(7) u 1 θ A {u 1, u, u 3 } U = (u 1, u, u 3 ) A = UT (θ) + tu t UAU = T (θ) + () θ x z cos θ 0 sin θ cos θ sin θ 0 X(θ) = 0 cos θ sin θ, Y (θ) =

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "(7) u 1 θ A {u 1, u, u 3 } U = (u 1, u, u 3 ) A = UT (θ) + tu t UAU = T (θ) + () θ x z cos θ 0 sin θ cos θ sin θ 0 X(θ) = 0 cos θ sin θ, Y (θ) ="

Transcription

1 Mathematics for Computer Graphics a = (a x, a, a z ), b = (b x, b, b z ) c = (c x, c, c z ) a, b a, b a, b, c x,, z ( ) c a, b (vector product) (outer product) a b c = ( a b a z b z, a z b z a x b x, a x b x a b ) c (1) a x a a z (a b, c) = b x b b z (1) c x c c z 1. (1) U U t U = E (orthogonal matrix) () U a, b (Ua, Ub) = (a, b) (3) U U 1 = t U. (4) U = (u 1, u, u 3 ) {u 1, u, u 3 } ((u i, u j ) = δ ij ) (5) U det(u) = ±1 det(u) = 1 (rotation matrix) det(u) = 1 (reflection) (6) ±1 0 0 T (θ) ± = 0 cos θ sin θ 0 sin θ cos θ + det(u) = 1 1 det(u) = 1 1 1

2 (7) u 1 θ A {u 1, u, u 3 } U = (u 1, u, u 3 ) A = UT (θ) + tu t UAU = T (θ) + () θ x z cos θ 0 sin θ cos θ sin θ 0 X(θ) = 0 cos θ sin θ, Y (θ) = 0 1 0, Z(θ) = sin θ cos θ 0 0 sin θ cos θ sin θ 0 cos θ {a 1, a,..., a n,... } {a 1, a,..., a n } {u 1, u,..., u n (u i, u j ) = δ ij } u 1 = a 1 / (a 1, a 1 ), k t k = a k k 1 i=1 (a i, u i )u i, u k = t k / (t k, t k ) 1. u 1 = a 1 / (a 1, a 1 ), (u 1, u 1 ) = 1. t = a tu 1 u 1 0 = (t, u 1 ) = (a, u 1 ) t(u 1, u 1 ) = (a, u 1 ) t t = (a, u 1 ). u = t / (t, t ) {u 1, u } 3. t 3 = a 3 su 1 tu {u 1, u } 0 = (t 3, u 1 ) = (a 3, u 1 ) s s = (a 3, u 1 ), 0 = (t 3, u ) = (a 3, u ) t t = (a 3, u ). u 3 = t 3 / (t 3, t 3 ) {u 1, u, u 3 } 4. 3DCG 3DCG () 1 x 1 x- 3 1 () 1.3 (congruent transformation) (translation) (rotation) (reflection)

3 (scale transformation) (similar transformation) a 0 0 S(a, b, c) = 0 b 0 ( abc 0) (3) 0 0 c (shear or skew transformation) z z t (α, β, 1) 1 0 α H = 0 1 β α = 0 1 β α α 1 0 α β = 0 1 β = 0 1 β x z z x θ φ t (0, 0, 1) t (α, β, 1) α = tan θ β = tan φ H(θ, φ) tan θ 1 0 tan θ H(θ, φ) = 0 1 tan φ = 0 1 tan φ (4)

4 z x x, π θ, tan(π θ) = tan( θ),. z x (4) tan θ, tan φ cot θ, cot φ,. θ > 0 θ < 0 x x z z θ x x θ x x z tan θ z tan θ z tan θ z tan θ z z z z z z tan ϕ z tan ϕ z tan ϕ ϕ ϕ < 0 z z z ϕ > 0 z z tan ϕ z ϕ Hamilton e ( ) A R 1 4

5 a A A L a : A A x ax A A L a 1 λ v 0 av = λv (a λe)v = 0. A v 0 a = λe, a Re. A = Re. Hamilton 4 H 3 Gauss computer graphics 4 R 4 e 0 = (1, 0, 0, 0), e 1 = (0, 1, 0, 0), e = (0, 0, 1, 0), e 3 = (0, 0, 0, 1) e 0 e 1 e 1 = e e = e 3 e 3 = e 1 e e 3 = e 0 e 1 e = e e 1 = e 3, e e 3 = e 3 e = e 1, e 3 e 1 = e 1 e 3 = e e 0 = 1, e 1 = i, e = j, e 3 = k α = a + ib + jc + dk (a, b, c, d R) i = j = k = ijk = 1 ij = ji = k, jk = kj = i, ki = ik = j i, j, k ( ) (a + ib + jc + kd)(r + ix + j + kz) = (ar bx c dz) + i(ax + br + cz d) + j(a bz + cr + dx) + k(az + b cx + dr). Hamilton R 4 a b c d F : H M(4, R) α = a + ib + jc + kd b a d c c d a b d c b a ( ) a + ib c id G : H M(, C) α = a + ib + jc + kd c id a ib 5

6 .3 Hamilton Hamilton (1) α = a + ib + jc + dk = a + q ( q = ib + jc + kd) a ( ) q ( ) a q = a ib jc kd α α ImH = {ib + jc + kd b, c, d R} Hamilton () α = a + ib + jc + kd αα = a + b + c + d. αα = α α α (3) α 0 α 1 = α. Hamilton α (4) α ( α = 1) α = cos 1 ω + sin 1 ωβ β ImH, β = 1, 0 < ω < π α = a + q ( q ImH) b = q, β = q/b β = 1, α = a + bβ. αα = (a + bβ)(a bβ) = a + (bβ) = a + b = 1 a = cos 1 ω, b = sin 1 ω 0 < ω < π (Euler from) i, j, k.4 3 α = a + ib + jc + kd ( α = 1) ζ = w + ix + j + kz αζα = w + i{(a + b c d )x + (bc ad) + (ac + bd)z} + j{(bc + ad)x + (a b + c d ) + (cd ab)z} + k{(bd ac)x + (ab + cd) + (a b c + d )z} αζα = w + ix + j + kz x a + b c d (bc ad) (ac + bd) 0 x z = (bc + ad) a b + c d (cd ab) 0 (bd ac) (ab + cd) a b c + d 0 z w w (1) 6

7 α α = cos 1 ω + sin 1 ω β, β = ip + jq + kr, p + q + r = T ω = ω cos ω + (p 1) sin ω r cos ω sin ω + pq sin ω q cos ω sin ω + pr sin ω T = r cos ω sin ω + pq sin ω cos ω + (q 1) sin ω p cos ω sin ω + qr sin ω q cos ω sin ω + pr sin ω p cos ω sin ω + qr sin ω cos ω + (r 1) sin ω T () t T T = E (3) t (p, q, r) 1 (4) Tr(T ) = 3 cos ω sin ω = 1 + cos ω T t (p, q, r) ω T Tr(T ) = 1 + e iω + e iω.5 CG p 1 θ P = ( p 1, p, p 3 ), S = 0 cos θ sin θ P SP 1. 0 sin θ cos θ p 1, p, p 3 p, p 3 p 1 (1) () p p 1, p p 3 (3) p 1 α = a + ib + jc + kd β = ib + jc + kd α = a + β, cos θ/ = a/ α, sin θ/ = β / α θ t (b, c, d) T smoothness 7

8 .6 CG Interactive Computer Graphics, E. Angel αβα α = i cos θ + j sin θ t (cos θ, sin θ, 0) π α = cos ω/ + i sin ω/ cos θ + j sin ω/ sin θ α = cos ω/ + (ip + jq + kr) sin ω/ ( p + q + r = 1 ) CG CG 3. V A a V p A p + a A A V (standard vector space) (affine space) (1) (p + a) + b = p + (a + b) (p A, a, b V) () p, q A q = p + a a V (i) (ii) n + 1 W n V A = {p + a 0 p V, a V} A V o A p A p = o + a a o (initial point) p (position vector) op 8

9 V A r + 1 p i (0 i r) r p 0 p i (1 i r) V n n + 1 V n e 1,..., e n V o A p A p = o + n x i e i i=1 F = (o ; e 1,..., e n ) A (affine frame) (homogeneous coordinate) x 1. x n 1 A, B V, W ϕ : A B (affine mapping) ϕ ψ : V W ϕ(p + x) = ϕ(p) + ψ(x) p A, x V A = B ϕ ϕ (affine transformation) ( ) M t 0 1 (1) P ( ) P t () t = (α, β, γ) ( ) E t t = (0, 0, 0) E 3.3 A V (o ; e 1,..., e n ), (o ; f 1,..., f n ) 9

10 p A n p = o + x i e i = o + o = o + f j = i=1 n j f j j=1 n a i e i i=1 n t ji e i (j = 1,..., n) i=1 ( ) ( n n n ) p = o + a i e i + j t ji e i = o + x i = a i + i=1 n a i + i=1 j=1 n j t ji e i j=1 n j t ji (i = 1,..., n) j=1 i=1 x 1 t t n1 a 1 1. x n = t 1n... t nn a n n t t n1 a 1. n = t 1n... t nn a n x 1. x n 1 (5) 3.4 3DCG 3DCG CG x z 10

11 z 3DCG VRP(View Reference Point), VUP(View Up Vector), VPN(View Plane Normal) VUP VPN z VPN x VRP (e x, e, e z ) VUP (u x, u.u z ) VPN (n x, n, n z ) (α, β, γ) = (u x, u, u z ) ( n x, n n ) T α u x n x e x T = β u n e γ u z n z e z (w x, w, w z ) (c x, c, c z ) c x w x T c c z = w w z 1 1 c x w x c c z = T 1 w w z 1 1 OpenGL glulookat(eex ee, eez, atx, at, atz, upz, up, upz) (eex, ee, eez) (COP) (atx, at, atz) (upx, up, upz) VRP = (eex, ee, eez), VUP = (upx, up, upz), VPN = (atx eex, at ee, atz eez) VUP VPN (α, β, γ) α upx eex atx eex T = β up ee at ee γ upz eez atz eez

12 3.5 OpenGL OpenGL, OpenGL. postmultiplication (CTM = current transformation matrix) CTM x = Mx (M : CTM) a T( a) R(θ) T(x) x = T(a)R(θ)T( a)x glmatrixmode(gl_modelview); glloadidentit(); gltranslatef(ax, a, az); glrotatef(t, rx, r, rz); gltranslatef(-ax, -a, -az); /* define objects here */ glutswapbuffer(); 3.5. OpenGL 4 4 API ( ) M =

13 GLfloat m[16]; for(i=0;i<15;i++) m[i]=0.0; m[0]=m[5]=m[10]=m[15]=1.0; m[4]=.0; m[9]=3.0; CTM glloadmatrixf(marra) CTM glmultmatrixf(marra) CTM glpushmatrix(); gltranslatef(...); glrotatef(...); glscalef(...); /* draw objects */ glpopmatrix(); 4 CG (Projection) 4.1 CG (COP = center of projection) COP (projector) (view volume) (clipping) CG 4. CG 13

14 4..1 (parallel projection) COP COP DOP(Direction Of Projection) (orthogonal or orthographic projection) DOP (oblique projection) DOP (bellows) 4.. (perspective projection) COP,, 3, ( ) CG OpenGL (tranform) (projection) glmatricmode(gl_modelview) glmatrixmode(gl_projection) ( ) 14

15 COP DOP 1. orthogonal projection orthographic projection ( ) DOP z z = 0 x p x x p z p = P orth z = z (z p = 0) DOP 3 z x CG x, z OpenGL z DOP DOP xz z θ z z φ,., DOP x (x,, z) (x p, p, z p ) ( z p = 0) x p x z p z = tan θ x p = x z tan θ p z p z = tan φ p = z tan φ (4) 1 0 tan θ 0 H = H(θ, φ) = 0 1 tan φ

16 DOP z DOP x tan θ, tan φ cot θ, cot φ P = P orth H matrixh H. glmatrixmode(gl_projection); glloadidentit(); glortho(-4.0,6.0,-4.0,6.0,-0.0,0.0); glmatrixmode(gl_modelview); glloadidentir(); glulookat(0.0,0.0,6.0,0.0,0.0,0.0,0.0,1.0,0.0); glmultmatrixf(matrixh); /* define view objects */ glortho. z skew oblique skew oblique ortho ortho θ x z ϕ θ > 0 ϕ < 0 DOP z DOP 5.. COP COP ( ) COP z = d (d < 0) view volume COP (frustum) (x,, z) (x p, p, z p ) z p = d (x,, z) (x p, p, z p ) x p x = p = z p z 16

17 x p = x z/d p = z/d z = d x p p z p = x z/d z/d d x x x z/d z = z 4 z/d d 0 0 1/d 0 1 z/d 1 z OpenGL glfrustum(left,right,bottom,top,near,far) gluperspective(fov,aspect,near,far) gluperspective fov field of view angle of view clipping COP aspect clippping w/h near, far glfrustum 5.3 Normalization OpenGL glmatrixmode(gl_projection); glloadidentit(); glortho(left,right,bottom,top,near,far); near far 0 < near < far clipping left x right, bottom top, near z far default clipping 1 x 1, 1 1, 1 z 1 17

18 clipping ( ) x = ±1, = ±1, z = ±1 (normalization) clipping ( (x max + x min )/, ( max + min )/, (z max + z min )/) clipping x = ±1, = ±1, z = ±1 x /(x max x min ) /( max min ) z /(z max z min ) P = P orth ST x max x min xmax xmin = P orth 0 max min max min 0 0 z max z min z max z min x max x min 0 0 x max+x min x max x min = P orth 0 max min 0 max+min max min 0 0 z max z min zmax+zmin z max z min z z 1 z max = near, z min = far z 1 right left 0 0 right+left right left P = P orth 0 top bottom 0 top+bottom top bottom far+near 0 0 far near far near Perspective gluperspective(fov,aspect,near,far) fov = 90 view volume 45 view volume x = ±z, = ±z z near, far z z = ±1 z = 1 d = M =

19 N = α β αβ 0 N M orth M orth N = x x x z = M orthn z = 0 w z w 4 (perspective division) x p = x z p = z x x z = N z w w x = x, =, z = αz + β, w = z perspective division x = x z, = z, z = ( α + β z max ) ( = 1 α + β z min α = z max + z min z max z min β = z maxz min z max z min ( α + β ) z ) = 1 19

20 z = ±1 N z = ( α + β ) z z max, z min z = 0 β > 0 z 1 < z = z 1 < z z z = 1 z = β α M orth Frustum glfrustum x = ±z, = ±z, 1 z 1 glfrustum(left,right,bottom,top,near,far) z z ( xmin + x max, ) min + max, z max t ((x max + x min )/z max, ( max + min )/z max, 1) (4) x 1 0 max +x min z max 0 H = 0 1 max+ min z max θ, φ x max+x min z max 0 = 0 1 max+min z max cot θ = x min + x max z max, cot φ = min + max z max 1 0 cot θ 0 H = H(θ, φ) = 0 1 cot φ

21 view volume COP H(θ, φ) frustum x min min z max 1 = x min x max min max z max 1 x max H(θ, φ) max z max = 1 x max x min max min z max 1 x = ± x max x min z max z = ± max min z max z z min z z max x = ±z = ±z z max z max S(,, 1) x max x min x max x min z = ±1 N P API z max x max x min 0 xmax+xmin x max x min 0 z P = NSH = 0 max max min max+ min max min z max+z min z max z min OpenGL z max = near, z min = far z max z min z max z min OpenGL z 3 1 z max x max x min 0 xmax+xmin z P = 0 max max min max+ min max min far+near far near x max x min 0 far near far near 1

22 6 6.1 (p, q, r) lx + m + nz + c = 0 P = (x,, z) P = (x s, s, z s ) P lx s + m s + nz s + c = 0 P P x s x p = s q = z s z r k lx + m + nz + c k = K K = lp + mq + nr x s = (K lp)x mp npz cp K s = lqx + (K mq) nqz cq K z s = lrx mr + (K nr)z cr K x K lp mp np cp x M oshd z = lq K mq nq cq lr mr K nr cr z K 1 p l M oshd = K E 4 0 q m r n c (6) (7) OpenGL (6) (7) + c = 0 l = n = p = r = 0, m = 1, q = 1

23 x x x M oshd z = c z = c z c = 0 (p, q, r) l = n = 0, m = 1 x q p 0 cp x M z = cq 0 r q cr z q L = (p, q, r) lx + m + nz + c = 0 P = (x,, z) P = (x s, s, z s ) P lx s + m x + nz s + c = 0 L, P, P 1 (x s p, s q, z s r) = k(x p, q, z r) K k = lx + m + nz + c K K = lp + mq + nz + c x s = s = z s = (K lp)x mp npz cp K (lx + m + nz + c) lqx + (K mq) nqz cq K (lx + m + nz + c) lrx mr + (K nr)z cr K = (lx + m + nz + c) 3

24 x K lp mp np cp x M pshd z = lq K mq nq cq lr mr K nr cr z 1 l m n K c 1 p l M pshd = KE 4 0 q m r n c (8) OpenGL p p l p q 0 q m q r 0 0 r n r = c p 0 0 p l 0 0 lp 0 q 0 q m 0 mq 0 0 r r n nr = c l 0 0 lp m 0 mq n nr = c l m n K p p K q r M q pshd r = 0 K K l m n p K p M pshd = q 0 K q r 0 0 K r l m n (9) OpenGL (9) 4

25 + c = 0 l = n = 0, m = 1 (9) p p M pshd = q q r r q+c (10) 6.3 (7) (8) 4 (9) (8) 1 (10) transform object() shdm[] main() void o_shadow() { GLfloat shdm[16]; for(i=0;i<15;i++) shdm[i]=0; shdm[0]=shdmm[5]=shdm[10]=1; shdm[7]=-1/(q+c); } gldisable(gl_light0); glpushmatrix(); gltranslatef(p,q,r); glmultmatrix(shdm); gltranslatef(-p,-q,-r); object(); glpopmatrix(); glenable(gl_light0); gldisable(gl_light0) object() displa() 5

26 , f(x) = x (x < 0), x (0 x) x = 0 0 f (x) = x (x < 0), x (0 < x) x = 0 0 f (x) = (x < 0), (0 < x) x = 0 3 x = 0 CG 7. n + 1 (x 0, 0 ), (x 1, 1 ),..., (x n, n ) n x 0, x 1,..., x n f(x, ) = 0 1 (f(t), g(t)) (f(t), g(t), h(t)) (f(s, t), g(s, t), h(s, t)) CG 6

27 7.3 (x i,0 + x i,1 t + + x i,m t m, i,0 + i,1 t + + i,m t m, z i,0 + z i,1 t + + z i,m t m ) ( 0, 1,..., n ) [ i, i+1 ] f i (t) = a i + b i t + c i t + d i t 3 (0 t 1) (11) 1,,..., n 1 1 f i 1 (1) = i f i (0) = i (1), 3 f i 1(1) = f i(0) f i 1(1) = f i (0) (13) i = 1,,..., n 1 0, n f 0 (0) = 0 f n 1 (1) = n (14) 4n 4(n 1) + = 4n f 0 (0) = 0 f n 1(1) = f n(0) = 0 (15) i 1 4n (1),(13) i (Bartels et al., 1998) f i (0) f i (0) 1 f i (0) = a i = i f i (1) = a i + b i + c i + d i = i+1 (16) 7

28 , 3 f i(0) = b i = D i f i(1) = b i + c i + 3d i = D i+1 (17) 4 c i = 3( i+1 i ) D i D i+1 (18) d i = ( i i+1 ) + D i + D i+1 (19) f 0 (0) = c 0 = 0 D 0 + D 1 = 3( 1 0 ) f 0 (1) = f 1 (0) c 1 = 3d 0 D 0 + 4D 1 + D = 3( 0 ) D 0 D 1 D. D n 1 D n 3( 1 0 ) 3( 0 ) 3( 3 1 ) =. 3( n n ) 3( n n 1 ) (0) ( ) ( ) ( ) D n 1 3( n n ) = ( 0 n 1 ) D n (1) D i D i a i, b i, c i, d i 4 f 0 (0) = f n(0) = (cubic spline) (natural spline) 7.4 (1961 ) P(t) = P 0 + t(p 1 P 0 ) = (1 t)p 0 + tp 1 (0 t 1) P i i ( ) 3 P 0, P 1, P (de Castljou) 8

29 P 10 (t) = (1 t)p 0 + tp 1 (P 0, P 1 ) P 11 (t) = (1 t)p 1 + tp (P 1, P ) P(t) = (1 t)p 10 + tp 11 (P 10, P 11 ) P(t) = (1 t) P 0 + t(1 t)p 1 + t P (0 t 1) 4 P 0, P 1, P, P 3 P 0 (t) = (1 t) P 0 + t(1 t)p 1 + t P P 1 (t) = (1 t) P 1 + t(1 t)p + t P 3 P(t) = (1 t)p 0 (t) + tp 1 (t) = (1 t) 3 P 0 + 3t(1 t) P 1 + 3t (1 t)p + t 3 P 3 (0 t 1) n + 1 P 0, P 1,..., P n ( ) n n P(t) = B k,n (t)p k B k,n (t) = t k (1 t) n k () k k=0 P 0, P 1,..., P n (control points) n (Bézier curve) (Bernstein Bézier curve) B k,n (t) ( ) n 1 = ((1 t) + t) n n n = t k (1 t) n k = B k,n (t) k k=0 k=0 1 P k (1) () P(0) = P 0, P(1) = P 1 (3) P (t) = n(1 t) n 1 P 0 + (n(1 t) n 1 n(n 1)t(1 t) n )P 1 +t(1 t)(c P + + c n P n ) +(n(n 1)(1 t) nt n 1 )P n 1 + nt n 1 P n P (0) = n(p 1 P 0 ), vp (1) = n(p n P n 1 ), 9

30 (4) 0 < t < 1 (5) (6) 7.5 P 0, P 1,..., P n w 0, w 1,..., w n R(t) = n k=0 B k,n(t)w k P k n k=0 B k,n(t)wi B k,n (t) (rational Bézier curve) (1) () (3) (4) 7.6 B- 1 B- 1 [0, 1] [0, 1] (C ) 30

31 3 f(x) = x 3 (x < 0), x 3 (0 x) f (x) = 3x (x < 0), 3x (0 x), f (x) = 6x (x < 0) 6x (0 x) x = 0 1 ( ) Cox de Boor B P 0, P 1,..., P n p (1) U = {u 0, u 1,..., u m 0 u 0 u 1 u m 1} (knot vector), u j (knot), [u j, u j+1 ) j (j th knot span) () u j = u j+1 = = u j+k 1 (k > 1) k (multiple knot of multiplicit k) u j (k) (simple knot) (3) 0 < u j < 1 (inner knot) (4) (u 1 u 0 = u u 1 = = u m u m 1 ) (uniform) (non uniform) 1 B (basis function) N i,0 (t) = 1 (u i t < u i+1 ) 0 (otherwise) N i,p (t) = t u i N i,p 1 (t) + u i+p+1 t N i+1,p 1 (t) u i+p u i u i+p+1 u i+1 N i,0 1 0 N i,1 (t) 0 0 B 0 (1) N i,p (t) p () N i,p (t) 0 (3) N i,p (t) > 0 (u i t < u i+p+1 ) (4) [u i, u i+1 ) N i p,p (t), N i p+1,p (t),..., N i,p (t) 0 (5) i k=i p N k,p(t) = 1 (u i t < u i+1 ). [u i, u i+1 ) 1 31

32 (6) m + 1, p, n + 1, m = n + p + 1 n + 1 B p (7) k N i,p (t) C p k p k B B (B spline) n C(t) = N i,p (t)p i i=0 (3) [0, 1] 1 B 0,n (0) = 1, B n,n (1) = 1 P 0, P n B N 0,p (0) = 0, N n,p (1) = 0, (1) B (open) B () B (clamped) B (3) B (closed) B (1) p B [u p, u n p ] 1 () p B p + 1 u 0 = u 1 = = u p = 0, u m p = u m p+1 = = u m = 1 (3) (u 0 = = u p = 0, u p+1 = = u p+1 = 1) B (4) t, t = u k, C(u k ) (knot point) B (5) n + 1, B p, m + 1 m = n + p + 1 (6) B u i t < u i+1 p C(t) P i p, P i p+1,..., P i 3

33 (7) P i C(u i ) C(u i+p+1 ) (8) B 3 B B B B NURBS(non-uniform rational B spline) 7.7 n m S(s, t) = B i,n (s)b j,m (t)p i,j (0 s, t 1) i=0 j=0 P i,j ( ), B i,n (tensor product) n m n m S(s, t) = B i,n (s) B j,m (t)p i,j = B i,n (s)p i (s) P i (s) = B j,m (t)p i,j i=0 j=0 i=0 j=0 P i (s) s (sweep) 3DCG NURBS 7.8 P(t) = (x(t), (t), z(t)) P(t) (tangent vector) P (t) = (x (t), (t), z (t)) (u(t) v(t)) = u (t) v(t) + u(t) v (t) u(t) = v(t) = P (t) 0 P (t) P (t) P (t) 0 N(t) P(t) (normal vector) (binormal vector) 33

34 P(t) Q, R 3 Q, R P(t) N(t) B(t) N(t) = P (t) P (t) B(t) = P (t) P (t) P P (t) P(t) Q, R 3 Q, R P(t) (circle of curvature) r K(t) = 1 r (curvature) K(t) = P (t) P (t) P (t) 3 = (t) (t) z (t) z (t) x (t) x (t) z + (t)) z (t) x + (t)) x (t) ( x ) 3 (t) + (t) + z (t) (t) (t)) P(t) = (x(t), (t)) K(t) = x (t) (t) x (t) (t) ( x (t) + (t) ) 3 = f(x) K(x) = ( 1 + ) 3 34

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B 9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1. 1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

量子力学A

量子力学A c 1 1 1.1....................................... 1 1............................................ 4 1.3.............................. 6 10.1.................................. 10......................................

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

Γ Ec Γ V BIAS THBV3_0401JA THBV3_0402JAa THBV3_0402JAb 1000 800 600 400 50 % 25 % 200 100 80 60 40 20 10 8 6 4 10 % 2.5 % 0.5 % 0.25 % 2 1.0 0.8 0.6 0.4 0.2 0.1 200 300 400 500 600 700 800 1000 1200 14001600

More information

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1)

n Y 1 (x),..., Y n (x) 1 W (Y 1 (x),..., Y n (x)) 0 W (Y 1 (x),..., Y n (x)) = Y 1 (x)... Y n (x) Y 1(x)... Y n(x) (x)... Y n (n 1) (x) Y (n 1) D d dx 1 1.1 n d n y a 0 dx n + a d n 1 y 1 dx n 1 +... + a dy n 1 dx + a ny = f(x)...(1) dk y dx k = y (k) a 0 y (n) + a 1 y (n 1) +... + a n 1 y + a n y = f(x)...(2) (2) (2) f(x) 0 a 0 y (n) + a 1 y

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 単純適応制御 SAC サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/091961 このサンプルページの内容は, 初版 1 刷発行当時のものです. 1 2 3 4 5 9 10 12 14 15 A B F 6 8 11 13 E 7 C D URL http://www.morikita.co.jp/support

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac +

1 1.1 R (ring) R1 R4 R1 R (commutative [abelian] group) R2 a, b, c R (ab)c = a(bc) (associative law) R3 a, b, c R a(b + c) = ab + ac, (a + b)c = ac + ALGEBRA II Hiroshi SUZUKI Department of Mathematics International Christian University 2004 1 1 1 2 2 1 3 3 1 4 4 1 5 5 1 6 6 1 7 7 1 7.1....................... 7 1 7.2........................... 7 4 8

More information

Kageyama (Kobe Univ.) 2015.06.23 2 / 41

Kageyama (Kobe Univ.) 2015.06.23 2 / 41 2015 2015.06.23 Kageyama (Kobe Univ.) 2015.06.23 1 / 41 Kageyama (Kobe Univ.) 2015.06.23 2 / 41 [ 1, +1] [ 1, +1] [ 1, +1] Kageyama (Kobe Univ.) 2015.06.23 3 / 41 Kageyama (Kobe Univ.) 2015.06.23 4 / 41

More information

* 1 2014 7 8 *1 iii 1. Newton 1 1.1 Newton........................... 1 1.2............................. 4 1.3................................. 5 2. 9 2.1......................... 9 2.2........................

More information

PDF

PDF 1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP 1. 1 213 1 6 1 3 1: ( ) 2: 3: SF 1 2 3 1: 3 2 A m 2. 2 P M A 2 F = mmg AP AP 2 AP (G > : ) AP/ AP A P P j M j F = n j=1 mm j G AP j AP j 2 AP j 3 P ψ(p) j ψ(p j ) j (P j j ) A F = n j=1 mgψ(p j ) j AP

More information

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL PAL On the Precision of 3D Measurement by Stereo PAL Images Hiroyuki HASE,HirofumiKAWAI,FrankEKPAR, Masaaki YONEDA,andJien KATO PAL 3 PAL Panoramic Annular Lens 1985 Greguss PAL 1 PAL PAL 2 3 2 PAL DP

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

L1-a.dvi

L1-a.dvi 27 Q C [ ] cosθ sinθ. A θ < 2π sinθ cosθ A. A ϕ A, A cosϕ cosθ sinθ cosθ sinθ A sinθ cosθ sinθ +cosθ A, cosθ sinθ+sinθ+cosθ 2 + 2 cosθ A 2 A,A cosθ sinθ 2 +sinθ +cosθ 2 2 cos 2 θ+sin 2 θ+ 2 sin 2 θ +cos

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1 1 1.1......... 1............. 1.3... 1.4......... 1.5.............. 1.6................ Bownian Motion.1.......... Einstein.............. 3.3 Einstein........ 3.4..... 3.5 Langevin Eq.... 3.6................

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

( 9 1 ) 1 2 1.1................................... 2 1.2................................................. 3 1.3............................................... 4 1.4...........................................

More information

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin

122 6 A 0 (p 0 q 0 ). ( p 0 = p cos ; q sin + p 0 (6.1) q 0 = p sin + q cos + q 0,, 2 Ox, O 1 x 1., q ;q ( p 0 = p cos + q sin + p 0 (6.2) q 0 = p sin 121 6,.,,,,,,. 2, 1. 6.1,.., M, A(2 R).,. 49.. Oxy ( ' ' ), f Oxy, O 1 x 1 y 1 ( ' ' ). A (p q), A 0 (p q). y q A q q 0 y 1 q A O 1 p x 1 O p p 0 p x 6.1: ( ), 6.1, 122 6 A 0 (p 0 q 0 ). ( p 0 = p cos

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ

q π =0 Ez,t =ε σ {e ikz ωt e ikz ωt } i/ = ε σ sinkz ωt 5.6 x σ σ *105 q π =1 Ez,t = 1 ε σ + ε π {e ikz ωt e ikz ωt } i/ = 1 ε σ + ε π sinkz ωt 5.7 σ H k r,t= η 5 Stokes X k, k, ε, ε σ π X Stokes 5.1 5.1.1 Maxwell H = A A *10 A = 1 c A t 5.1 A kη r,t=ε η e ik r ωt 5. k ω ε η k η = σ, π ε σ, ε π σ π A k r,t= q η A kη r,t+qηa kηr,t 5.3 η q η E = 1 c A

More information

F8302D_1目次_160527.doc

F8302D_1目次_160527.doc N D F 830D.. 3. 4. 4. 4.. 4.. 4..3 4..4 4..5 4..6 3 4..7 3 4..8 3 4..9 3 4..0 3 4. 3 4.. 3 4.. 3 4.3 3 4.4 3 5. 3 5. 3 5. 3 5.3 3 5.4 3 5.5 4 6. 4 7. 4 7. 4 7. 4 8. 4 3. 3. 3. 3. 4.3 7.4 0 3. 3 3. 3 3.

More information

学習内容と日常生活との関連性の研究-第2部-第6章

学習内容と日常生活との関連性の研究-第2部-第6章 378 379 10% 10%10% 10% 100% 380 381 2000 BSE CJD 5700 18 1996 2001 100 CJD 1 310-7 10-12 10-6 CJD 100 1 10 100 100 1 1 100 1 10-6 1 1 10-6 382 2002 14 5 1014 10 10.4 1014 100 110-6 1 383 384 385 2002 4

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1

1: *2 W, L 2 1 (WWL) 4 5 (WWL) W (WWL) L W (WWL) L L 1 2, 1 4, , 1 4 (cf. [4]) 2: 2 3 * , , = , 1 I, A 25 8 24 1 1.1 ( 3 ) 3 9 10 3 9 : (1,2,6), (1,3,5), (1,4,4), (2,2,5), (2,3,4), (3,3,3) 10 : (1,3,6), (1,4,5), (2,2,6), (2,3,5), (2,4,4), (3,3,4) 6 3 9 10 3 9 : 6 3 + 3 2 + 1 = 25 25 10 : 6 3 + 3 3

More information

...............y.\....07..

...............y.\....07.. 150 11.512.0 11.812.0 12.013.0 12.514.0 1 a c d e 1 3 a 1m b 6 20 30cm day a b a b 6 6 151 6 S 5m 11.511.8 G 515m 11.812.0 SG 10m 11.812.0 10m 11.511.8 1020m 11.812.0 SF 5m 11.511.8 510m 11.812.0 V 5m

More information

1 6 2011 3 2011 3 7 1 2 1.1....................................... 2 1.2................................. 3 1.3............................................. 4 6 2.1................................................

More information

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ

Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R M End R M) M R ut R M) M R R G R[G] R G Sets 1 Λ Noether Λ k Λ m Λ k C Λ Galois ) 0 1 1 2 2 4 3 10 4 12 5 14 16 0 Galois Galois Galois TaylorWiles Fermat [W][TW] Galois Galois Galois 1 Noether 2 1 Mazur [Ma1] Schlessinger [Sch] [SL] [Ma1] [Ma1] [Ma2] Galois [] 17 R m R R R

More information

untitled

untitled JPEG yoshi@image.med.osaka u.ac.jp http://www.image.med.osaka u.ac.jp/member/yoshi/ (Computer Graphics: CG) (Virtual/Augmented(Mixed) Reality: VR AR MR) (Computer Graphics: CG) (Virtual/Augmented(Mixed)

More information

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I

More information

example2_time.eps

example2_time.eps Google (20/08/2 ) ( ) Random Walk & Google Page Rank Agora on Aug. 20 / 67 Introduction ( ) Random Walk & Google Page Rank Agora on Aug. 20 2 / 67 Introduction Google ( ) Random Walk & Google Page Rank

More information

48 * *2

48 * *2 374-1- 17 2 1 1 B A C A C 48 *2 49-2- 2 176 176 *2 -3- B A A B B C A B A C 1 B C B C 2 B C 94 2 B C 3 1 6 2 8 1 177 C B C C C A D A A B A 7 B C C A 3 C A 187 187 C B 10 AC 187-4- 10 C C B B B B A B 2 BC

More information

CVMに基づくNi-Al合金の

CVMに基づくNi-Al合金の CV N-A (-' by T.Koyama ennard-jones fcc α, β, γ, δ β α γ δ = or α, β. γ, δ α β γ ( αβγ w = = k k k ( αβγ w = ( αβγ ( αβγ w = w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( αβγ w = ( βγδ w = = k k k ( αγδ

More information

p.2/76

p.2/76 kino@info.kanagawa-u.ac.jp p.1/76 p.2/76 ( ) (2001). (2006). (2002). p.3/76 N n, n {1, 2,...N} 0 K k, k {1, 2,...,K} M M, m {1, 2,...,M} p.4/76 R =(r ij ), r ij = i j ( ): k s r(k, s) r(k, 1),r(k, 2),...,r(k,

More information

untitled

untitled (a) (b) (c) (d) Wunderlich 2.5.1 = = =90 2 1 (hkl) {hkl} [hkl] L tan 2θ = r L nλ = 2dsinθ dhkl ( ) = 1 2 2 2 h k l + + a b c c l=2 l=1 l=0 Polanyi nλ = I sinφ I: B A a 110 B c 110 b b 110 µ a 110

More information

B

B B YES NO 5 7 6 1 4 3 2 BB BB BB AA AA BB 510J B B A 510J B A A A A A A 510J B A 510J B A A A A A 510J M = σ Z Z = M σ AAA π T T = a ZP ZP = a AAA π B M + M 2 +T 2 M T Me = = 1 + 1 + 2 2 M σ Te = M 2 +T

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 通信方式第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/072662 このサンプルページの内容は, 第 2 版発行当時のものです. i 2 2 2 2012 5 ii,.,,,,,,.,.,,,,,.,,.,,..,,,,.,,.,.,,.,,.. 1990 5 iii 1 1

More information

1

1 016 017 6 16 1 1 5 1.1............................................... 5 1................................................... 5 1.3................................................ 5 1.4...............................................

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier

1 Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier Fourier analog digital Fourier Fourier Fourier Fourier Fourier Fourier Green Fourier Fourier Fourier Fourier etc * 1 Fourier Fourier Fourier (DFT Fourier (FFT Heat Equation, Fourier Series, Fourier Transform, Discrete Fourier Transform, etc Yoshifumi TAKEDA 1 Abstract Suppose that u is

More information

(time series) ( 225 ) / / p.2/66

(time series) ( 225 ) / / p.2/66 338 857 255 Tel : 48 858 3577, Fax : 48 858 3716 Email : tohru@ics.saitama-u.ac.jp URL : http://www.nls.ics.saitama-u.ac.jp/ tohru / / p.1/66 (time series) ( 225 ) / / p.2/66 / / p.3/66 ?? / / p.3/66 1.9.8.7.6???.5.4.3.2.1

More information

untitled

untitled .m 5m :.45.4m.m 3.m.6m (N/mm ).8.6 σ.4 h.m. h.68m h(m) b.35m θ4..5.5.5 -. σ ta.n/mm c 3kN/m 3 w 9.8kN/m 3 -.4 ck 6N/mm -.6 σ -.8 3 () :. 4 5 3.75m :. 7.m :. 874mm 4 865mm mm/ :. 7.m 4.m 4.m 6 7 4. 3.5

More information

閨75, 縺5 [ ィ チ573, 縺 ィ ィ

閨75, 縺5 [ ィ チ573, 縺 ィ ィ 39ィ 8 998 3. 753 68, 7 86 タ7 9 9989769 438 縺48 縺55 3783645 タ5 縺473 タ7996495 ィ 59754 8554473 9 8984473 3553 7. 95457357, 4.3. 639745 5883597547 6755887 67996499 ィ 597545 4953473 9 857473 3553, 536583, 89573,

More information

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem 1 1 1 Posture Esimation by Using 2-D Fourier Transform Yuya Ono, 1 Yoshio Iwai 1 and Hiroshi Ishiguro 1 Recently, research fields of augmented reality and robot navigation are actively investigated. Estimating

More information

3/4/8:9 { } { } β β β α β α β β

3/4/8:9 { } { } β β β α β α β β α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3

More information

小川/小川

小川/小川 p TRE p Mp p p M p S p p Tp M p p p p p p p p M T T T p p MT MR MR M M p p M M p p M T T T T T T T T S T M p M p T p M E M M p p p p TT T T p p p T T p T T T T T T T p p pt T T T p S T S S T p T T T T

More information

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ

2 FIG. 1: : n FIG. 2: : n (Ch h ) N T B Ch h n(z) = (sin ϵ cos ω(z), sin ϵ sin ω(z), cos ϵ), (1) 1968 Meyer [5] 50 N T B Ch h [4] N T B 10 nm Ch h 1 µ : (Dated: February 5, 2016), (Ch), (Oblique Helicoidal) (Ch H ), Twist-bend (N T B ) I. (chiral: ) (achiral) (n) (Ch) (N ) 1996 [1] [2] 2013 (N T B ) [3] 2014 [4] (oblique helicoid) 2016 1 29 Electronic

More information

13Ad m in is t r a t ie e n h u lp v e r le n in g Ad m in is t r a t ie v e p r o b le m e n,p r o b le m e n in d e h u lp v e r le n in g I n d ic

13Ad m in is t r a t ie e n h u lp v e r le n in g Ad m in is t r a t ie v e p r o b le m e n,p r o b le m e n in d e h u lp v e r le n in g I n d ic 13D a t a b a n k m r in g R a p p o r t M ィC Aa n g e m a a k t o p 19 /09 /2007 o m 09 :3 1 u u r I d e n t if ic a t ie v a n d e m S e c t o r BJB V o lg n r. 06 013-00185 V o o r z ie n in g N ie

More information

技適番号 JARL 日本マランツ株式会社 C4200 KU086 ***** 日本マランツ株式会社 C4200D KU085 ***** 日本マランツ株式会社 C450 S55 日本マランツ株式会社 C460 A052S 日本マランツ株式会社 C470 KV061 ***** 日本マランツ株式会社

技適番号 JARL 日本マランツ株式会社 C4200 KU086 ***** 日本マランツ株式会社 C4200D KU085 ***** 日本マランツ株式会社 C450 S55 日本マランツ株式会社 C460 A052S 日本マランツ株式会社 C470 KV061 ***** 日本マランツ株式会社 技適番号 JARL アルインコ株式会社 ALD-23 AL40 アルインコ株式会社 ALD-23D AL41M アルインコ株式会社 ALD-23DX AL51M アルインコ株式会社 ALD-23SX AL50 アルインコ株式会社 ALD-24 AL36 アルインコ株式会社 ALD-24D AL37M アルインコ株式会社 ALD-24DX AL53M アルインコ株式会社 ALD-24SX AL52 アルインコ株式会社

More information

libaux.dvi

libaux.dvi AUX OpenGL 1 OpenGL (AUX libaux.a) OpenGL Programming Guide () OpenGL 1 OpenGL OS (API) OS OS OS OpenGL Windows Windows X X OpenGL Programming Guide AUX toolkit AUX OS OpenGL SGI OpenGL OS OpenGL AUX Windows

More information

4 小川/小川

4 小川/小川 B p p B pp M p T p M p Tp T pt T p T p T p p Tp T T p T p T pt p Tp p p p p p p p p T p p T T M M p p p p p p T p p p T T p T B T T p T T p T p T T T p T p p T p Tp T p p Tp T p T Tp T T p T p T p T p

More information

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

A B 5 C 9 3.4 7 mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3 π 9 3 7 4. π 3................................................. 3.3........................ 3.4 π.................... 4.5..................... 4 7...................... 7..................... 9 3 3. p

More information

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 新装版 1 刷発行時のものです.

C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.  このサンプルページの内容は, 新装版 1 刷発行時のものです. C による数値計算法入門 ( 第 2 版 ) 新装版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009383 このサンプルページの内容は, 新装版 1 刷発行時のものです. i 2 22 2 13 ( ) 2 (1) ANSI (2) 2 (3) Web http://www.morikita.co.jp/books/mid/009383

More information

第7章 レンダリング

第7章 レンダリング 7 April 11, 2017 1 / 59 7.1 ( ) CG 3 ( ) 2 / 59 7.2 7.2.1 ( ) 3 (rendering) 1 / (hidden line/surface calculation) a (outer normal algorithm) b Z (Z-buffer algorithm) c (scan-line algorithm) 2 (shading)

More information

謗域・ュ逕ィppt

謗域・ュ逕ィppt 情報工学 212 年度後期第 5 回 [1 月 31 日 ] 静岡大学 創造科学技術大学院情報科学専攻工学部機械工学科計測情報講座 三浦憲二郎 講義日程 第 8 回 11 月 21 日 ( 水 ) CG パート試験 講義アウトライン [1 月 31 日 ] ビジュアル情報処理 1.3.4 投影変換 1.3.5 いろいろな座標系と変換 OpenGL 投影変換 曲線の描画 トロコイド ( 外トロコイドと内トロコイド

More information

ISTC 3

ISTC 3 B- I n t e r n a t i o n a l S t a n d a r s f o r Tu b e r c u l o s i s C a r (ÏS r c ) E d is i k e - 3 ) a =1 / < ' 3 I n t e r n a t i o n a l s t a n d a r d s f o r T B C a r e e «l i s i k e 3

More information

untitled

untitled 0 ( L CONTENTS 0 . sin(-x-sinx, (-x(x, sin(90-xx,(90-xsinx sin(80-xsinx,(80-x-x ( sin{90-(ωφ}(ωφ. :n :m.0 m.0 n tn. 0 n.0 tn ω m :n.0n tn n.0 tn.0 m c ω sinω c ω c tnω ecω sin ω ω sin c ω c ω tn c tn ω

More information

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10

34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2 ガウス 型 関 数 1.2 1 関 数 値 0.8 0.6 0.4 0.2 0 15 10 5 0 5 10 33 2 2.1 2.1.1 x 1 T x T 0 F = ma T ψ) 1 x ψ(x) 2.1.2 1 1 h2 d 2 ψ(x) + V (x)ψ(x) = Eψ(x) (2.1) 2m dx 2 1 34 2 2 h = h/2π 3 V (x) E 4 2 1 ψ = sin kxk = 2π/λ λ = h/p p = h/λ = kh/2π = k h 5 2 ψ = e ax2

More information

橡博論表紙.PDF

橡博論表紙.PDF Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction 2003 3 Study on Retaining Wall Design For Circular Deep Shaft Undergoing Lateral Pressure During Construction

More information

all.dvi

all.dvi fortran 1996 4 18 2007 6 11 2012 11 12 1 3 1.1..................................... 3 1.2.............................. 3 2 fortran I 5 2.1 write................................ 5 2.2.................................

More information

2142B/152142B

2142B/152142B ! EFGH FIJG EFGH O m A kg A lm knm Q m B kg B m B m A A B gms x y z P Q R S T U y xz S T U D F G y F I G J z F I G J D J H G U A I y z x u O d α B P Q R S T F D E A um O ωrads u m A l kω! m A l kω m A

More information

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0

2 Three-wave Painlevé VI 21 -Wilson three-wave Painlevé VI Gauss -Wilson [KK3] n 3 3 t = t 1 t 2 t 3 -Wilson W z; t := I + W 1 z + W 2 z 2 + z; t := 0 1473 : de nouvelles perspectives 2006 2 pp 102 119 VI q 1 Tetsuya Kikuchi Sabro Kakei Drinfel d-sokolov Painlevé [KK1] [KK2] [KK3] [KIK] [ ] [ ] [KK3] three-wave equation Painlevé VI q q Drinfel d-sokolov

More information

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q

C p (.2 C p [[T ]] Bernoull B n,χ C p p q p 2 q = p p = 2 q = 4 ω Techmüller a Z p ω(a a ( mod q φ(q ω(a Z p a pz p ω(a = 0 Z p φ Euler Techmüller ω Q p- L- [Iwa] [Iwa2] -Leopoldt [KL] p- L-. Kummer Remann ζ(s Bernoull B n (. ζ( n = B n n, ( n Z p a = Kummer [Kum] ( Kummer p m n 0 ( mod p m n a m n ( mod (p p a ( p m B m m ( pn B n n ( mod pa Z p Kummer

More information

PII S (96)

PII S (96) C C R ( 1 Rvw C d m d M.F. Pllps *, P.S. Hp I q G U W C M H P C C f R 5 J 1 6 J 1 A C d w m d u w b b m C d m d T b s b s w b d m d s b s C g u T p d l v w b s d m b b v b b d s d A f b s s s T f p s s

More information

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v =

1 180m g 10m/s 2 2 6 1 3 v 0 (t=0) z max t max t z = z max 1 2 g(t t max) 2 (6) 1.3 2 3 3 r = (x, y, z) e x, e y, e z r = xe x + ye y + ze z. (7) v = 1. 2. 3 3. 4. 5. 6. 7. 8. 9. I http://risu.lowtem.hokudai.ac.jp/ hidekazu/class.html 1 1.1 1 a = g, (1) v = g t + v 0, (2) z = 1 2 g t2 + v 0 t + z 0. (3) 1.2 v-t. z-t. z 1 z 0 = dz = v, t1 dv v(t), v

More information

第7章 レンダリング

第7章 レンダリング 7 May 18, 2012 1 / 60 71 ( ) CG 3 ( ) 2 / 60 72 71 ( ) 3 (rendering) 1 / (hidden line/surface calculation) a (outer normal algorithm) b Z (Z-buffer algorithm) c (scan-line algorithm) 2 (shading) a (flat

More information

地域開発の事後的分析 -経済指標と社会指標による考察-

地域開発の事後的分析 -経済指標と社会指標による考察- 6 5 1 (1) 44 2 611 612 2-66 - 611 45 612 3 2 16 13611 2 45 1 5 23 3-6 - 613 2 3 614 615 616-68 - 61 618 619 1 611-69 - 24 51 51 2 3 2 1 4 84 1ha 55 2 II 613 2 2 16 22628 23 - - 621 15 1 23 8 2 3 2 1.8

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information

FnePix S8000fd 使用説明書

FnePix S8000fd 使用説明書 http://fujifilm.jp/ BL00677-100(1) 2 27 aon b 39 39 88 88 100 3 4 B N < M > S e> d * j p p p S T H G p p p V r w U 5 6 e> B N ep ep 10 80 1. 2m 3. 2 m 1 cm 10 cm 60 mm35mm 30 cm3.0 m > e r DISP/BACK

More information

液晶テレビ保護パネル対応表 (SHARP) SHARP LC-AE6 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE6 LC-AE6 LC-AE6 LC-AE7 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE7 LC-AE7 LC-AE7

液晶テレビ保護パネル対応表 (SHARP) SHARP LC-AE6 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE6 LC-AE6 LC-AE6 LC-AE7 YK-CRT006 左右 6.5 下 2mmはみでますが 使用できます AE7 LC-AE7 LC-AE7 液晶テレビ保護パネル対応表 (Panasonic) Panasonic TH-A305 A305 39 TH-39A305 左右 7.5 下 7mmはみでますが 使用できます TH-A305 YK-CRT016 A0 TH-A0 左右 9.5 下 30mmはみでますが 使用できます AS600 TH-AS600 AS630 TH-AS630 YK-CRT016 TH-AS6 AS6 TH-AS6 55

More information

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C(

76 3 B m n AB P m n AP : PB = m : n A P B P AB m : n m < n n AB Q Q m A B AQ : QB = m : n (m n) m > n m n Q AB m : n A B Q P AB Q AB 3. 3 A(1) B(3) C( 3 3.1 3.1.1 1 1 A P a 1 a P a P P(a) a P(a) a P(a) a a 0 a = a a < 0 a = a a < b a > b A a b a B b B b a b A a 3.1 A() B(5) AB = 5 = 3 A(3) B(1) AB = 3 1 = A(a) B(b) AB AB = b a 3.1 (1) A(6) B(1) () A(

More information

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d lim 5. 0 A B 5-5- A B lim 0 A B A 5. 5- 0 5-5- 0 0 lim lim 0 0 0 lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d 0 0 5- 5-3 0 5-3 5-3b 5-3c lim lim d 0 0 5-3b 5-3c lim lim lim d 0 0 0 3 3 3 3 3 3

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

y a y y b e

y a y y b e DIGITAL CAMERA FINEPIX F1000EXR BL01893-100 JA http://fujifilm.jp/personal/digitalcamera/index.html y a y y b e 1 2 P 3 y P y P y P y P y P Q R P R E E E E Adv. SP P S A M d F N h Fn R I P O X Y b I A

More information