CVMに基づくNi-Al合金の

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "CVMに基づくNi-Al合金の"

Transcription

1 CV N-A (-' by T.Koyama

2 ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w =

3 ( βγδ w = = k k k ( αγδ w = = k k k ( αβδ w = = k w k wk = wk wk wk wk ( ( αβγ ( βγδ ( αγδ ( αβδ ( ( αβ α β y = = k, ( αβ y = ( αβ y = ( αβ y = ( αβ y = ( βγ y = = k, k k k k ( γδ y = = k k k k k ( αδ y = =, ( αγ y = = k k, k k k k ( βδ y = =, y y = y y y y y y 6 ( ( αβ ( βγ ( γδ ( αδ ( αγ ( βδ (

4 ( α x α = = k,, ( α x = ( α x = ( β x = = k,, ( γ x = = k, k k k k k k k k ( δ x = =, k x x = x x x x ( ( α ( β ( γ ( δ (3 8- e ( r= e 8 r r r H G r K J ( e r r E E = ω e ( r y = ω( e y e y e y e y ( y 3

5 E = ω e ( r y ( αβ ( βγ ( γδ ( αδ ( αγ ( βδ = ω e ( r( y y y y y y ( ( e ( r y e ( r y e ( r y = ω ( ( e ( r y e ( r y e ( r y αβ αβ ( αβ αβ αβ ( αβ ( ( e ( r y ek ( r y k ek ( r yk k, k, = ω ( ( e ( r y e ( r y e ( r y αβ βγ ( γδ αδ αγ ( βδ k k, k,, e ( r( e ( r( k k k k k k, = ω ek ( r( k k k k e ( r( e ( r( e ( r( k,, k, k k k k k, e ( r ek ( r ek ( r k, k,, k, = ω e ( r e ( r e ( r k, k, k,,, k, e ( r ek ( r ek ( r, k, = ω e ( r e ( r e ( r k = ω { e ( r e ( r e ( r e ( r e ( r e ( r = ω e ( r k k k ( e = e ek e ek e ek (6 (3 x

6 ( α ( α ( β ( β ( γ ( γ ( δ ( δ x x = ( x x x x x x x x N N = k k k k k k,, k,, k,, k,,,,, k, k = p p p = ( p p p p = p k k p k (7 p =, p = p = p p p p (8 k CV S = k ( ( αβ ( βγ ( γδ ( y ( y ( y ( αδ ( αγ ( βδ ( y ( y ( y ( α ( β ( γ ( δ x ( x ( x ( x ( m S T r U V W (9 x ( = xnx x ( (9 ( = ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( αβ ( αβ ( αβ ( αβ ( αβ ( y = ( y ( y ( y ( y = ( ( ( (

7 ( ( ( x ( α = x ( α x ( α = ( ( (9 x ( = n x = n x x ( S S T ( αβ ( βγ ( γδ n( y n( y n( y n( ( αδ ( αγ ( βδ = k n( y n( y n( y ( α ( β ( γ ( δ mn( x n( x n( x n( x r αβ βγ γδ αδ αγ βδ α = k n( n( y y y y y y n( x x ( ( ( ( ( ( ( ( β ( γ ( δ x x U V W ( G = v µ( x x ( ((9( ( αβ ( βγ ( γδ ( y ( y ( y ( ( αδ ( αγ ( βδ y ( y ( y ( = ω e ( r kt ( α ( β ( γ ( δ mx ( x ( x ( x ( r S T U V W (3 λ g g G λ = v µ ( x x λ (3(7 6

8 g v µ ( x x λ = ω e ( r kt ( v µ p λ S T ( αβ ( βγ ( γδ ( y ( y ( y m r ( αδ ( αγ ( βδ ( y ( y ( y ( α ( β ( γ ( δ x ( x ( x ( x ( U V W ( g = g = ω e ( r ( αβ ( βγ ( γδ ( αδ ( αγ ( βδ ( α ( β ( γ ( δ kt n( n( y y y y y y n( x x x x µ p λ = d c h 8 / h / αβ λ ω e r µ p y y ( d exp exp kt kt kt c ( αβ ( βγ ( γδ ( αδ ( αγ ( βδ n( n( y y y y y y ω e ( r kt µ p α β γ δ ( ( ( ( n( x x x x λ = ( αβ ( βγ ( γδ ( αδ ( αγ ( βδ / ω 8 kt e r n( n y y y y y y ( ( α ( β ( γ ( δ / n x x x x d c µ λ 8kT p kt ( α ( β ( γ ( δ x x x x = λ ω µ n αβ βγ γδ αδ αγ βδ y y y y y y kt kt e ( r 8kT p ( ( ( ( ( ( = exp H G η exp 8 ω e ( r µ p exp kt 8kT d ( ( βγ y y y y y y y y y y ( γδ ( αδ ( αγ ( βδ x x x x ( αβ ( βγ ( γδ ( αδ ( αγ ( βδ c x x x x ( α ( β ( γ ( δ h ( α ( β ( γ ( δ 8 / / h 8 / / = ( (6 7

9 = η exp H G λ kt λ λ = = η exp H G exp kt kt λ = ktn = η H G η (7 g g v = λ g g = v λ = v k Tn = (7 η (8 g v = g = ω v e ( r v e ( r v = ω = (9 fcc fcc v r ( r 3 3 dr = v r = v 3r dr = dv = dv 3r (6 8

10 de dr d = ( dr e e e e e e k k k ( de ( r = e dr 7 H G K J 3 r r r r 8 8 e r r r r = 8 8 r e r r r = ( {( 9 r r r r H G 9 de ( r de de de de de k k dek dr = S dv H G dr K J H G dr K J H G dr K J H G dr K J H G dr K J H G dr K J T V W H G K J dv 8 e ( r {( r r ek ( rk {( rk r e ( r {( r r = 9 r e ( r {( r r e ( r {( r r e ( r {( r r 3r 8 = 3r k k k e ( r {( r r e ( r {( r r e ( r {( r r k k k e ( r {( r r e ( r {( r r e ( r {( r r k k k k k k U H G r r k k k (9 H G K J e ( r v 8 3r = ω e ( r {( r r ek ( rk {( rk r e ( r {( r r e ( r {( r r e ( r {( r r e ( r {( r r k k k k k k e ( r {( r r ek ( rk {( rk r e ( r {( r r e ( r {( r r e ( r {( r r e ( r {( r r k k k k k k 9 r r e ( r e k ( r k e ( r = e ω = ω 9 = r ω ( r e ( r e ( r k k k k e ( r e ( r e ( r e ( r e ( r e ( r k k k k k k 9 r r e ( r e ( r e ( r e ( r e ( r e ( r ω k k k k k k ( ( ( ( ( ( e r ek rk e r ek rk e r ek rk = ( e, r ( r = r * = 9

11 r = S T e ( r e ( r e ( r e ( r e ( r e ( r k k k k k k e ( r e ( r e ( r e ( r e ( r e ( r k k k k k k U V W / ( T e, r ω x r * :( :(N αβγδ β, γ, δ = = = = = = = = αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ αβγδ

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

01_教職員.indd

01_教職員.indd T. A. H. A. K. A. R. I. K. O. S. O. Y. O. M. K. Y. K. G. K. R. S. A. S. M. S. R. S. M. S. I. S. T. S. K.T. R. T. R. T. S. T. S. T. A. T. A. D. T. N. N. N. Y. N. S. N. S. H. R. H. W. H. T. H. K. M. K. M.

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

1 2 3 4 5 6 0.4% 58.4% 41.2% 10 65 69 12.0% 9 60 64 13.4% 11 70 12.6% 8 55 59 8.6% 0.1% 1 20 24 3.1% 7 50 54 9.3% 2 25 29 6.0% 3 30 34 7.6% 6 45 49 9.7% 4 35 39 8.5% 5 40 44 9.1% 11 70 11.2% 10 65 69 11.0%

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ

* ἅ ὅς 03 05(06) 0 ἄβιος,-ον, ἄβροτον ἄβροτος ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυ Complete Ancient Greek 2010 (2003 ) October 15, 2013 * 25 04-23 0 ἅ ὅς 03 05(06) 0 ἄβιος,-ον, 15 99-02 0 ἄβροτον ἄβροτος 15 99-02 0 ἄβροτος,-ον, 08 17(01)-03 0 ἄβυσσος,-ου (ἡ), 08 17(01)-03 0 ἀβύσσου ἄβυσσος

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

202

202 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 DS =+α log (Spread )+ β DSRate +γlend +δ DEx DS t Spread t 1 DSRate t Lend t DEx DS DEx Spread DS

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

内科96巻3号★/NAI3‐1(第22回試験問題)

内科96巻3号★/NAI3‐1(第22回試験問題) µ µ α µ µ µ µ µ µ β β α γ µ Enterococcus faecalis Escherichia coli Legionella pneumophila Pseudomonas aeruginosa Streptococcus viridans α β 正解表正解記号問題 No. 正解記号問題 No. e(4.5) 26 e 1 a(1.2) 27 a 2

More information

O157 6/23 7/4 6 25 1000 117,050 6 14:00~15:30 1 2 22 22 14:30~15:30 8 12 1 5 20 6 20 10 11 30 9 10 6 1 30 6 6 0 30 6 19 0 3 27 6 20 0 50 1 2 6 4 61 1 6 5 1 2 1 2 6 19 6 4 15 6 1 6 30 6 24 30 59

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

建築設備学_07(熱負荷計算).ppt

建築設備学_07(熱負荷計算).ppt p. p. p.7 p. q w q w q GT q IT =q IS +q IL () () q HT = q HS + q HL q ET =q ES +q EL 1 () q s [W]C p ρ m /h Δt 1000/00 [W]0.4 m /h Δt q L [W]γ γ [m /h] Δx[g/kg(DA)] 1000/00 [W]4 [m /h] Δx[g/kg(DA)] C p

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

TEL-E7

TEL-E7 Ni-Cd TEL-E7 TEL-EW7 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 9 20 Ni-Cd 2 3 2 2 3 22 2 2 3 4 3 4 23 2 2 3 3 24 25 2 3 4 2 3 4 26 2 3 2 3 27 2 2 2 28 2 2 2 29 2 3 2 4 30 2 2 3 3 2 3 2 3 3 32 33 2 3 34 2 3 35

More information

untitled

untitled 186 17 100160250 1 10.1 55 2 18.5 6.9 100 38 17 3.2 17 8.4 45 3.9 53 1.6 22 7.3 100 2.3 31 3.4 47 OR OR 3 1.20.76 63.4 2.16 4 38,937101,118 17 17 17 5 1,765 1,424 854 794 108 839 628 173 389 339 57 6 18613

More information

untitled

untitled 1. 3 14 2. 1 12 9 7.1 3. 5 10 17 8 5500 4. 6 11 5. 1 12 101977 1 21 45.31982.9.4 79.71996 / 1997 89.21983 41.01902 6. 7 5 10 2004 30 16.8 37.5 3.3 2004 10.0 7.5 37.0 2004 8. 2 7 9. 6 11 46 37 25 55 10.

More information

2142B/152142B

2142B/152142B ! EFGH FIJG EFGH O m A kg A lm knm Q m B kg B m B m A A B gms x y z P Q R S T U y xz S T U D F G y F I G J z F I G J D J H G U A I y z x u O d α B P Q R S T F D E A um O ωrads u m A l kω! m A l kω m A

More information

日歯雑誌(H28・8月号)別刷り/ポスターセッション とびら

日歯雑誌(H28・8月号)別刷り/ポスターセッション とびら α P. gingivalis P. gingivalis αsmatgf- VEGF-A α in vitro μ Porphyromonas gingivalis in vitro Porphyromonas gingivalis β β β JBiolChem. μ μ μ β Porphyromonas gingivalis in vitro μ α β α

More information

研修コーナー

研修コーナー l l l l l l l Department of Obstetrics and Gynecology, Fukui Medical University, Fukui l l l l l l µ l β β l α l µ µ l l l l Department of Obstetrics and Gynecology, Gifu University School of Medicine,

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

.\ /......

.\ /...... 教育 研究 社会貢献活動報告 香 川 医 科 大 学 平成1 3年度 香川医科大学自己点検評価委員会 γ α β β β α β β γ γ α β αβ µ Anopheles Bolbosoma Leishmania Pneumocystis carinii P. carinii Bolbosoma Leishmania Anopheles Plasmodium

More information

MUFFIN3

MUFFIN3 MUFFIN - MUltiFarious FIeld simulator for Non-equilibrium system - ( ) MUFFIN WG3 - - JCII, - ( ) - ( ) - ( ) - (JSR) - - MUFFIN sec -3 msec -6 sec GOURMET SUSHI MUFFIN -9 nsec PASTA -1 psec -15 fsec COGNAC

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

2007 3 1 1 1.1...................................... 1 1.2.................................... 2 1.3...................................... 5 1.4.................................... 8 2 16 2.1......................................

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information