halo02.dvi

Size: px
Start display at page:

Download "halo02.dvi"

Transcription

1

2 Abell Clusters X line emission continuum emission: X? β Sunyaev Zel dovich Kompaneetz SZ CMB y SZ angular diameter distance Press Schechter X β Collisional dark matter

3 1 1.1 (M ) R 3 (2 t dyn GM ) 3 40 (1.1.1) ( 100 ) ( ) 3 ( ) ( ) (X ) ( ) 3 (ρ r 1.5 ) 1.2 Abell Clusters G.O.Abell Abell clusters Abell Palomar Observatory Sky Survey enhancement Abell (G.O.Abell, ApJS 1958, 3, 211) 1

4 1. m 3 m 3 <m 3 +2 θ A /z 50 richness class R m 10 z 0.02 z 0.20 m 10 distance class D Abell finding list Abell clusters projection contamination Abell R A = cz θ A = 3000h 1 Mpc π H h 1 Mpc (1.2.1) 1.1: Abell clusters R D m 10 z est > 18 ACO Abell ACO m 3 <m<m (G.O.Abell, H.G. Corwin, & R.P. Olowin, 1989, ApJS, 70, 1) 1.3 X X X M cl M R cl 2Mpc 2

5 k B T cl m p V 2 cl Gm pm cl R cl ( ) ( ) 2Mpc M cl 2keV R cl M (1.3.1) (m p ) X line emission v 2 m e r = Ze2 & 2πr = nλ = n h r 2 m e v χ n = m ev 2 2 e2 r = m ez 2 e 4 2n 2 h Z2 ev n 2 (1.3.2) χ 1 (1 10)keV X Z = : continuum emission: X T Maxwell f(v) = ( me 2πkT ) 3/2 4πv 2 exp ( m ev 2 ) 2kT (1.3.3) 3

6 1.2: Lyα(=Kα) [Å] [kev] O Ne Mg Si Ca Fe emissivity (erg/s/cm 3 /Hz) d 2 L X dv dν = 25 πe 6 ( ) 2π 1/2 n 3m e c 3 e Zi 2 n i e hν/kt ḡ ff (T,ν). (1.3.4) 3m e kt i n e n i i Z i i ḡ ff (T,ν) free-free (velocity averaged) Gaunt factor hν, kt (0.1 10)keV ḡ ff (T,ν) 0.9 bolometric luminosity per unit volume (erg/s/cm 3 ) ( ) 0.3 hν (1.3.5) kt dl X dv = 24 e 6 ( ) 2π 1/2 n 3 hm e c 3 e Zi 2 3m e kt n iḡ ff (T ). (1.3.6) i ḡ ff (T ) (frequency averaged) Gaunt factor Rybicki & Lightman 1979 dl X dv ( ) T 1/2 ( ) ne 2 erg/s/cm 3. (1.3.7) 1keV 1cm 3 R cl 1Mpc ( ) 3 V cl = Rcl 3 3 Rcl 1073 cm 3 (1.3.8) 1Mpc n cl Ω ( ) (1Mpc ) 3 bm cl Mcl Ω b cm 3. (1.3.9) m p V cl M R cl 4

7 X L X V cl dl X dv ( ) 2 ( ) Ωb T 1/2 ( ) 2 (1Mpc ) 3 Mcl 1043 ξ erg/s. (1.3.10) 0.1 1keV M R cl ξ 10 kev erg/s X 1.4 X? X n e ( n e ) n e n gal n gal n gal n e n gal ( S N ) opt Rcl n gal (cluster)dl R cl RH n gal universe dl 0 n gal cl n gal universe 2R cl c/h 0 1 (1.4.1) n gal (cluster) n gal cl 10/(h 1 Mpc) 3 R H = c/h h 1 Mpc n gal universe 10 2 /(h 1 Mpc) 3 (1.4.1) X ( S N ) X n2 gal cl 2R cl > n gal 2 universe c/h 0 n gal 2 cl n gal 2 universe 2R cl c/h (1.4.2) 1000 X X 2.1 5

8 1.2: RXJ X A E RXJ Chandra X : A2218 X ( J.Carlstrom M. Joy ) ( ) 6

9 P gas ρ gas r = GM(r) r 2 (2.1.1) P gas (r) =n gas (r)kt(r) = ρ gas(r) µm p kt(r) (2.1.2) µ mean molecular weight H He 2 (n e + n H + n He )µm p = m H n H + m He n He µ = n H +4n He 2n H +3n He = (for X =0.75). (2.1.3) 5X +3 Jeans 1/10 (Jeans ): 1 ρ gal r (ρ galσ 2 r )+ 2 r (σ2 r σ 2 t )= GM(r) r 2 (2.1.4) σ r (r) σ t (r) M(R) = R2 G [ 1 ρ gal (R) M(R) = k BT gas (R)R Gµm H dρ gal (R)σ 2 r(r) dr [ d ln ngas (R) d ln R +2 σ2 r(r) σt 2 ] (R), (2.1.5) R + d ln T ] gas(r) d ln R (2.1.6) ρ gal σ r, σ t 7

10 n gas T gas X X ( 2.1) 1h 1 Mpc 40% M vir = h 1 M L = h 2 L M/L : Mpc ( X NASA Goddard Space Flight Center, S.L.Snowden ) 2.2 β (i) T (r), σ r (r), σ t (r) r (ii) : σ r = σ t. (iii) King model: ( ) ] r 2 3/2 n gal (r) =n gal,0 [1+ (2.2.1) r0 (2.1.1) (2.1.4) M(r) ln n gas r = µm pσr 2 ln n gal } kt {{} r β n gas (r) =n 0 [ ngal (r) n gal,0 ] β. (2.2.2) 8

11 β ( ) ] r 2 3β/2 n gas (r) =n gas,0 [1+, β = µm pσr 2 r0 kt, r 0 : (2.2.3) X Poisson (2.2.1) cluster observer θ -R cl r l d θ A R cl 2.2: X β X S X (θ) dl dl X dv dl n 2 gas l (r = 2 + d 2 A θ2 ) [ dl 1+ l2 + d 2 ] 3β A θ2 r 2 0 [ ] 3β [ = 1+ θ2 l 2 ] 3β dl 1+ r 2 0 /d2 A r d2 A θ2 ( ) 2 3β+1/2 θ dx = 2r 0 1+ (θ θ 0 0 (1 + x 2 ) 3β 0 r 0 /d A ) }{{} = πr 0 Γ(3β 1/2) Γ(3β) 1+ Γ(3β 1/2) π/2/γ(3β) ( ) 2 3β+1/2 θ θ 0. (2.2.4) θ 0 r 0 /d A d A angular diameter distance d A (z) = c H 0 (1 + z) sin (χ Ω 0 + λ 0 1)/ Ω 0 + λ 0 1 (Ω 0 + λ 0 1 > 0) χ (Ω 0 + λ 0 1=0) sinh (χ 1 Ω 0 λ 0 )/ 1 Ω 0 λ 0 (Ω 0 + λ 0 1 < 0), (2.2.5) 9

12 z χ(z) = dz Ω (2.2.6) 0 0 (1 + z) 3 +(1 Ω 0 λ 0 )(1 + z) 2 + λ 0 2.3: Angular diameter distance d A (z) 10

13 3 Sunyaev Zel dovich 3.1 Kompaneetz X (SZ) T CMB =2.7K (CMB: Cosmic Microwave Background) T e kev CMB 1.38mm ( ) observer CMB photon γ I ν temperature decrement CMB CMB through cluster temperature increment T CMB (θ) cluster λ=1.38mm ν=218ghz ν 3.1: (Kompaneetz) ( ) [ { }] f kte 1 f t c = x 4 t m e c 2 x 2 e + f(f +1) (3.1.1) e x e x e 1 t c n e σ T c ( ), x e hν. (3.1.2) kt e f = f(ν, t) t ν t c x e Bose-Einstein (t =0 ) T CMB : f(ν, t =0)= 1 exp(hν/kt CMB ) 1 11 (3.1.3)

14 (3.1.1) x y x hν kt CMB = T e T CMB x e, y(t) t 0 k(t e T CMB ) m e c 2 n e σ T cdt (3.1.4) f(f +1) f x f y = 1 ( x 4 f ). (3.1.5) x 2 x x 3.2 SZ CMB (3.1.4) R cl n e y = Rcl R cl kt e m e c 2 σ T n gas dl (3.2.1) t c t cross : t c = 1 ( 10 3 n e σ T c 5 cm 3 ) 1016, t cross 2R ( ) cl Rcl (3.2.2) n gas c 1.5Mpc y kt e m e c 2 t cross t c ( ) ( )( 10 4 Te R cl 10 3 cm 3 10keV 1.5Mpc n gas ). (3.2.3) y 10 4 CMB (3.1.5) f(x, y) f(x, 0) + y ( x 4 ) f(x, 0) x 2 x x (3.2.4) f(x, 0) = 1 e x 1 (3.2.5) f(x, y) 1 [x e x 1 + xyex coth x ] (e x 1) I ν (ν): (3.2.6) I ν (x, y) 1 4π 2hν c 2 4πν2 f(x, y) =x 3 f(x, y) 2(kT CMB) 3 h 2 c 2 i 0 x 3 x 4 e x [ f(x, 0) + i 0 (e x 1) y x coth x ] (3.2.7) 12

15 i 0 2(kT CMB) erg/s/cm 2 /Hz/str mjy/arcmin 2. (3.2.8) h 2 c 2 I ν y (x xex coth x ) I ν e x (3.2.9) T B (ν): ( f(x, y) exp hν 1 kt B (3.2.6) ) 1 T B (x, y) = ln[f 1 (x, y)+1] x yx T B T CMB xt CMB ln[f 1 (x, y)+1]. (3.2.10) (x coth x 2 4 ). (3.2.11) y (x coth x ) 2 4. (3.2.12) Rayleigh Jeans temperature T RJ (ν): Rayleigh Jeans T RJ T CMB I ν 2ν2 c 2 kt RJ (3.2.13) x 2 e x y (e x 1) 2 (x coth x 2 4 ). (3.2.14) kinematic SZ Iν K : SZ v kinematic SZ Iν K ( ) y xex v τ, τ n I ν e x gas σ T dl : (3.2.15) 1 c SZ ν x hν/kt CMB 11.8(0.45mm/λ) SZ x coth(x/2) 4 x =3.83, ν = 218GHz, λ =1.38mm (3.2.16) SZ (1.38mm) kinematic SZ (3.2.16) x 0 Rayleigh Jeans I ν I ν = T B T CMB = T RJ T CMB = 2y (3.2.17) 13

16 図 3.2: SZ 効果による CMB スペクトル変形 SZ 輻射 強度 Iν i0 yx4 ex /(ex 1)2 [x coth(x/2) 4], SZ 相対 輻射強度比 Iν /Iν yxex /(ex 1)[x coth(x/2) 4], SZ 相対輝度温度比 TB /TCM B y[x coth(x/2) 4], kinematic SZ 相対輻射強度比 IνK /Iν yxex /(ex 1)(v/c)τ 図 3.3: SZ 効果による輻射スペク トル 上図 SZ 効果による変形 がある場合 (y = 0.1) とない場合 のマイクロ波背景輻射のスペクト ル 下図 SZ 効果のスペクトル (z=1) A (z=0) A X [Mpc] X [Mpc] X [Mpc] X [Mpc] 4 図 3.4: Projected views of cluster A at z = 1 and z 0. A box of (4Mpc)3 (in physical lengths) located at the center of each cluster is extracted. The X-ray emission weighted temperature (TX ), X-ray surface brightness (SX ), and the SZ surface brightness at mm and submm bands ( Imm and Isubmm ) are plotted on the projected X-Y plane by integrating over the line-of-sight direction (Z). (Yoshikawa, Itoh & Suto 1998) 14

17 3.3 y β ( ) ] r 2 3β/2 n gas (r) =n gas,0 [1+, β = µm pσr 2 r0 kt, r 0 : (3.3.1) y (2.2.4) kt e y = m e c σ 2 T n gas (r)dl = ( ) ( ) 2 3β/2+1/2 Γ(3β/2 1/2) kte θ π σ Γ(3β/2) m e c 2 T n gas,0 r (3.3.2) β 1, T 5keV, n gas, cm 3, r 0 0.3Mpc, z =0.1 (d A (z) 300Mpc) θ 0 3 y(θ) y(θ) θ (θ/3 ) 2 (3.3.3) 3.5: Three views of the cluster A2218: (a) The HST image of the central core region (Kneib et al. 1996) (b) The BIMA 28.5 GHz naturally weighted contours with VLA D-array NVSS observations in the background. The small rectangle roughly indicates the region of the HST image. (c) The detected SZE, after accounting for the bright radio sources. The background of this map is the ROSAT PSPC image, smoothed with a 20 FWHM Gaussian (Carlstrom et al. astro-ph/ ). 15

18 3.6: Images of the Sunyaev- Zel dovich effect toward twelve distant clusters with redshifts spanning 0.83 (top left) to 0.14 (bottom right). The evenly spaced contours are multiples starting at ±1 of1.5σ to 3σ depending on the cluster, where σ is the rms noise level in the images. The noise levels range from 15 to 40 µk. The data were taken with the OVRO and BIMA mm-arrays outfitted with low-noise cm-wave receivers. The filled ellipse shown in the bottom left corner of each panel represents the FWHM of the effective resolution used to make these images (Carlstrom et al. astro-ph/ ). 16

19 3.1: Cluster Sample (L X is computed for EdS model). cluster z T e [kev] L X [10 44 h 2 50 erg s 1 ] band [kev] MS MS Cl RX J Abell MS Abell Abell Abell Abell Abell Abell Abell Abell Abell Abell Abell Abell : ICM Parameters cluster β θ c [ ] S x0 [erg/s/cm 2 /arcmin 2 ] T 0 [µk] D A [Mpc] MS MS Cl R A MS A A A A A A A A A A A A

20 3.7: SZE (contours) and X-ray (color scale) images of each cluster in our sample. Negative contours are shown as solid lines. The contours are multiples of 2 σ and the FWHM of the synthesized beams are shown in the bottom left corner. The X-ray color scale images are raw counts images smoothed with Gaussians with σ =15 for PSPC data and σ =5 for HRI data. There is a color scale mapping for the counts above each image. 18

21 3.8: SZE (contours) and X-ray (color scale) images (continued). (Reese et al. astroph/ ) 19

22 3.4 SZ angular diameter distance SZ X CMB SZ y (3.2.1) y r 0 Tn gas,0 (3.4.1) X T θ 0 S X S X r 0 T 1/2 n 2 gas,0 (3.4.2) d A r 0 /θ 0 (3.4.1) (3.4.2) d y 2 S X T 3/2 θ 0 (3.4.3) SZ H 0 SZ SZ ( β ) y : β SZ β θ 0 X β SZ θ SZ,0 β X, θ X,0 y(0) = π Γ(3β SZ/2 1/2) Γ(3β SZ /2) ( kte m e c 2 ) σ T n gas,0 d A (z)θ SZ,0. (3.4.4) RJ : T RJ x 2 e x (0) = y(0) T CMB (e x 1) 2 ( 4 x coth x ) 2y(0)ξ(x). (3.4.5) 2 20

23 ξ(x) RJ 1 ξ(x) x 2 e x ( 4 x coth x ), x hν. (3.4.6) 2(e x 1) 2 2 kt CMB X : X ν 1 <ν<ν 2 S X (θ) = d 2 L X dνdv S X (0) = α(t e)kt e h α(t e ) 25 πe 6 3m e c 2 1 ν2 (1+z) d 2 L X dl dν, (3.4.7) 4π(1 + z) 4 ν 1 (1+z) dνdv = ( α(t e ) n 2 gas(r) g ff (T e,ν)exp hν ), kt e (3.4.8) ( ) 2π 1/2 2 3m e c 2 kt e 1+X. (3.4.9) n 2 d gas,0 A(z)θ X,0 4 Γ(3β X 1/2) hν2 (1+z)/kT e g π(1 + z) 4 Γ(3β X ) ff e x dx, (3.4.10) hν 1 (1+z)/kT e angular diameter distance (3.4.5) (3.4.10) n gas,0 d A (z) 2 n gas,0 d A (z) = ( α(t e )kt e me c 2 ) 2 ( ) 2 Γ(3β X 1/2) Γ(3β SZ /2) 16π 3/2 hσt 2 (1 + z)4 kt e Γ(3β X ) Γ(3β SZ /2 1/2) ( T RJ/T CMB (0)) 2 θ hν2 (1+z)/kT e X,0 g ξ 2 (x)s X (0) ff e x dx. (3.4.11) hν 1 (1+z)/kT e θ 2 SZ,0 21

24 3.9: angular diameter distance Also plotted is the theoretical angular diameter distance relation for three different cosmologies, assuming H 0 = 60km/s/Mpc. (1) Reese et al (2000), (2) Mauskopf et al. (2000), (3) Reese et al (2000), (4) Patel et al. (2000), (5) Grainge et al. (2000), (6) Saunders et al. (2000), (7) Andreani et al. (1999), (8) Komatsu et al. (1999), (9) Myers et al. (1997), (10) Lamarre et al. (1998). (11) Tsuboi et al. (1998), (12) Hughes et al. (1998), (13) Holzapfel et al. (1997), (14) Birkinshaw et al. (1994), (15) Birkinshaw et al. (1991) (Carlstrom et al. astro-ph/ ). 3.10: D A versus z for our 18 cluster sample. The error bars are 68.3% statistical uncertainties only. Also plotted are the theoretical angular diameter distance relations assuming H 0 = 60km/s/Mpc for three different cosmological models; the currently favored Λ cosmology Ω m =0.3, Ω Λ =0.7 (solid) cosmology; an open Ω m =0.3 (dashed) universe; and a flat Ω m = 1 (dotted) cosmology. 22

25 4 Press Schechter 4.1 M t r(t) t C r = GM C (1 cos θ), t d 2 r dt 2 = GM r 2. (4.1.1) = GM (θ sin θ). (4.1.2) C3/2 θ 1 ρ(< r; t) 3M 4πr(t) = 1 [ 1+ 3C ( ) 6t 2/3 + ] 3 6πGt 2 20 GM (4.1.3) Einstein de Sitter ρ(t) = 1 6πGt, δ linear(< r; t) 3C ( ) 6t 2/3. (4.1.4) 2 20 GM turn-around maximum expansion (4.1.2) r ta = 2GM C, θ ta = π, t ta = πgm. (4.1.5) C3/2 turn-around (C) (M) ρ(< r; t ta ) ρ(t ta ) = 9π (4.1.6) (4.1.4) δ linear (<r; t ta )= 3 20 (6π)2/ (4.1.7) 23

26 θ c =2π, t c =2t ta = 2πGM C 3/2 (4.1.8) r = r vir = r(θ ta) = GM (4.1.9) 2 C t>t c : ρ(< r vir )= ρ(< r; t c ) c ρ(t c )=18π 2 ρ(t c ) ρ(t c ) (4.1.10) (4.1.7) δ linear (<r; t c )= 3 20 (12π)2/3 δ c 1.69 (4.1.11) (4.1.10) (4.1.11) Einstein de Sitter Einstein de Sitter (Ω 0 =1,λ 0 =0) c = 18π 2 178, (4.1.12) δ c = 3(12π)2/3 1.69, (4.1.13) 20 (Ω 0 < 1,λ 0 =0) c = 4π 2 (cosh η vir 1) 3 (sinh η vir η vir ), (4.1.14) 2 δ c = 3 [ ] ) 2/3 3sinhηvir (sinh η vir η vir ) 2π 2 1+(,(4.1.15) 2 (cosh η vir 1) 2 sinh η vir η vir (Ω 0 < 1,λ 0 =1 Ω 0 ) ( ) rta 3 2w vir c = r vir χ, 18π 2 ( wvir ), δ c = 3 ( 1 5 F 3, 1, 11 ) ( ) 1/3 ( 6 ; w 2w vir vir 1+ χ ), χ 2 3(12π)2/3 ( log Ω vir ). (4.1.16) 24

27 η vir cosh 1 (2/Ω vir 1), w vir 1/Ω vir 1, χ λ 0 H 2 0r 3 ta/(gm), F (2,1), Ω vir t c 4.1 c δ c Ω vir (a) (b) : δ c c λ 0 =0 λ 0 = 1 Ω

28 Press Schechter z i M δ = δ(m,z i ) δ rms σ M (z i ) P (δ) = [ ] 1 2πσ 2 (z M i) exp δ2 (M,z i ) 2σ 2 (z M i) (4.2.1) 4.1 δ linear (M,z) D(z) D(z i ) δ(m,z i) (4.2.2) δ c z z δ linear (M,z) (4.2.1) (4.2.2) M z [ P[δ linear (M,z) >δ c ] = P δ(m,z i ) >δ c,i D(z ] i) D(z) δ c = P (δ)dδ = 1 ( ) exp x2 dx (4.2.3) δ c,i 2π δ c,i /σ M (z i ) 2 M (> M) M M z M M + dm (4.2.3) M + dm p(m,z)dm = P[δ linear (M,z) >δ c ] P[δ linear (M + dm, z) <δ c δ linear (M,z) >δ c ] = P[δ linear (M,z) >δ c ] {1 P[δ linear (M + dm, z) >δ c δ linear (M,z) >δ c ]} = P[δ linear (M,z) >δ c ] P[δ linear (M + dm, z) >δ c ] P[δ linear(m,z) >δ c ] dm M (4.2.4) (4.2.3) P[δ linear (M,z) >δ c ] = 1 exp [ δ c 2 ] [ ] d δc (4.2.5) M 2π 2σM(z) 2 dm σ M (z) z M M + dm n(m,z)dm = ρ 0 M p(m,z)dm = ρ 0 δ c dσ M (z) [ 2πMσ 2 (z) dm exp δ c 2 ] dm (4.2.6) 2σ 2 M M(z) 26

29 ( dmmn(m,z) = ρ 0 P ) dm = ρ 0 [P M=0 P M= ] 0 0 M = ρ ( ) 0 exp x2 dx = ρ 0 2π (4.2.7) δ c M (4.2.7) ρ 0 2 Press Schechter 20 (4.2.6) ( 2 n PS (M,z) = π ) 1/2 ρ 0 M [ δ c dσ M (z) σ 2 (z) dm exp M δ2 c 2σ 2 (z) M ] (4.2.8) Press Schechter σm(z) 2 z 0 M 0 z 1 (>z 0 ) M 1 (<M 0 ) progenitor p(m 1,z 1 M 0,z 0 ) M 0 δ 0 M 1 δ 1 0 [ 1 (δ 1 δ 0 ) P (M 1,δ 1 M 0,δ 0 )= 2π[σ 2 ] 2 (0) exp M1 σ2 (0)] 2[σ 2 (0) M1 σ2 (0)] (4.2.9) M0 M0 PS (4.2.1) (4.2.4) M 1 z 1 : P (M,δ M,δ )dδ, (4.2.10) P(M 1,>δ 1c M 0,δ 0c ) c 1 δ 1c δ 1c δ c [D(0)/D(z 1 )], (4.2.11) δ 0c δ c [D(0)/D(z 0 )] (4.2.12) M 1 p(m 1,z 1 M 0,z 0 ) = 2 P(M 1,>δ 1c M 0,δ 0c ) M 1 [ = δ 1c δ 0c 2π[σ 2 (0) exp M1 σ2 (0)]3 M0 27 (δ 1c δ 0c ) 2 2[σ 2 (0) M1 σ2 (0)] M0 ] dσ 2 M1 (0) dm 1 (4.2.13)

30 Abell clusters selected by eyes from the photographic plates galaxies satisfying m < m < m Press-Schechter halos nonlinear spherical collapse 2 = 18 π vir SZ clusters inverse Compton of CMB I ~ n T R SZ e e cl Halos in N-body simulations friend-of-friend method linking length = 0.2 (mean particle separation) X-ray clusters thermal bremsstrahlung 2 1/2 S ~ n T R X e e cl 4.2: 28

31 4.3 Press Schechter D(z) λ λ J δ k +2ȧ a δ k 4πG ρδ k = 0 (4.3.1) R(t) (decaying solution) (growing solution) decaying solution growing solution H(t) =ȧ/a Ḧ +2HḢ = H2 0 H 3Ω 0 =4πG ρh (4.3.2) 2R3 (4.3.1) H(t) t decaying solution growing solution D(t) (4.3.1) (4.3.2) a 2 d dt (ḊH DḢ)+da2 (ḊH DḢ) = 0 (4.3.3) dt D(t) H(t) dt a 2 H 2 (t) (4.3.4) D t z D(z) = 5Ω 0H w H(z) dw (4.3.5) z H 3 (w) H(z) = H 0 Ω 0 (1 + z) 3 +(1 Ω 0 λ 0 )(1 + z) 2 + λ 0 (4.3.6) z 1/(1 + z) D(z) (a) Einstein de Sitter (Ω 0 =1,λ 0 =0) D(z) 1 1+z (4.3.7) (b) (Ω 0 < 1,λ 0 =0) D(z) 1+ 3 x +3 1+x x 3 ln ( 1+x x ) x 1 Ω 0 Ω 0 (1 + z) (4.3.8) 29

32 (c) (Ω 0 < 1,λ 0 =1 Ω 0 ) D(z) 1+ 2 x 3 x 0 ( ) u 3/2 2 1/3 (Ω 1 du x 0 1) 1/3 2+u 3 1+z (4.3.9) D(z) = g(z) 1+z, (4.3.10) g(z) = 5Ω(z) 1 2 Ω 4/7 (z) λ(z)+[1+ω(z)/2][1 + λ(z)/70], (4.3.11) [ ] 2 Ω(z) = Ω 0 (1 + z) 3 H0 (1 + z) = H(z) [ ] 2 H0 λ(z) = λ 0 = H(z) 4.3 Ω 0 (1 + z) 3 (4.3.12), Ω 0 (1 + z) 3 +(1 Ω 0 λ 0 )(1 + z) 2 + λ 0 λ 0 Ω 0 (1 + z) 3 +(1 Ω 0 λ 0 )(1 + z) 2 + λ 0, (4.3.13) z 4.3: (4.3.5) (4.3.10) 30

33 Press- Schechter (i) academic interest ( ) 2 (A) singular isothermal sphere ρ(r) = σ2 1 2πG r 2 ξ gg (r) r 1.8 r 2 r 2 (B) stable clustering solution for ξ(r) P mass (k) k n ( ) ξ mass (r) r 3(n+3)/(n+5) ( ) ξ gg (r) r 1.8 (A) (B) (ii) practical importance ( ) (i) 31

34 testable predictions ( ) (bias) ( ) 5.2 V (r) r r r r r ρ(r) r 2 ( ) (A) (B) 1980 (a) 1996 r s : ρ(r) 1 (r/r s ) α (1 + r/r s ) 3 α (5.2.1) α =1 (B) 5 (α =1.5 ) (5.2.1) 32

35 5.1: 1970 Peebles AJ, 75, 13 N = 300, Coma N 1972 Gunn & Gott ApJ 176, 1 secondary infall 1977 Gunn ApJ 218, 592 secondary infall ρ r 9/ Hoffman & Shaham ApJ 297, 16 density peak ρ r 3(n+3)/(n+4) 1986 Quinn, Salmon & Zurek Nature 322, 329 N 1000 Hoffman & Shaham 1987 West, Dekel & Oemler ApJ 316, 1 N 4000 simulations. univeral profile 1988 Frenk, White, Davis & Efstathiou ApJ 327, 507 N =32 3 simulations, SCDM 1990 Hernquist ApJ 356, 359 de Vaucouleurs R 1/4 ρ(r) = Ma 1 2π r(r + a) 3 ( ) 1994 Crone, Evrard, & Richstone ApJ 434, 402 N =64 3 simulations in scale-free models + various cosmology ρ r α : 1995 Navarro, Frenk & White MNRAS 275, 720 SCDM SPH simulations (no cooling), N 6000 ρ(r) = 7500 ρ (r/0.2r 200 )(r/0.2r ) Navarro, Frenk & White ApJ 462, halos with N(< r vir ) = in SCDM universal density profile 1997 Fukushige & Makino ApJ 477, L9 higher-resolution simulations (N = 786, 400) NFW 1/r 1997 Navarro, Frenk & White ApJ 490, 493 SCDM, LCDM, scale-free models simualtions universal density profile 1998 Syer & White MNRAS 293, 337 continual merger + tidal disruption ρ r 3(n+3)/(n+5) 1998 Moore et al. ApJ 499, L5 inner profile ρ r 1.4 Fukushige & Makino 1999 Moore et al. MNRAS 310, ρ(r) (r/r s ) 1.5 [1 + (r/r s ) 1.5 ] 2000 Jing & Suto ApJ 529, L69 (controvertial) 33

36 5.1: (Peebles 1970) 5.2: universal. (Crone, Evrard & Richstone 1994) 34

37 5.3: Particle plots illustrating the time evolution of halos of different mass in an Ω 0 =1, n = 1 cosmology. Box sizes of each column are chosen so as to include approximately the same number of particles. At z 0 = 0 the box size corresponds to about 6 r 200. Time runs from top to bottom. Each snapshot is chosen so that M increases by a factor of 4 between each row. Low mass halos assemble earlier than their more massive counterparts. This is true for every cosmological scenario in our series. (Navarro, Frenk & White 1997). 35

38 5.4: Density profiles of one of the most and one of the least massive halos in each series. In each panel the low-mass system is represented by the leftmost curve. In the SCDM and CDMΛ models radii are given in kpc (scale at the top) and densities are in units of M /kpc 3. In all other panels units are arbitrary. The density parameter, Ω 0,andthe value of the spectral index, n is given in each panel. Solid lines are fits to the density profiles using eq. (1). The arrows indicate the value of the gravitational softening. The virial radius of each system is in all cases two orders of magnitude larger than the gravitational softening (Navarro, Frenk & White 1997) 36

39 5.5: The circular velocity profiles of the halos shown in the previous Figure. Radii are in units of the virial radius and circular speeds are normalized to the value at the virial radius. The thin solid line shows the data from the simulations. All curves have the same shape: they rise near the center until they reach a maximum and then decline at the outer edge. Low mass systems have higher maximum circular velocities in these scaled units because of their higher central concentrations. Dashed lines are fits using eq.(3). The dotted lines are the fit to the low-mass halo in each panel using a Hernquist profile. Note that this model fits rather well the inner regions of the halos, but underestimates the circular velocity near the virial radius (Navarro, Frenk & White 1997). 37

40 5.6: Density and temperature structures of the halo at z =1.8. The position of the center of the halo was determined using potential minimum and averaged physical values over each spherical shell (Fukushige & Makino 1997). 5.7: The density profiles of the Coma cluster simulated at four different resolutions. The curves begin at the spline softening lengths that were used and the number of particles within the final virial radii are indicated (Moore et al. 1998). 38

41 5.8: The broken lines show the Virgo halo simulated at the same mass resolution but varying only the softening parameter. This halo has a virial radius of 2 Mpc and contains 20,000 particles within r vir. The values of the softening used are indicated next to each curve. The solid curves show the same cluster resimulated with a mass resolution 20 times higher, but keeping the force softening fixed at 10kpc. To demonstrate that relaxation is not affecting our results one of the solid curves shows the profile at a redshift z=0.25(moore et al. 1998). 5.9: The same cluster simulated in the next figure but with two different values of the softening length and keeping the particle mass fixed. The left panel shows a close up view of the inner 500 kpc of the last frame of Figure 1. In this case the softening was 0.2% of the virial radius. The right panel shows the same region of the same cluster but simulated with a softening length of 1.5% of the virial radius. The lack of substructure halos in the right panel demonstrates that softened halos are easily disrupted by tidal forces (Moore 2001). 39

42 5.10: The hierarchical evolution of a galaxy cluster in a universe dominated by cold dark matter. Small fluctuations in the mass distribution are present but barely visible at early epochs. These grow by gravitational instability, merging and accretion of mass, eventually collapsing into virialised quasi-spherical dark matter halos. This plot shows a time sequence of 6 frames of a region of the universe that evolves into a cluster of galaxies. The colours represent the local density of dark matter plotted using a logarithmic colour scale. Linear over-densities are darker blue, whereas the non-linear collapsed regions attain over-densities of a million times the mean background density and are plotted as yellow/white. Each box is 10 Mpc on a side and the final cluster virial radius is 2 Mpc (Moore 2001). 40

43 5.11: The density profile of the cluster measured in three runs with increasing resolutions (from triangles to squares to circles). In the best run, the cluster contains over 4 million particles and the force resolution is 0.05% of the cluster s virial radius. The curves are an NFW profile (lower curve) and a fit with the profile of Moore et al. (1999a), which rises more steeply ( r 1.5 )atthe center than the NFW profile ( r 1 ). With increasing resolution, the cluster s profile continues to approach M99a s curve i.e. this appears to be the asymptotic profile in the limit of infinite resolution. The vertical bars mark the radii at which the measured profiles are no longer affected by finite numerical resolution (Ghigna et al. 2000). 5.12: (Jing & Suto 2000) 41

44 5.13: (Jing & Suto 2000) 5.14: Evolution of density profile of the halo for Run 16M0 and 2M0. The unit of density is M /pc 3. The profiles are vertically shifted downward by 7, 6,..., 1, 0 dex from the bottom to the top. The arrows indicates r 200. The numbers near the dashed lines indicate the power index of those lines. The numbers on the left of the profiles indicate the redshift (Fukushige & Makino 2001). 42

45 NFW : ρ DM (r) = δ c ρ crit (r/r s )(1 + r/r s ) 2. (5.3.1) : r vir = r vir (M halo,z vir ) r vir vir δ c = δ c (M) : (characteristic halo density), (5.3.2) r s = r s (M) : (scaling radius), (5.3.3) ρ crit = 3H2 0 8πG h 2 M /Mpc 3 : ( ), (5.3.4) c vir r vir(m) : (concentration parameter). (5.3.5) r s (M) ( ) 1/3 3M halo 1.69 ( ) vir Ω 1/3 ( ) 1/3 0 M halo (5.3.6) 4π vir Ω 0 ρ crit 1+z vir 18π h 1 M { 18π 2 Ω(z vir ) 0.7 (λ 0 =0) (5.3.7) 18π 2 Ω(z vir ) 0.6 (λ 0 =1 Ω 0 ) c vir fitting formula in LCDM : Bullock et al. MNRAS 321(2001)559 c vir (M halo,z)= 9 ( ) 0.13 M halo. (5.3.8) 1+z h 1 M r δ c ρ crit r 2 [ M(r) =4π 0 (r/r s )(1 + r/r s ) dr =4πδ cρ 2 crit rs 3 ln (1+ r ) r ] rs r + r s (5.3.9) (5.3.5) (5.3.6) (5.3.9) δ c = virω 0 3 c 3 vir ln(1 + c vir ) c vir /(1 + c vir ) (5.3.10) GM(r) V c (r) = r = 4πδ c ρ crit r 2 s [ rs r ln ( 1+ r r s ) r s r + r s ] (5.3.11) 43

46 (5.2.1) 5.15: Rotation curves of high resolution CDM halos (solid curves) compared with LSB rotation curve data (dotted curves). All of the data and model rotation curves have been scaled to a fiducial peak velocity of 200 km/s. (Note that the simulation halos and the data were chosen to have peak rotational velocities within 50% of this value.) The total rotational velocity and the baryonic contribution from the stars and gas from a typical LSB galaxy (UGC 128) are shown by the open squares. The mass to baryon ratio for this galaxy is nearly 20:1 and the rotation curve data probes a remarkable 25% of the expected virialised halo (Moore et al. 1999). 5.16: A radial plot of the mass density and light density. Total (thick line) and galaxy-only (thin line) components of the mass are shown. Thedottedlineisthebest NFW fit discussed in the text, and the dashed line is the best-fit single PL model. The 35 h 1 kpc soft core in the mass is evident. A singular mass distribution is ruled out. The total rest-frame V light profile (solid line), and galaxy V light profile (dashed line), smoothed with a 5 h 1 kpc Gaussian, are also shown (Tyson, Kochanski & Dell Antonio 1998, ApJ 498, L107). 44

47 5.3.2 X β NFW X (Makino, Sasaki & Suto 1998) : dp gas dr = GM(r) r 2 ρ gas, (5.3.12) : p gas = n gas kt gas = ρ gas µm p kt gas, (5.3.13) kt gas d ln ρ gas µm p dr (5.3.9) ln ρ gas = Gµm p kt gas 4πδ c ρ crit r 2 s }{{} B r/rs 0 = GM(r) r 2. (5.3.14) [ ] ln(1 + x) 1 + const. (5.3.15) x 2 x(1 + x) ρ gas (r) =ρ g0 e B (1+ r r s ) Brs/r. (5.3.16) β β fit ρ gas (r) 3β ρ g0 A eff /2, [1 + (r/r c,eff ) 2 ] (5.3.17) A 0.178b = 0.013B (b 2B/27), r c,eff 0.22r s, β eff 0.9b =0.067B. 5.17: NFW β (Makino, Sasaki, & Suto 1998). 45

48 5.3.3 Collisional dark matter CDM (r 1Mpc) r 1Mpc r 1Mpc σ (Collisional dark matter, self-interacting dark matter) ( σ (mn) l mfp 1 for mn ρ c,cluster and l mfp ( ) 1Mpc.(5.3.18) m) ( ( σ h m) 1 cm 2 4 )( ρ crit 1h 1 ) Mpc /g ρ c,cluster l mfp (5.3.19) ( ) ( m σ h 1 cm )( ρ crit 1h 1 ) Mpc. (5.3.20) 1GeV ρ c,cluster l mfp t l mfp v 109 h 1 ( 1000km/s v )( ) lmfp. (5.3.21) 1h 1 Mpc σ/m 1cm 2 /g subhalos 46

49 S1 1 : 0:82 : 0:65 S1Wa? =0:1cm 2 g ;1 r c =40h ;1 kpc 1 : 0:88 : 0:66 S1Wb? =1:0cm 2 g ;1 r c = 100 h ;1 kpc 1 : 0:91 : 0: : Density profiles (top) and mean collision counts per particle (bottom). The vertical dotted line in the top panel indicates the gravitational softening length of our S1 simulations. The virial radius R 200 of the final cluster is shown as an arrow. The fluid dark matter case from Yoshida et al. (2000) is plotted as the dashed line, while the dash-dotted line represents our higher resolution simulation of the medium cross-section case (S2W-b). (Yoshida et al. 2000, ApJ 544, L87). S1Wc? =10:0cm 2 g ;1 r c = 160 h ;1 kpc 1 : 0:98 : 0: : Projected mass distributions in a box 15h 1 Mpc on a side. The collision cross-sections per unit mass, core radii, axis ratios for each model and small panels showing the central region (2h 1 Mpc on a side, enlarged) in a different color scale are given to the right of the corresponding image. (Yoshida et al. 2000, ApJ 544, L87). 5.20: The total number of subhalos within R 200 is plotted as a function of the lower limit to their mass in units of M 200. Results are plotted for halos containing 10 or more particles. (Yoshida et al. 2000, ApJ 544, L87). 47

50 a(t) Einstein de Sitter m f(x, p,t) dp dt L = 1 2 ma2 ẋ 2 mφ(x) (5.4.1) f t + p ma f 2 x m φ x f p =0 (5.4.2) p = ma 2 dx dt, (5.4.3) = m φ, (5.4.4) 2 φ = 4πGa 2 ρδ = 4πGm f(x, p,t)dp. (5.4.5) a a(t) t 2/3 Einstein de Sitter (5.4.2) f(x, p,t)=t 3β ˆf(x/t β 1/3, p/t β ), (5.4.6) (5.4.6) P i (k) k n i, (5.4.7) β ξ(x, t) = 1 n 2 a 6 dp 1 dp 2 [ f(x 1, p 1,t)f(x 2, p 2,t) f(x 1, p 1,t) f(x 2, p 2,t) ], (5.4.8) (x x 1 x 2 ) (5.4.6) ξ (5.4.7) ξ(x, t) =ˆξ(x/t β 1/3 ). (5.4.9) ξ(x, t) x (n i+3) t 4/3. (5.4.10) 48

51 (5.4.9) (5.4.10) β = n i +7 3(n i +3) (5.4.11) stable clustering x x { na 3 t 0 } 4πx 2 dx[1 + ξ(x, t)] +4πa 2 x 2 n[1 + ξ(x, t)] v 21 (x, t) =0. (5.4.12) v 21 (x, t) ξ (5.4.12) 1 { ξ(x, t)+ x 2 v t ax 2 21 (x, t) [1 + ξ(x, t)] } =0. (5.4.13) x (ξ 1) ṙ 21 =0= v 21 (x, t) +ȧx, (5.4.14) : The normalized meanpairwise peculiar velocity, v 12 /Hr as a function of f(z) ξ(r; z) at different redshifts. Sold lines indicate the fitting formula proposed by Caldwell et al. (2001). (Fukushige & Suto 2001) 49

52 (5.4.13) (1 + ξ) =ȧ t a g 1 x 2 x [x3 (1 + ξ)] (5.4.15) ξ = a 3 g(ax) (5.4.16) ξ 1 1 (5.4.7) (5.4.9) (5.4.11) (5.4.16) g(w) w 3(n i+3)/(n i +5) ξ(x, t) x 3(n i +3) n i +5 t 4 n i +5 x 3(n i +3) n i +5 a 6 n i +5 (5.4.17) : Two-point correlation functions in the simulations scaled according to (a) conventional self-similar solution, and (b) quasi-self-similar solution with scale independent slope. The solid lines are the results for Ω 0 = 1 models, and the symbols are those for Ω 0 =0.1 models with either λ 0 =0orλ 0 =0.9. Error bars are estimated from three realizations for each model; only the error bars for n = 2 and(ω 0,λ 0 )=(0.1, 0.9) are shown. Other models have smaller error bars, which are not shown for clarity. The arrows correspond to ξ(x) = 100 for each model. (Suginohara, Taruya & Suto 2002) 50

53 5.4.2 Hoffman & Shaham (1985) t = t i turn around (maximum expansion) t = t i r = r i W i = GM i r i = Ω ih 2 i 2 K i = H2 i r2 i 2 maximum expansion t = t m = G 4πri 3 r i 3 ρ [ i 1+ δi (<r i ) ] = 4πG [ 3 r2 i Ω i ρ c,i 1+ δi (<r i ) ] [ 1+ δi (<r i ) ] (5.4.18) r 2 i = W i Ω i (1 + δ i ). (5.4.19) K m =0, W m = GM i r m K m W m = r i r m W i = K i W i = r m r i = 1 1 Ω 1 i (1 + δ i ) 1 = 1+ δ i = r i r m W i. (5.4.20) [ ] 1 Ω i (1 + δ i ) 1 W i. (5.4.21) 1+ δ i Ω 1. (5.4.22) t = t i r i δ i (<r i ) Ω 1 i 1 ( ) t = t m 1+ δ i r m (r i )== 1+ δ i Ω 1 r i (5.4.23) i P (k) k n ξ(r) r (n+3) r c δ 0 (r i r c ) ( ) δ i (<r i )= ri (n+3) δ 0 (r i r c ), (5.4.24) r c maximum expansion ( ) ri 2 dr [ i ρ m (r m )=ρ i (r i ) =Ω i ρ c,i 1+ δi (<r i ) ] ( ) ri 2 dr i (5.4.25) r m dr m r m dr m 51 i

54 (5.4.23) 1 Ω 1 i ( ) r0 (n+3) δ 0 (5.4.26) r c r 0 r m dr m dr i ρ m 1 δ 0 r n+3 c 1 δ 0 r n+3 c (r n 3 i r n 3 i r i r n 3 0 (n +4)r n 3 i (r n 3 i (n +4)r n 3 i r n 3 0 ) 4 r n 3 0 (5.4.27) (5.4.28) r n 3 ) 2 0 r n 3 0 }{{} r 3(n+3) i rm 3(n+3)/(n+4). (5.4.29) r i r 0 r f r m GM i r m = K f GM i = 1 GM i GM i r f 2 r f r f = GM i 2r f r f = 1 2 r m (5.4.30) r f r m (5.4.29) ρ f (r f ) r 3(n+3)/(n+4) f (5.4.31) 5.2: stable solution n ξ stable ρ Hoffman Shaham 0 x 1.8 r x 1.5 r 2-2 x 1 r

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2

1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 1 ( ) Einstein, Robertson-Walker metric, R µν R 2 g µν + Λg µν = 8πG c 4 T µν, (1) ( ds 2 = c 2 dt 2 + a(t) 2 dr 2 ) + 1 Kr 2 r2 dω 2, (2) (ȧ ) 2 H 2 = 8πG a 3c 2 ρ Kc2 a 2 + Λc2 3 (3), ä a = 4πG Λc2 (ρ

More information

dark matter density profiles

dark matter density profiles LSS & CDM 2 LSS & CDM 3 SPH simulation: movie SPH simulation in CDM : dark matter hot gas galaxy (Yoshikawa, Taruya, Jing & Suto 2001) LSS & CDM 4 Confronting elements of the CDM paradigm Global cosmological

More information

4 19

4 19 I / 19 8 1 4 19 : : f(e, J), f(e) Phase mixing Landau Damping, violent relaxation : 2 2 : ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif

More information

/ 18 12 4 ( ) ( ) : : f(e, J), f(e) Phase mixing Landau Damping, violent relaxation : 2 2 : ? m i d 2 x i dt 2 = j i f ij (1) x i m i i f ij j i f ij G f ij = Gm i m j x j x i x j x i 3, (2) ( ) 2 (

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g 1 1 (gravitation) 1.1 m F a ma = F (1.1) F a m F 1.1 m F a (1.1) m a F m F a m a F F a m 0 0 1.2 (universal gravitation) (potential) M m gravitational force F r F = ; GMm r 2 (1.2) G = 6:67 10 ;8 dyn cm

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

Gravothermal Catastrophe & Quasi-equilibrium Structure  in N-body Systems 2004/3/1 3 N 1 Antonov Problem & Quasi-equilibrium State in N-body N Systems A. Taruya (RESCEU, Univ.Tokyo) M. Sakagami (Kyoto Univ.) 2 Antonov problem N-body study of quasi-attractivity M15 T Antonov

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

宇宙理論研究室ガイダンス

宇宙理論研究室ガイダンス 60 S.L.Glashow Glashow : Interaction Warner Books 4 4 1978 12 CMB 10-40 -40 CMB / The universe in a nutshell A H He C, O Ne, Mg Si Fe Sphere(0.1 cylinder (0. slab (0. Cylinder hole (0. Spherical hole

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x Compton Scattering Beaming exp [i k x ωt] k λ k π/λ ω πν k ω/c k x ωt ω k α c, k k x ωt η αβ k α x β diag + ++ x β ct, x O O x O O v k α k α β, γ k γ k βk, k γ k + βk k γ k k, k γ k + βk 3 k k 4 k 3 k

More information

Report10.dvi

Report10.dvi [76 ] Yuji Chinone - t t t = t t t = fl B = ce () - Δθ u u ΔS /γ /γ observer = fl t t t t = = =fl B = ce - Eq.() t ο t v ο fl ce () c v fl fl - S = r = r fl = v ce S =c t t t ο t S c = ce ce v c = ce v

More information

Ando_JournalClub_160708

Ando_JournalClub_160708 Independent discoveries of a tidally disrupting dwarf galaxy around NGC 253! A Tidally Disrupting Dwarf Galaxy in the Halo of NGC 253 Toloba, E. et al. 2016, ApJL, 816, L5 (hereafter T16, accepted 2015.12.07)

More information

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2 1 6 6.1 (??) (P = ρ rad /3) ρ rad T 4 d(ρv ) + PdV = 0 (6.1) dρ rad ρ rad + 4 da a = 0 (6.2) dt T + da a = 0 T 1 a (6.3) ( ) n ρ m = n (m + 12 ) m v2 = n (m + 32 ) T, P = nt (6.4) (6.1) d [(nm + 32 ] )a

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep)

Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, , 2011) AM + (in prep) Akira MIZUTA(KEK) AM, Nagataki, Aoi (ApJ, 732 26, 2011) AM + (in prep) 2011.12.28 GRB GRB. ex. GRB980425/SN1998bw, GRB030329/SN2003dh XRF060218/SN2006aj. GRB091127/SN2009nz XRF100316D/SN2010bh Spectrum

More information

Clustering in Time and Periodicity of Strong Earthquakes in Tokyo Masami OKADA Kobe Marine Observatory (Received on March 30, 1977) The clustering in time and periodicity of earthquake occurrence are investigated

More information

B

B B07557 0 0 (AGN) AGN AGN X X AGN AGN Geant4 AGN X X X (AGN) AGN AGN X AGN. AGN AGN Seyfert Seyfert Seyfert AGN 94 Carl Seyfert Seyfert Seyfert z < 0. Seyfert I II I 000 km/s 00 km/s II AGN (BLR) (NLR)

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,

More information

PowerPoint Presentation

PowerPoint Presentation 2010 KEK (Japan) (Japan) (Japan) Cheoun, Myun -ki Soongsil (Korea) Ryu,, Chung-Yoe Soongsil (Korea) 1. S.Reddy, M.Prakash and J.M. Lattimer, P.R.D58 #013009 (1998) Magnetar : ~ 10 15 G ~ 10 17 19 G (?)

More information

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science, Bunka Women's University, Shibuya-ku, Tokyo 151-8523

More information

BH BH BH BH Typeset by FoilTEX 2

BH BH BH BH Typeset by FoilTEX 2 GR BH BH 2015.10.10 BH at 2015.09.07 NICT 2015.05.26 Typeset by FoilTEX 1 BH BH BH BH Typeset by FoilTEX 2 1. BH 1.1 1 Typeset by FoilTEX 3 1.2 2 A B A B t = 0 A: m a [kg] B: m b [kg] t = t f star free

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

スライド 1

スライド 1 Matsuura Laboratory SiC SiC 13 2004 10 21 22 H-SiC ( C-SiC HOY Matsuura Laboratory n E C E D ( E F E T Matsuura Laboratory Matsuura Laboratory DLTS Osaka Electro-Communication University Unoped n 3C-SiC

More information

udc-2.dvi

udc-2.dvi 13 0.5 2 0.5 2 1 15 2001 16 2009 12 18 14 No.39, 2010 8 2009b 2009a Web Web Q&A 2006 2007a20082009 2007b200720082009 20072008 2009 2009 15 1 2 2 2.1 18 21 1 4 2 3 1(a) 1(b) 1(c) 1(d) 1) 18 16 17 21 10

More information

( )

( ) 1. 2. 3. 4. 5. ( ) () http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) SDSS : d 2 r i dt 2 = Gm jr ij j i rij 3 = Newton 3 0.1% 19 20 20 2 ( ) 3 3

More information

日立金属技報 Vol.34

日立金属技報 Vol.34 Influence of Misorientation Angle between Adjacent Grains on Magnetization Reversal in Nd-Fe-B Sintered Magnet Tomohito Maki Rintaro Ishii Mitsutoshi Natsumeda Takeshi Nishiuchi Ryo Uchikoshi Masaaki Takezawa

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

Contents 1 Jeans (

Contents 1 Jeans ( Contents 1 Jeans 2 1.1....................................... 2 1.2................................. 2 1.3............................... 3 2 3 2.1 ( )................................ 4 2.2 WKB........................

More information

1 N Mpc well-defined 1 1) Davis et al. 4)? N 2 CMB COBE CMB 2

1 N Mpc well-defined 1 1) Davis et al. 4)? N 2 CMB COBE CMB 2 Observational Cosmology towards the 21st century Yasushi Suto Department of Physics and Research Center for the Early Universe, University of Tokyo, Tokyo 113-0033 We have witnessed a rapid and significant

More information

QMI_10.dvi

QMI_10.dvi ... black body radiation black body black body radiation Gustav Kirchhoff 859 895 W. Wien O.R. Lummer cavity radiation ν ν +dν f T (ν) f T (ν)dν = 8πν2 c 3 kt dν (Rayleigh Jeans) (.) f T (ν) spectral energy

More information

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa-shi,

More information

SFN

SFN THE STAR FORMATION NEWSLETTER No.291-14 March 2017 2017/04/28 16-20 16. X-Shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership and activity diagnostics 17. The evolution

More information

28 Horizontal angle correction using straight line detection in an equirectangular image

28 Horizontal angle correction using straight line detection in an equirectangular image 28 Horizontal angle correction using straight line detection in an equirectangular image 1170283 2017 3 1 2 i Abstract Horizontal angle correction using straight line detection in an equirectangular image

More information

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf SFG 1 SFG SFG I SFG (ω) χ SFG (ω). SFG χ χ SFG (ω) = χ NR e iϕ +. ω ω + iγ SFG φ = ±π/, χ φ = ±π 3 χ SFG χ SFG = χ NR + χ (ω ω ) + Γ + χ NR χ (ω ω ) (ω ω ) + Γ cosϕ χ NR χ Γ (ω ω ) + Γ sinϕ. 3 (θ) 180

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

1. A0 A B A0 A : A1,...,A5 B : B1,...,B 1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)

More information

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be

global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, ( 03) N. P. A722, 117c ( 03) Proc. of NENS03 (to be Gogny hard core spin-isospin property @ RCNP (Mar. 22 24, 2004) Collaborator: M. Sato (Chiba U, ) ( ) global global mass region (matter ) & (I) M3Y semi-microscopic int. Ref.: H. N., P. R. C68, 014316

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

untitled

untitled SPring-8 RFgun JASRI/SPring-8 6..7 Contents.. 3.. 5. 6. 7. 8. . 3 cavity γ E A = er 3 πε γ vb r B = v E c r c A B A ( ) F = e E + v B A A A A B dp e( v B+ E) = = m d dt dt ( γ v) dv e ( ) dt v B E v E

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite

: 8.2: A group (i.e. a very small cluster) of galaxies superimposed on a x-ray image from the ROSAT satellite 1 8 8.1 8.1.1 8.1: ( Ω = ρ/ρ c ) (Fukugita, M. et al., APJ 503 (1998) 518) ( 15%) (z 0 ) 1.................. 0.0026 h 1 0.0043 h 1 0.0014 h 1 A 2..................... 0.00086 h 1 0.00129 h 1 0.00051 h

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

inflation.key

inflation.key 2 2 G M 0 0-5 ϕ / M G 0 L SUGRA = 1 2 er + eg ij Dµ φ i Dµ φ j 1 2 eg2 D (a) D +ieg ij χ j σ µ Dµ χ i + eϵ µνρσ ψ µ σ ν Dρ ψ σ 1 4 ef (ab) R F (a) [ ] + i 2 e λ (a) σ µ Dµ λ (a) + λ (a) σ µ Dµ λ (a) 1

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

IA

IA IA 31 4 11 1 1 4 1.1 Planck.............................. 4 1. Bohr.................................... 5 1.3..................................... 6 8.1................................... 8....................................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble

25 II :30 16:00 (1),. Do not open this problem booklet until the start of the examination is announced. (2) 3.. Answer the following 3 proble 25 II 25 2 6 13:30 16:00 (1),. Do not open this problem boolet until the start of the examination is announced. (2) 3.. Answer the following 3 problems. Use the designated answer sheet for each problem.

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

Fig. 1 Experimental apparatus.

Fig. 1 Experimental apparatus. Effects of Concentration of Surfactant Solutions on Drag-Reducing Turbulent Boundary Layer In this study, the influence of a drag-reducing surfactant on the turbulent boundary layer was extensively investigated

More information

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998

[1] 2 キトラ古墳天文図に関する従来の研究とその問題点 mm 3 9 mm cm 40.3 cm 60.6 cm 40.5 cm [2] 9 mm [3,4,5] [5] 1998 18 1 12 2016 キトラ古墳天文図の観測年代と観測地の推定 2015 5 15 2015 10 7 Estimating the Year and Place of Observations for the Celestial Map in the Kitora Tumulus Mitsuru SÔMA Abstract Kitora Tumulus, located in Asuka, Nara

More information

Author Workshop 20111124 Henry Cavendish 1731-1810 Biot-Savart 26 (1) (2) (3) (4) (5) (6) Priority Proceeding Impact factor Full paper impact factor Peter Drucker 1890-1971 1903-1989 Title) Abstract

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t

Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test conditions except for t Review of Seatbelt Anchorage and Dimensions of Test Bench Seat Cushion JASIC Motivation and Purpose There is no definition about whether seatbelt anchorage should be fixed or not. We tested the same test

More information

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal Inrush Current of Induction Motor on Applying Electric Power by Takao Itoi Abstract The transient currents flow into the windings of the induction motors when electric sources are suddenly applied to the

More information

OPA277/2277/4277 (2000.1)

OPA277/2277/4277 (2000.1) R OPA OPA OPA OPA OPA OPA OPA OPA OPA µ µ ± ± µ OPA ±± ±± ± µ Offset Trim Offset Trim In OPA +In -Pin DIP, SO- Output NC OPA Out A In A +In A A D Out D In D +In D Out A In A +In A A B Out B In B +In B

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

V懇_2017.key

V懇_2017.key z > 4 Radio-loud 2 Z. -Q. Shen VLBI 2017 @ J1427+3312; z = 6.1 160 pc Frey et al. 2008 Figure 1. VLBI images at 1.6 GHz of three very high-redshift q left), J1427+3312 (z = 6.12, middle), and J1429+5447

More information

200708_LesHouches_02.ppt

200708_LesHouches_02.ppt Numerical Methods for Geodynamo Simulation Akira Kageyama Earth Simulator Center, JAMSTEC, Japan Part 2 Geodynamo Simulations in a Sphere or a Spherical Shell Outline 1. Various numerical methods used

More information

Influence of Material and Thickness of the Specimen to Stress Separation of an Infrared Stress Image Kenji MACHIDA The thickness dependency of the temperature image obtained by an infrared thermography

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) 1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )

More information

Contents (JPG )

Contents (JPG ) Contents 2 6 2 (JPG ) 2 2 9 3 2 4 5 5 7 6 8 7 9 8 23 2 SDSS LSS. P (s) (k) ο (s) (s) 2. P (s) (k) ο (s) (s) Ω 3. 4. 5. 6. 7. 8. 9. P (s) (k) ο (s) (s).. 2. 3. 4. 3 2dF QSO Scientic aims of the 2dF QSO

More information

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc

A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, Sc A Nutritional Study of Anemia in Pregnancy Hematologic Characteristics in Pregnancy (Part 1) Keizo Shiraki, Fumiko Hisaoka Department of Nutrition, School of Medicine, Tokushima University, Tokushima Fetal

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru

2 X-ray 6 gamma-ray 7 1 17.1 0:38m 0:77m nm 17.2 Hz Hz 1 E p E E = h = ch= (17.2) p = E=c = h=c = h= (17.3) continuum continuous spectrum line spectru 1 17 object 1 observation 17.1 X electromagnetic wave photon 1 = c (17.1) c =3 10 8 ms ;1 m mm = 10 ;3 m m =10 ;6 m nm = 10 ;9 m 1 Hz 17.1 spectrum radio 2 infrared 3 visual light optical light 4 ultraviolet

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

浜松医科大学紀要

浜松医科大学紀要 On the Statistical Bias Found in the Horse Racing Data (1) Akio NODA Mathematics Abstract: The purpose of the present paper is to report what type of statistical bias the author has found in the horse

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

系外惑星大気

系外惑星大気 transiting planet http://hubblesite.org/newscenter/archive/2001/38/ 2004 6 17 HDS 2 3 (Mayor & Queloz 1995) 4.2 4 (Charbonneau et al. 2000, Henry et al. 2000) HST HST Brown et al. (2001) 5 6 Radial velocity

More information

銀河団衝突にともなう 高温ガスの運動がひきおこす特徴的な磁場構造 (Takizawa 2008 ApJ, 687, 951)

銀河団衝突にともなう 高温ガスの運動がひきおこす特徴的な磁場構造 (Takizawa 2008 ApJ, 687, 951) JVLA S-band and X-band Polarimetry of Abell 2256 Ozawa,,,,,Takizawa, Takahashi,,,,et al. to be submitted to PASJ 滝沢元和 2015.5.8 研究室談話会 Introduction: 銀河団 可視光 ( 数 100 個の銀河の集まり ) X 線数 kev の高温ガス ( シンクロトロン )

More information

(1) (2) (3) (4) 1

(1) (2) (3) (4) 1 8 3 4 3.................................... 3........................ 6.3 B [, ].......................... 8.4........................... 9........................................... 9.................................

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information