7BS <0.1 <0.1 <0.1 <0.1 <0.1 A7BS-206-P2 <0.1 <0.1 <0.1 <0.1 <0.1 A7BS-206-P2-1 <0.
description Dibutyl 130K78800(XA)
i
14 i ii iii iv v vi 14 13 86 13 12 28 14 16 14 15 31 (1) 13 12 28 20 (2) (3) 2 (4) (5) 14 14 50 48 3 11 11 22 14 15 10 14 20 21 20 (1) 14 (2) 14 4 (3) (4) (5) 12 12 (6) 14 15 5 6 7 8 9 10 7
- - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...
取 扱 説 明 書 - - - - - - - - - - - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2...2...3...4...4...4...5...6...7...8...9...11 - - - - - - - - - - - - - - - - -
PSCHG000.PS
a b c a ac bc ab bc a b c a c a b bc a b c a ac bc ab bc a b c a ac bc ab bc a b c a ac bc ab bc de df d d d d df d d d d d d d a a b c a b b a b c a b c b a a a a b a b a
...J......1803.QX
5 7 9 11 13 15 17 19 21 23 45-1111 48-2314 1 I II 100,000 80,000 60,000 40,000 20,000 0 272,437 80,348 82,207 81,393 82,293 83,696 84,028 82,232 248,983 80,411 4,615 4,757 248,434 248,688 76,708 6,299
技能継承に関するアンケートの結果概要
I 1 1 1 1 1 1 2 1 3 1 II 2 1 2 2 2 3 2007 2 4 3 III 4 1 4 4 5 6 2 7 7 8 9 3 10 _10 11 _12 _13 _14 15 4 2007 16 2007 16 17 2007 18 5 19 19 I 2007 1 2005 6 21 8 3 3000 2 292 292 9.7 3 100 1 II 1 86 2 OJT
第1部 一般的コメント
(( 2000 11 24 2003 12 31 3122 94 2332 508 26 a () () i ii iii iv (i) (ii) (i) (ii) (iii) (iv) (a) (b)(c)(d) a) / (i) (ii) (iii) (iv) 1996 7 1996 12
表紙(社会系)/153024H
! ""! Sa! "! " # $ % & ' Sa! !! " # $ % & " #! " # $ $ %! " # $ & '! " # $ Sa% "! " # $ Sa! ! " #! " #! " # $ $! " # $ % & % & '! " # $ Sa% ! " # Sa! ! " #! " # $ % & Sa% Sa! ! " # $ % Sa! Sa! Sa! ! "
福岡大学人文論叢47-3
679 pp. 1 680 2 681 pp. 3 682 4 683 5 684 pp. 6 685 7 686 8 687 9 688 pp. b 10 689 11 690 12 691 13 692 pp. 14 693 15 694 a b 16 695 a b 17 696 a 18 697 B 19 698 A B B B A B B A A 20 699 pp. 21 700 pp.
卒論 提出用ファイル.doc
11 13 1LT99097W (i) (ii) 0. 0....1 1....3 1.1....3 1.2....4 2....7 2.1....7 2.2....8 2.2.1....8 2.2.2....9 2.2.3.... 10 2.3.... 12 3.... 15 Appendix... 17 1.... 17 2.... 19 3.... 20... 22 (1) a. b. c.
案内(最終2).indd
1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -
2 1 17 1.1 1.1.1 1650
1 3 5 1 1 2 0 0 1 2 I II III J. 2 1 17 1.1 1.1.1 1650 1.1 3 3 6 10 3 5 1 3/5 1 2 + 1 10 ( = 6 ) 10 1/10 2000 19 17 60 2 1 1 3 10 25 33221 73 13111 0. 31 11 11 60 11/60 2 111111 3 60 + 3 332221 27 x y xy
表1票4.qx4
iii iv v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22 23 10 11 24 25 26 27 10 56 28 11 29 30 12 13 14 15 16 17 18 19 2010 2111 22 23 2412 2513 14 31 17 32 18 33 19 34 20 35 21 36 24 37 25 38 2614
第1章 国民年金における無年金
1 2 3 4 ILO ILO 5 i ii 6 7 8 9 10 ( ) 3 2 ( ) 3 2 2 2 11 20 60 12 1 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 14 15 8 16 2003 1 17 18 iii 19 iv 20 21 22 23 24 25 ,,, 26 27 28 29 30 (1) (2) (3) 31 1 20
水 道 事 業 1. 経 営 の 健 全 性 効 率 性 1 経 常 収 支 比 率 (%): 経 常 収 益 経 常 費 用 当 該 年 度 において 給 水 収 益 や 一 般 会 計 からの 繰 入 金 等 の 収 益 で 維 持 管 理 費 や 支 払 利 息 等 の 費 用 をどの 程 度
表 頭 部 分 の 説 明 : 水 道 下 水 道 共 通 掲 載 項 目 類 似 団 体 区 分 資 金 不 足 比 率 (%) 説 明 < 別 紙 3>のとおり 地 方 公 共 団 体 の 財 政 の 健 全 化 に 関 する 法 律 ( 平 成 19 年 法 律 第 94 号 ) 第 22 条 第 2 項 に 規 定 する 資 金 不 足 比 率 自 己 資 本 構 成 比 率 (%) 普 及
- 2 -
- 2 - - 3 - (1) (2) (3) (1) - 4 - ~ - 5 - (2) - 6 - (1) (1) - 7 - - 8 - (i) (ii) (iii) (ii) (iii) (ii) 10 - 9 - (3) - 10 - (3) - 11 - - 12 - (1) - 13 - - 14 - (2) - 15 - - 16 - (3) - 17 - - 18 - (4) -
2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4 4 4 2 5 5 2 4 4 4 0 3 3 0 9 10 10 9 1 1
1 1979 6 24 3 4 4 4 4 3 4 4 2 3 4 4 6 0 0 6 2 4 4 4 3 0 0 3 3 3 4 3 2 4 3? 4 3 4 3 4 4 4 4 3 3 4 4 4 4 2 1 1 2 15 4 4 15 0 1 2 1980 8 4 4 4 4 4 3 4 2 4 4 2 4 6 0 0 6 4 2 4 1 2 2 1 4 4 4 2 3 3 3 4 3 4 4
1 (1) (2)
1 2 (1) (2) (3) 3-78 - 1 (1) (2) - 79 - i) ii) iii) (3) (4) (5) (6) - 80 - (7) (8) (9) (10) 2 (1) (2) (3) (4) i) - 81 - ii) (a) (b) 3 (1) (2) - 82 - - 83 - - 84 - - 85 - - 86 - (1) (2) (3) (4) (5) (6)
o 2o 3o 3 1. I o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o I 2o 3o 4o 5o 6o 7o 2197/ o 1o 1 1o
78 2 78... 2 22201011... 4... 9... 7... 29 1 1214 2 7 1 8 2 2 3 1 2 1o 2o 3o 3 1. I 1124 4o 3. 1o 2o 31. I 3o PDF Adobe Reader 4o 2 1o 72 1. I 2o 3o 4o 5o 6o 7o 2197/6 9. 9 8o 1o 1 1o 2o / 3o 4o 5o 6o
ÿþ
I O 01 II O III IV 02 II O 03 II O III IV III IV 04 II O III IV III IV 05 II O III IV 06 III O 07 III O 08 III 09 O III O 10 IV O 11 IV O 12 V O 13 V O 14 V O 15 O ( - ) ( - ) 16 本 校 志 望 の 理 由 入 学 後 の
provider_020524_2.PDF
1 1 1 2 2 3 (1) 3 (2) 4 (3) 6 7 7 (1) 8 (2) 21 26 27 27 27 28 31 32 32 36 1 1 2 2 (1) 3 3 4 45 (2) 6 7 5 (3) 6 7 8 (1) ii iii iv 8 * 9 10 11 9 12 10 13 14 15 11 16 17 12 13 18 19 20 (2) 14 21 22 23 24
untitled
5 28 EAR CCLECCN ECCN 1. 2. 3. 4. 5.EAR page 1 of 28 WWW.Agilent.co.jp -> Q&A ECCN 10020A 10070A 10070B 10070C 10071A 10071B 10072A 10073A 10073B 10073C 10074A 10074B 10074C 10076A 10229A 10240B 10430A
L1-a.dvi
27 Q C [ ] cosθ sinθ. A θ < 2π sinθ cosθ A. A ϕ A, A cosϕ cosθ sinθ cosθ sinθ A sinθ cosθ sinθ +cosθ A, cosθ sinθ+sinθ+cosθ 2 + 2 cosθ A 2 A,A cosθ sinθ 2 +sinθ +cosθ 2 2 cos 2 θ+sin 2 θ+ 2 sin 2 θ +cos
男 子 755 目 標 77"95 77"B5 77"95 79"59 通 7A"79 夏 7A"C9 6 77 D7 063A 三 橋 亮 介 7A5B 瀬 田 8 D3B 近 畿 総 体 万 博 7 78 58 0735 長 野 ワ 696D 玉 園 8 C376 通 信 陸 上 彦 根 8 7
7567 年 滋 賀 県 中 学 65 傑 男 子 男 子 年 655 目 標 66"D5 66"95 67"65 67"C9 通 68"99 夏 68"A9 6 66 C7 063A 目 宮 口 龍 二 7A88 瀬 田 6 65369 秋 季 総 体 皇 子 山 7 66 D6 063A 押 谷 健 斗 BC75 浅 井 6 65369 秋 季 総 体 皇 子 山 8 66 99 063A 川
あさひ indd
2006. 0. 2 2006. 0. 4 30 8 70 2 65 65 40 65 62 300 2006. 0. 3 7 702 22 7 62802 7 385 50 7 385 50 8 385 50 0 2 390 526 4 2006. 0. 0 0 0 62 55 57 68 0 80 5000 24600 37200 0 70 267000 500000 600 2 70 70 267000
SIRIUS_CS3*.indd
SIRIUS Innovations SIRIUS SIRIUS Answers for industry. SIRIUS SIRIUS S00 S0 SIRIUS SIRIUS ZX0-ORAZ-0AB0 7.5kW 6 S00 7 8 7.5kW 9 S00 0 8.5kW S0 8.5kW S0 5 6 7 IO-Link AS-InterfaceRT 8 8US 5 6 SIRIUS SIRIUS
「産業上利用することができる発明」の審査の運用指針(案)
1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)
150MHz 28 5 31 260MHz 24 25 28 5 31 24 28 5 31 1.... 1 1.1... 1 1.2... 1 1.3... 1 2.... 2 2.1... 2 2.2... 3 2.3... 7 2.4... 9 2.5... 11 3.... 12 3.1... 12 3.2... 13 3.3... 16 3.4... 24 4.... 32 4.1...
i ii iii iv v vi vii ( ー ー ) ( ) ( ) ( ) ( ) ー ( ) ( ) ー ー ( ) ( ) ( ) ( ) ( ) 13 202 24122783 3622316 (1) (2) (3) (4) 2483 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 11 11 2483 13
目 次 1 当 座 口 振 込 通 知 書 P1 ( 機 械 様 式 第 87 号 A) ( 平 成 25 年 1 月 診 療 (3 月 支 払 分 ) 以 降 ) 2 増 減 点 連 絡 書 P4 ( 機 械 様 式 第 20 号 の1) 3 返 戻 内 訳 書 P6 ( 機 械 様 式 第 20
増 減 点 連 絡 書 各 種 通 知 書 の 見 方 医 療 機 関 薬 局 平 成 25 年 4 月 社 会 保 険 診 療 報 酬 支 払 基 金 目 次 1 当 座 口 振 込 通 知 書 P1 ( 機 械 様 式 第 87 号 A) ( 平 成 25 年 1 月 診 療 (3 月 支 払 分 ) 以 降 ) 2 増 減 点 連 絡 書 P4 ( 機 械 様 式 第 20 号 の1) 3 返
憲法h1out
m n mnm mnn m m m m m m. x x x ax bxc a x x bb ac a fxax bxc fxx x ax bxca b ac x x ax bxca x x x.x x x x x x xxx x x xxx x x xxx x x xx x x x axbcxdacx adbcxbd x xxx m n mnm mnn m m m m m m m m
178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21
I 178 II 180 III ( ) 181 IV 183 V 185 VI 186 178 5 I 1 ( ) ( ) 10 3 13 3 1 8891 8 3023 6317 ( 10 1914 7152 ) 16 5 1 ( ) 6 13 3 13 3 8575 3896 8 1715 779 6 (1) 2 7 4 ( 2 ) 13 11 26 12 21 14 11 21 4 10 (
1 2 3
BL01604-103 JA DIGITAL CAMERA X-S1 http://fujifilm.jp/personal/digitalcamera/index.html 1 2 3 y y y y y c a b P S A M C1/C2/C3 E E E B Adv. SP F N h I P O W X Y d ISO Fn1 Fn2 b S I A b X F a K A E A Adv.
BL01622-100 JA DIGITAL CAMERA FINEPIX F770EXR http://fujifilm.jp/personal/digitalcamera/index.html y a y y b e y DISP/BACK 1 2 P 3 y P y P y P y P y P Q R P R E d F N h Fn b R I P O X Y n E E E I Adv.
untitled
1 2 1 2 1 1 2 2 18 1 1990 2 3 4 5 6 2006 1 19981995 1999 1993 20002004 2006 2004 2006 1 2 1970 70 1980 71 86 01 71 86 01 4 4 2 5 12 8 7 1 3 10 8 9 2 3 4 11 10 10 6 5 6 14 14 10 20063 15 4 71 86 01 71 86
2008 (2008/09/30) 1 ISBN 7 1.1 ISBN................................ 7 1.2.......................... 8 1.3................................ 9 1.4 ISBN.............................. 12 2 13 2.1.....................
1-1 - 2 3-2 - - 3 - i - 4 - ii - 5 - c - 6 - 4 1-7 - 2 1-8 - 2-9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - 3-18 - - 19 - - 20 - - 21 - - 22 - - 23 - iii i - 24 - - 25 - - 26 - 4-27 - 5
vol.31_H1-H4.ai
http://www.jmdp.or.jp/ http://www.donorsnet.jp/ CONTENTS 29 8,715 Vol. 31 2 3 ac ad bc bd ab cd 4 Point! Point! Point! 5 Point! Point! 6 7 314 611 122 4 125 2 72 2 102 3 2 260 312 0 3 14 3 14 18 14 60
cm H.11.3 P.13 2 3-106-
H11.3 H.11.3 P.4-105- cm H.11.3 P.13 2 3-106- 2 H.11.3 P.47 H.11.3 P.27 i vl1 vl2-107- 3 h vl l1 l2 1 2 0 ii H.11.3 P.49 2 iii i 2 vl1 vl2-108- H.11.3 P.50 ii 2 H.11.3 P.52 cm -109- H.11.3 P.44 S S H.11.3
‡¢‡¿‡«‰øŒØŒì_2„”“ƒ
qwr q BB w MQ e MQ MQ r A A 1 1 Z Z q w e 1 1 { a s d f g h j a s d f g h a s d f g h 1 1 1 1 1 q w e r t y u q w e r t y q w e 1 1 1 1 1 1 1 1 1 1 a s d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2
n =3, 200 2 10 1 1 n =3, 2 n 3 x n + y n = z n x, y, z 3 a, b b = aq q a b a b b a b a a b a, b a 0 b 0 a, b 2 a, b (a, b) =1a b 1 x 2 + y 2 = z 2, (x, y) =1, x 0 (mod 2) (1.1) x =2ab, y = a 2 b 2, z =
4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t
1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1
i
i 1 1 1 1...................................................... 2...................................................... 2 2 5 5.................................................. 6...................................................
1. (1) 1/
2005 11 30 2006 03 31 1-1-2 [ ] 7-12 SMBC 4 1 27 1 18 1. (1) 1/5 1 2 32 1/5 1 2006 3 11 200 2006 1 1/5 20 20 30 CM 10 TVCM15 BB 2006 3 31 26 3 5 2 1 4 3 2 3 (2) (1) 2. (1) 1 2006/03/31 1,680,877,606 1
中学校学習指導要領解説数学編
20 1 1 3 7 16 16 16 22 31 31 40 67 67 67 77 87 93 98 104 104 109 117 121 124 129 129 140 149 152 155 161 161 163 168 170 -1- -2- -3- -4- -5- -6- -7- -8- -9- -10- -11- -16- -17- -18- -19- -20- -21-
EP760取扱説明書
D D D # % ' ) * +, B - B / 1 Q&A B 2 B 5 B 6 Q & A 7 8 $ % & ' B B B ( B B B B B B B B B B B ) B B B A # $ A B B * 1 2 # $ % # B B % $ # $ % + B B 1 B 2 B B B B B B B B B B , B B B - 1 3 2 2 B B B B B
i
i ii iii iv v vi vii viii ix x xi ( ) 854.3 700.9 10 200 3,126.9 162.3 100.6 18.3 26.5 5.6/s ( ) ( ) 1949 8 12 () () ア イ ウ ) ) () () () () BC () () (
A a b c d a b a b c d e a b c g h f i d e f g h i M a b c a b c d M a M b c d a b a b a M b a b a b c a b a M a a M a c d b a b c d a b a b a M c d a b e c M f a b c d e f E F d e a f a M bm c d a M b
補足情報
1 危 険 警 告 注 意 2 3 4 5 6 7 8 1 2 3 4 5 9 6 7 8 9 10 10 1 2 11 1 12 1 2 13 3 4 14 1 2 15 3 4 5 16 1 2 3 17 1 2 3 4 18 19 20 21 22 23 1 2 3 4 5 24 6 7 8 9 10 25 26 27 28 6 1 2 7 8 9 3 4 5 29 1 2 警 告 3 4 5
2002.N.x.h.L.......g9/20
1 2 3 4 5 6 1 2 3 4 5 8 9 1 11 11 12 13 k 14 l 16 m 17 n 18 o 19 k 2 l 2 m 21 n 21 o 22 p 23 q 23 r 24 24 25 26 27 28 k 28 l 29 m 29 3 31 34 42 44 1, 8, 6, 4, 2, 1,2 1, 8 6 4 2 1, 8, 6, 4, 2, 1,2 1, 8
No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y
No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ
... a. b. c. a b c : - a b iphone CD DVD a, b 2
. a. b. c. a b a,b c a,b c a b c ab,c a-ca a a-c 1 ... a. b. c. a b c : - a b iphone CD DVD a, b 2 c : - : -.. a-c a. b. i ii iii iv v c. d. a 3 : b. i v i ii iii iv negligence v conspiracy of silence