LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ"

Transcription

1 8 + J/ψ ALICE B597 : : : 9

2 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ

3 (QGP) LHC ALICE V IS AliRoot Dimuon (Event mixing technique) (Like-sign method) acceptance efficiency (trigger efficiency)

4 acceptance efficiency Raw yield

5 [ LHC [ LHC ( )[ ALICE [ [ V IS [ J/ψ J/ψ J/ψ 4 < y <.5 J/ψ J/ψ J/ψ J/ψ acceptance efficiency J/ψ J/ψ p ( ) p ( ) PHENIX + GeV [ pol() pol(4) pol(5) pol(6) J/ψ J/ψ raw yield event mixing acceptance efficiency J/ψ like-sign method acceptance efficiency J/ψ ALICE LHCb J/ψ [ [9 / event mixing acceptance efficiency J/ψ like-sign method acceptance efficiency J/ψ

6 . 4 W Z (Quantum Chromo Dynamics, QCD) 4 ( ) c c J/ψ u d :. (QGP) (QGP) QGP. u d MeV/c u d 6

7 GeV/c QGP : [.4 u d QCD u d.5 ρ ϕ ω QGP QGP 7

8 QGP.6 QGP RHIC LHC.7 (rapidity, y) y = lne + p z = ln E + p z E p z m + p = tanh ( p z E ) () z p p = p x + p y y y p z /E z β z = v z /c z y = tanh (β) y y y z (pseudorapidity, η) η = tanh ( p z p ) = tanh (cosθ) () θ z θ m p E p.8 + J/ψ J/ψ 8

9 . LHC LHC (Large Hadron Collider) LHC (CERN) LHC ALICE CMS ALAS LHCb LHCf OEM 6 : LHC [ 4: LHC ( )[ 9

10 . ALICE ALICE (A Large Ion Collider Experiment) LHC QGP () (.9 < η <.9) () ( 4 < η <.5) () 5: ALICE [4. ALICE 4 < η < m 4 GeV/c

11 .. 5 µm m..5 ns 6: [5.4 V V z = 88cm VC.7 < η <.7 z = 9cm VA.8 < η < 5.

12 .5 z = 7cm C. < η <. z = 7cm A 4.6 < η < IS IS (Inner racking System) SPD(Silicon Pixel Detector) SDD(Silicon Drift Detector) SSD(Silicon Strip Detector) 6 7: V IS [6

13 . AliRoot AliRoot Root ALICE AliRoot AliGenBox ALICE AliRoot. ALICE 5 s = ev + J/ψ.. J/ψ 8: J/ψ 9: J/ψ... + VC VA

14 .. Dimuon + ϕ ω J/ψ J/ψ J/ψ GeV/c.4 J/ψ J/ψ M J/ψ E J/ψ p J/ψ M µ E µ p µ E J/ψ = M J/ψ + p J/ψ () (4) (5) () E J/ψ = E µ + + E µ (4) p J/ψ = p µ + + p µ (5) MJ/ψ = E µ + E µ + E + µ E µ + ( p µ + p µ + + p µ p µ +) (6) J/ψ M J/ψ = Eµ + E µ + E + µ E µ + ( p µ + p µ + + p µ p µ +) (7) ( 4 < η <.5) Dimuon.5 J/ψ J/ψ 4

15 .5. (Event mixing technique) (mixed event) N same + = N same + S N mixed + (8) (same event) (unlike-sign) N mixed + mixed event unlike-sign S N same LS dm S = N mixed + dm (9) N same LS same event like-sign mixed event unlike-sign.5. (Like-sign method) (like-sign) J/ψ R = N+ same R N++ same N same () N++ same same N like-sign N++ same N same (++) ( ) R R = N mixed + N++ mixed N mixed () R µ + µ N + mixed mixed N mixed event unlike-sign like-sign N mixed ++ mixed event like-sign unlike-sign same event like-sign 5

16 .6 exp( (x x) σ ) ( x x f(x; α, n, x, σ, N) = N σ > α) ( n α )n exp( α ) ( n α α x x σ ) n ( x x σ α) () J/ψ ( 5σ +σ) J/ψ J/ψ σ 5σ.7 acceptance efficiency acceptance efficiency J/ψ acceptance ( 4 < y <.5) J/ψ efficiency J/ψ acceptance efficiency J/ψ acceptance efficiency = J/ψ 4 < y <.5 J/ψ ().8 (trigger efficiency) acceptance efficiency J/ψ ϵ J/ψ J/ψ trigger = J/ψ (4) (5) ϵ µ trigger = p > GeV/c (6) (7) 6

17 .9 d σ dp dy = σ MB p+p N event Rf R B d N dp dy (8) σ σ MB p+p + N event R B (5.9.6)% [ N (Raw yield) Rf Rejection factor + Dimuon Dimuon Rejection factor Dimuon + σ MB = (57.8.) mb [ N event 999 [9 Dimuon N event =. 7 L int = 46.7nb σ MB σ MB = Rf N event L int (9) Rf Rf = E d σ dp = σp+p MB d N πp N event Rf R B dp dy () 7

18 ( ) ( ) J/ψ J/ψ [(4MeV/c ).6.4. distribution ( < p < GeV/c) χ / ndf.8 / 5 Mean.5. σ.67.8 N [(4MeV/c ).5.5 distribution ( < p < GeV/c) χ / ndf. / 5 Mean.. σ N M [GeV/c M [GeV/c [(4MeV/c ).5 distribution ( < p < GeV/c) 6.66 / 5 Mean.. σ.647. N 8.6 [(4MeV/c ).5 distribution ( < p < 4 GeV/c) 4.74 / 5 Mean.. σ N M [GeV/c M [GeV/c [(4MeV/c ) distribution (4 < p < 5 GeV/c) 9.48 / 5 Mean.. σ N [(5MeV/c )..8 distribution (5 < p < 6 GeV/c) 4.4 / Mean.4.4 σ N M [GeV/c M [GeV/c 8

19 ) [(5MeV/c distribution (6 < p < 7 GeV/c).8 / Mean.99.4 σ N ) [(5MeV/c distribution (7 < p < 8 GeV/c) 7.7 / Mean..5 σ N M [GeV/c M [GeV/c ) [(5MeV/c 5 distribution (8 < p < 9 GeV/c).84 / Mean.95.5 σ N 4.. ) [(5MeV/c 4 distribution (9 < p < GeV/c) 7.4 / Mean.9.7 σ N M [GeV/c M [GeV/c : ) [(4MeV/c.6.4. distribution ( < p < GeV/c) χ / ndf.66 / 5 Mean.5. σ.67.7 N ) [(4MeV/c.5 distribution ( < p < GeV/c) 4.8 / 5 Mean.4. σ N M [GeV/c M [GeV/c ) [(4MeV/c distribution ( < p < GeV/c) 9.8 / 5 Mean.. σ N 4. ) [(4MeV/c.5 distribution ( < p < 4 GeV/c) 9.5 / 5 Mean.4. σ.664. N M [GeV/c M [GeV/c 9

20 [(4MeV/c ) distribution (4 < p < 5 GeV/c) / 5 Mean.97. σ.66.5 N [(5MeV/c )..8 distribution (5 < p < 6 GeV/c).48 / Mean.7.5 σ N M [GeV/c M [GeV/c [(5MeV/c ) distribution (6 < p < 7 GeV/c) / Mean.96.5 σ N [(5MeV/c ) distribution (7 < p < 8 GeV/c).75 / Mean.9.6 σ.55.6 N M [GeV/c M [GeV/c [(5MeV/c ) 5 5 distribution (8 < p < 9 GeV/c).4 / Mean.9.5 σ N 9..5 [(5MeV/c ) distribution (9 < p < GeV/c) 4.84 / Mean.9.8 σ N M [GeV/c M [GeV/c : 4.. acceptance efficiency J/ψ ( 4 < y <.5) J/ψ J/ψ J/ψ J/ψ

21 [(GeV/c) dn/dp 5 Number of J/ψ (simulation) [(GeV/c) 4 Number of detected J/ψ aaa Entries Mean.9 RMS.96 dn/dp p [GeV/c p [GeV/c : J/ψ : J/ψ 4 < y <.5 J/ψ J/ψ J/ψ acceptance efficiency acceptance x Efficiency acceptance x efficiency e_ls Entries Mean 6.49 RMS p [GeV/c 4: J/ψ acceptance efficiency 4.. J/ψ

22 trigger efficiency of J/ψ rigger efficiency of J/ψ tels Entries Mean 5.48 RMS J/ψ p [GeV/c 5: J/ψ 4 5 acceptance efficiency J/ψ p GeV/c p < GeV/c J/ψ GeV/c 7 GeV/c J/ψ p GeV/c θ 6 J/ψ p GeV/c [GeV/c muon p dimuon p vs single muon p hist Entries 6 Mean x.94 Mean y.8 RMS x.88 RMS y [GeV/c dimuon p 6: J/ψ p ( ) p ( ) J/ψ p GeV/c

23 p GeV/c rigger efficiency of single muon trigger efficiency of single muon µ p [GeV 7:

24 distribution < p < [GeV/c ) distribution < p < [GeV/c +background ) +background [(5MeV/c Event mixing technique [(5MeV/c Event mixing technique M [GeV/c M [GeV/c distribution < p < [GeV/c ) +background ) [(5MeV/c Event mixing technique distribution < p < 4 [GeV/c +background [(5MeV/c Event mixing technique M [GeV/c M [GeV/c distribution 4 < p < 5 [GeV/c distribution 5 < p < 6 [GeV/c ) +background ) +background [(5MeV/c Event mixing technique [(5MeV/c Event mixing technique M [GeV/c M [GeV/c 4

25 ) [(5MeV/c distribution 6 < p < 7 [GeV/c +background Event mixing technique ) [(5MeV/c +background distribution 7 < p < 8 [GeV/c Event mixing technique M [GeV/c M [GeV/c ) distribution 8 < p < 9 [GeV/c +background ) distribution 9 < p < [GeV/c +background [(5MeV/c Event mixing technique [(5MeV/c Event mixing technique ) M [GeV/c M [GeV/c 8: [(5MeV/c distribution < p < [GeV/c +background Like-sign method ) [(5MeV/c distribution < p < [GeV/c +background Like-sign method ) M [GeV/c M [GeV/c [(5MeV/c distribution < p < [GeV/c +background Like-sign method ) [(5MeV/c distribution < p < 4 [GeV/c +background Like-sign method M [GeV/c M [GeV/c 5

26 ) distribution 4 < p < 5 [GeV/c +background ) distribution 5 < p < 6 [GeV/c +background [(5MeV/c Like-sign method [(5MeV/c Like-sign method M [GeV/c M [GeV/c ) [(5MeV/c distribution 6 < p < 7 [GeV/c +background Like-sign method ) [(5MeV/c +background distribution 7 < p < 8 [GeV/c Like-sign method M [GeV/c M [GeV/c distribution 8 < p < 9 [GeV/c ) +background ) [(5MeV/c Like-sign method distribution 9 < p < [GeV/c +background [(5MeV/c Like-sign method M [GeV/c M [GeV/c 9: cc bb cc bb D B B D D + = cd, D = cd, D = cu, D = cu D (9..7)%[ K - 6

27 : PHENIX + GeV [4 7

28 J/ψ 4 J/ψ 4 f n (x) = Crystalball function + pol(n) (n =, 4, 5, 6) () n (pol(n) = p i x i ) () 4 pol(n) J/ψ i= ) [(5MeV/c 5 4 distribution < p < [GeV/c χ / ndf. /. Mean..75 σ.6 N ) [(5MeV/c / 7 Mean.. σ N distribution < p < [GeV/c M µ [GeV/c + µ M µ [GeV/c + µ - ) [(5MeV/c distribution < p < [GeV/c 87.5 /.4 Mean σ.44 N ) [(5MeV/c distribution < p <4 [GeV/c 7.4 /. Mean..75 σ.58 N M µ [GeV/c + µ M µ [GeV/c + µ - ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 89.5 / Mean.. σ N ) [(5MeV/c distribution 5 < p <6 [GeV/c 6.5 / Mean.. σ N M µ [GeV/c + µ [GeV/c ) [(5MeV/c 5 distribution 6 < p <7 [GeV/c. / Mean.. σ N ) [(5MeV/c 4 8 distribution 7 < p <8 [GeV/c 75.7 / Mean.. σ.688. N M + [GeV/c [GeV/c ) [(5MeV/c distribution 8 < p <9 [GeV/c / ndf χ 4.6 /.4 Mean..648 σ.5 N ) [(5MeV/c distribution 9 < p < [GeV/c 48.8 / Mean.. σ.7.6 N [GeV/c [GeV/c : pol() 8

29 ) [(5MeV/c 5 4 distribution < p < [GeV/c 9.8 / Mean.8. σ.64.5 N ) [(5MeV/c distribution < p < [GeV/c / Mean.5. σ.6.8 N µ + µ M [GeV/c µ + µ M [GeV/c ) [(5MeV/c 87.4 / 7 Mean.4. 6 σ N distribution < p < [GeV/c ) [(5MeV/c distribution < p <4 [GeV/c 75.9 / Mean.. σ N µ + µ M [GeV/c µ + µ M [GeV/c ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 54.8 / Mean.. σ N ) [(5MeV/c 5 5 distribution 5 < p <6 [GeV/c 8.7 / Mean.. σ N µ + µ M [GeV/c µ + µ M [GeV/c ) [(5MeV/c 5 distribution 6 < p <7 [GeV/c 87. / Mean.5. σ N ) [(5MeV/c distribution 7 < p <8 [GeV/c 77.7 / Mean.. σ N M µ [GeV/c + µ M [GeV/c ) [(5MeV/c distribution 8 < p <9 [GeV/c 64. / Mean.. σ.54.9 N ) [(5MeV/c distribution 9 < p < [GeV/c 5. / Mean.. σ N M [GeV/c M [GeV/c : pol(4) 9

30 ) [(5MeV/c 5 4 distribution < p < [GeV/c 488. / Mean.8. σ.67.5 N ) [(5MeV/c 8 / ndf χ 6.6 /.6 Mean. 7 σ.69.4 N distribution < p < [GeV/c M µ + µ [GeV/c M µ + µ [GeV/c ) [(5MeV/c 7 / ndf χ 85.8 / Mean.. σ N distribution < p < [GeV/c ) [(5MeV/c distribution < p <4 [GeV/c 79.4 / Mean.. σ N M µ + µ [GeV/c M µ + µ [GeV/c ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 66. / Mean.. σ N ) [(5MeV/c 5 5 distribution 5 < p <6 [GeV/c 58.5 / Mean.99. σ N M µ + µ [GeV/c [GeV/c ) [(5MeV/c 5 5 distribution 6 < p <7 [GeV/c 99. / Mean.5. σ N ) [(5MeV/c 4 / ndf χ 48.9 /. Mean. σ.75.4 N distribution 7 < p <8 [GeV/c M µ + µ [GeV/c [GeV/c ) [(5MeV/c distribution 8 < p <9 [GeV/c 69.4 / Mean.. σ.59. N ) [(5MeV/c distribution 9 < p < [GeV/c 54.4 / Mean.. σ N [GeV/c [GeV/c : pol(5)

31 ) [(5MeV/c 5 4 distribution < p < [GeV/c 4.4 / Mean.8. σ.66.5 N ) [(5MeV/c distribution < p < [GeV/c 88 / Mean.5. σ N M µ + µ - [GeV/c M µ + µ - [GeV/c ) [(5MeV/c distribution < p < [GeV/c 8.8 / Mean.. σ N ) [(5MeV/c distribution < p <4 [GeV/c 84.4 / Mean.. σ N M µ + µ - [GeV/c M µ + µ - [GeV/c ) [(5MeV/c 5 4 distribution 4 < p <5 [GeV/c 5.4 / Mean.. σ N ) [(5MeV/c 5 5 distribution 5 < p <6 [GeV/c / Mean.99. σ N M µ + µ - [GeV/c M µ + µ - [GeV/c ) [(5MeV/c 5 5 distribution 6 < p <7 [GeV/c 4.9 / Mean.. σ N ) [(5MeV/c distribution 7 < p <8 [GeV/c 54.4 / Mean.. σ.695. N M µ + µ - [GeV/c M µ + µ - [GeV/c ) [(5MeV/c distribution 8 < p <9 [GeV/c 76.7 / Mean.. σ N ) [(5MeV/c distribution 9 < p < [GeV/c 58.4 / Mean.98. σ N M µ + µ - [GeV/c M µ + µ - [GeV/c 4: pol(6)

32 9 J/ψ 46 counts [a.u. 44 < p < [GeV/c num Entries 4 Mean.97 RMS.5 counts [a.u. 6 4 < p < [GeV/c num Entries 4 Mean.994 RMS f (x) f 4(x) f 5(x) (x) f 6 6 f (x) f 4(x) f 5(x) (x) f 6 counts [a.u. 8 < p < [GeV/c num Entries 4 Mean. RMS.8 counts [a.u < p < 4 [GeV/c num Entries 4 Mean.995 RMS f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6 counts [a.u < p < 5 [GeV/c num Entries 4 Mean.5 RMS.9 counts [a.u. 7 5 < p < 6 [GeV/c num Entries 4 Mean RMS f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6

33 counts [a.u < p < 7 [GeV/c num Entries 4 Mean.998 RMS. counts [a.u. 4 7 < p < 8 [GeV/c num Entries 4 Mean. RMS f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6 counts [a.u < p < 9 [GeV/c num Entries 4 Mean.99 RMS. counts [a.u. 9 < p < [GeV/c num Entries 4 Mean. RMS f (x) f 4(x) f 5(x) (x) f 6 f (x) f 4(x) f 5(x) (x) f 6 5: J/ψ J/ψ pol() ( 5 ) J/ψ pol() (mean) RMS( 5 )/mean J/ψ Raw yield Raw yield

34 [(GeV/c) Raw yield of J/ψ stdsys Entries Mean.6 RMS.5 dn/dp p [GeV/c 6: J/ψ raw yield 4.. J/ψ 7 acceptance efficiency 8 dy) [µb/(gev/c) production cross section cross_section Entries Mean.67 RMS.8 σ/(dp d p [GeV/c 7: event mixing acceptance efficiency J/ψ 4

35 dy) [µb/(gev/c) production cross section cross_section Entries Mean.665 RMS.79 σ/(dp d p [GeV/c 8: like-sign method acceptance efficiency J/ψ 9: ALICE LHCb J/ψ [9 ( 9[9) 7,8 5

36 ratio.4. ratio p [GeV/c : [9 / [9 % [ c [µb GeV Invariant production cross section cross_section Entries Mean.79 RMS.4 E d σ dp dy p [GeV/c : event mixing acceptance efficiency J/ψ 6

37 - [µb GeV c c Invariant production cross section cross_section Entries Mean.784 RMS.49 E d^σ dp dy p [GeV/c : like-sign method acceptance efficiency J/ψ 7

38 5 ALICE s = ev + acceptance efficiency s = ev + J/ψ ( < p < (GeV/c)) ( 4 < y <.5) 4 8

39 6 4 9

40 [,4 [ LHC ALICE -ALICE JAPAN- [ (4),, [4 he ALICE Collaboration ChapExperiment-en.html [5 he ALICE Collaboration, (), Addendum of the Letter Of Intent for the Upgrade of the ALICE Experiment : he Muon Forward racker [6 ALICE MAERS, (), he present Inner racking System - Steps forward!, [7 he ALICE Collaboration, (4), Performance of the ALICE Experiment at the CERN LHC [8 he ALICE Collaboration, (4), ALICE technical Design Report on Forward Detectors: FMD, and V [9 he ALICE Collaboration, (7), Energy dependence of forward-rapidity J/ψ and ψ(s) production in pp collisions at the LHC [ Particle Data Group, (5), Review of Particle Physics CHARMED MESONS [ Particle Data Group, (5), Review of Particle Physics BOOM MESONS http: //pdg.lbl.gov/5/tables/rpp5-tab-mesons-bottom.pdf [ he LHCb Collaboration, (5), Measurement of forward J/ψ production crosssection in pp collisions at s = ev [ he ALICE Collaboration, (6), ALICE luminosity determination for pp collisions at sqrts =ev [4 he PHENIX Collaboration, Yue Hang Leung, (7), Studying heavy flavor production via unlike-sign and like-sign dimuon spectra in p+p collisions at GeV in the PHENIX Experiment, https://indico.cern.ch/event/ 445/contributions/588/attachments/4884/56/yuehang_ qmposterdraft_v.pdf 4

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索 第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智

Μ粒子電子転換事象探索実験による世界最高感度での 荷電LFV探索  第3回機構シンポジューム 2009年5月11日 素粒子原子核研究所 三原 智 µ COMET LFV esys clfv (Charged Lepton Flavor Violation) J-PARC µ COMET ( ) ( ) ( ) ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B ( ) B 2016 J- PARC µ KEK 3 3 3 3 3 3 3 3 3 3 3 clfv clfv clfv clfv clfv clfv clfv

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

KamLAND (µ) ν e RSFP + ν e RSFP(Resonant Spin Flavor Precession) ν e RSFP 1. ν e ν µ ν e RSFP.ν e νµ ν e νe µ KamLAND νe KamLAND (ʼ4). kton-day 8.3 < E ν < 14.8 MeV candidates Φ(νe) < 37 cm - s -1 P(νe

More information

Y. Nambu and G. Jona-Lasinio, A Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity I, Phys. Rev. 122, 345 (1961). http://prola.aps.org/pdf/pr/v122/i1/p345_1 Y. Nambu and

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =

42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 = 3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

10:30 12:00 P.G. vs vs vs 2

10:30 12:00 P.G. vs vs vs 2 1 10:30 12:00 P.G. vs vs vs 2 LOGIT PROBIT TOBIT mean median mode CV 3 4 5 0.5 1000 6 45 7 P(A B) = P(A) + P(B) - P(A B) P(B A)=P(A B)/P(A) P(A B)=P(B A) P(A) P(A B) P(A) P(B A) P(B) P(A B) P(A) P(B) P(B

More information

Japan Research Review 1998年7月号

Japan Research Review 1998年7月号 Japan Research Review 1998.7 Perspectives ****************************************************************************************** - 1 - Japan Research Review 1998.7-2 - Japan Research Review 1998.7-3

More information

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2

Big Bang Planck Big Bang 1 43 Planck Planck quantum gravity Planck Grand Unified Theories: GUTs X X W X 1 15 ev 197 Glashow Georgi 1 14 GeV 1 2 12 Big Bang 12.1 Big Bang Big Bang 12.1 1-5 1 32 K 1 19 GeV 1-4 time after the Big Bang [ s ] 1-3 1-2 1-1 1 1 1 1 2 inflationary epoch gravity strong electromagnetic weak 1 27 K 1 14 GeV 1 15 K 1 2 GeV

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

Evidence for jet structure in hadron product by e+e-

Evidence for jet structure in hadron product by e+e- G. Hanson et al. Phys. Rev. Lett. 5 (1975) 1609 Physcs Colloquum July 7th, 008 Evdence for Jet Structure n Hadron Producton by e + e - Annhlaton Contents: 1. Introducton. Exerment at SLAC. Analyss 4. Results

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord

< qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading ord -K + < qq > (Quark Gluon Plasma,QGP) QGP (< qq >= ) < qq > π - π K + Nambu-Goldstone K + S = + S = K K + K + - K + t free ρ K + N K + N next-to-leading order (NLO) NLO (low energy constant,lec) χ I = I

More information

統計学のポイント整理

統計学のポイント整理 .. September 17, 2012 1 / 55 n! = n (n 1) (n 2) 1 0! = 1 10! = 10 9 8 1 = 3628800 n k np k np k = n! (n k)! (1) 5 3 5 P 3 = 5! = 5 4 3 = 60 (5 3)! n k n C k nc k = npk k! = n! k!(n k)! (2) 5 3 5C 3 = 5!

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

untitled

untitled . 96. 99. ( 000 SIC SIC N88 SIC for Windows95 6 6 3 0 . amano No.008 6. 6.. z σ v σ v γ z (6. σ 0 (a (b 6. (b 0 0 0 6. σ σ v σ σ 0 / v σ v γ z σ σ 0 σ v 0γ z σ / σ ν /( ν, ν ( 0 0.5 0.0 0 v sinφ, φ 0 (6.

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

untitled

untitled 27.2.9 TOF-SIMS SIMS TOF-SIMS SIMS Mass Spectrometer ABCDE + ABC+ DE + Primary Ions: 1 12 ions/cm 2 Molecular Fragmentation Region ABCDE ABCDE 1 15 atoms/cm 2 Molecular Desorption Region Why TOF-SIMS?

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

目次 : ハドロンの性質 単位系と Raidity ハドロンの静的な性質 ハドロンとハドロン多体系の物理 QCD の概説 クォークの閉じ込めとストリング描像 ハドロンの動的性質と粒子生成 ハドロン ハドロン衝突について 実験データからわかること String 模型 衝突の時空描像 Jet

目次 : ハドロンの性質 単位系と Raidity ハドロンの静的な性質 ハドロンとハドロン多体系の物理 QCD の概説 クォークの閉じ込めとストリング描像 ハドロンの動的性質と粒子生成 ハドロン ハドロン衝突について 実験データからわかること String 模型 衝突の時空描像 Jet ハドロンの性質 浜垣秀樹東京大学原子核科学研究センター 目次 : ハドロンの性質 単位系と Raidity ハドロンの静的な性質 ハドロンとハドロン多体系の物理 QCD の概説 クォークの閉じ込めとストリング描像 ハドロンの動的性質と粒子生成 ハドロン ハドロン衝突について 実験データからわかること String 模型 衝突の時空描像 Jet 単位系 と 力学変数 単位系 (Units) 原子核物理

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

JPS_draft.pptx

JPS_draft.pptx LHC-ATLAS 実験における高い運動量を持つジェットの b- タグの開発及び評価 小林愛音 江成祐二 A 川本辰男 A 東大理 東大素セ A 9pSK-6 9th September 4 日本物理学会 4 年秋季大会 Introduction 5 年から始まる LHC の運転では高い運動量を持った物理の解析が重要 新しい重いレゾナンスの探索 (à WW, tt, hhà jets) VHà bb

More information

2 σ γ l σ ο 4..5 cos 5 D c D u U b { } l + b σ l r l + r { r m+ m } b + l + + l l + 4..0 D b0 + r l r m + m + r 4..7 4..0 998 ble4.. ble4.. 8 0Z Fig.4.. 0Z 0Z Fig.4.. ble4.. 00Z 4 00 0Z Fig.4.. MO S 999

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA

On the Limited Sample Effect of the Optimum Classifier by Bayesian Approach he Case of Independent Sample Size for Each Class Xuexian HA, etsushi WAKA Journal Article / 学術雑誌論文 ベイズアプローチによる最適識別系の有限 標本効果に関する考察 : 学習標本の大きさ がクラス間で異なる場合 (< 論文小特集 > パ ターン認識のための学習 : 基礎と応用 On the limited sample effect of bayesian approach : the case of each class 韓, 雪仙 ; 若林, 哲史

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

4 i

4 i 22 Quantum error correction and its simulation 1135071 2011 3 1 4 i Abstract Quantum error correction and its simulation Hiroko Dehare Researches in quantum information theory and technology, that mix

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

4 3 1 Introduction 3 2 7 2.1.................................. 7 2.1.1..................... 8 2.1.2............................. 8 2.1.3.......................... 10 2.2...............................

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2

populatio sample II, B II?  [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2 (2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

K 20 1 e, e K + 2000 2005 JLab e, e K + Λ K + 2 K + Missing Mass E/E 10 4 JLab 1 e, e K + Λ K, π π +, K + Λ Λ Σ 0 Mass Mass 2000 E89-009 e, e K + 12 Λ B 750 kev FWHM Missing Mass e, e K + background K

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2

I 1 V ( x) = V (x), V ( x) = V ( x ) SO(3) x = R x: R SO(3) Lorentz R t JR = J: J = diag(1, 1, 1, 1) x = x + a Poincarré ( ) 2 III 1 2005 Jan 30th, 2006 I : II : I : [ I ] 12 13 9 (Landau and Lifshitz, Quantum Mechanics chapter 12, 13, 9: Pergamon Pr.) [ ] ( ) (H. Georgi, Lie algebra in particle physics, Perseus Books) [ ] II

More information

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li

Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production by li 2004.3.28 物理学会シンポジウム 磁気プラズマセイル の可能性と 深宇宙探査への挑戦 宇宙航空研究開発機構 船木一幸 Spacecraft Propulsion Using Solar Energy Spacecraft with Magnetic Field Light from the Sun Solar Wind Thrust Mirror Solar Sail Thrust production

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

2 SSC Superconducting Super Collider [2] [3] [4] SSC [5] 1 KEK TRISTAN [6] [7] 2 2

2 SSC Superconducting Super Collider [2] [3] [4] SSC [5] 1 KEK TRISTAN [6] [7] 2 2 1 1 2 2 3 2.1......................................... 3 2.2......................................... 5 2.3......................................... 6 3 8 3.1.......................... 8 3.2....................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

36.fx82MS_Dtype_J-c_SA0311C.p65

36.fx82MS_Dtype_J-c_SA0311C.p65 P fx-82ms fx-83ms fx-85ms fx-270ms fx-300ms fx-350ms J http://www.casio.co.jp/edu/ AB2Mode =... COMP... Deg... Norm 1... a b /c... Dot 1 2...1...2 1 2 u u u 3 5 fx-82ms... 23 fx-83ms85ms270ms300ms 350MS...

More information

Q A Q A 1

Q A Q A 1 IHI Report Q A Q A 1 Q A Q A To Our Shareholders 2 706 803 42 9 1,030 790 66 17 1,894 1,716 55 103 3 Business Review by Segment 1,350 57 45 1,310 704 34 16 755 103 31 16 41 763 16 10 554 4 Performance

More information

EP760取扱説明書

EP760取扱説明書 D D D # % ' ) * +, B - B / 1 Q&A B 2 B 5 B 6 Q & A 7 8 $ % & ' B B B ( B B B B B B B B B B B ) B B B A # $ A B B * 1 2 # $ % # B B % $ # $ % + B B 1 B 2 B B B B B B B B B B , B B B - 1 3 2 2 B B B B B

More information

untitled

untitled .m 5m :.45.4m.m 3.m.6m (N/mm ).8.6 σ.4 h.m. h.68m h(m) b.35m θ4..5.5.5 -. σ ta.n/mm c 3kN/m 3 w 9.8kN/m 3 -.4 ck 6N/mm -.6 σ -.8 3 () :. 4 5 3.75m :. 7.m :. 874mm 4 865mm mm/ :. 7.m 4.m 4.m 6 7 4. 3.5

More information

経済論集 46‐1(よこ)(P)/2.三崎

経済論集 46‐1(よこ)(P)/2.三崎 1 1 14 2 1866 8 20 20 2 4 1871 20 3 4 2 1969 9 12 28 33 3 1970 35 5 1965 p.119. 1995 p.67 1960 p.86. 1965 p.120. 1927 p.5. 1942 p.127, p.129. 10 1877 7 12 16 6 10 7 10 1877 8 7 6 8 16 25 29 10 1877 9 1

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

J.qxd

J.qxd IQ 2 I/Q IQ IQ IQ IQ 3 IQ 4 5 6 I Q 7 IQ 0 deg 8 IQ I QI I Q Q Q Q { I Q { I I 9 I/QI/QI/Q IQ IQ I/Q Q Σ I IQ I Q 10 I/Q I/Q I/Q IQ IQ 11 π 12 01 00 11 10 13 I/Q I QI I/Q IQ 14 π QI π I/QI Q IQ IQ π 15

More information