そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作"

Transcription

1 五心へのアプローチ札幌新川高等学校吉田奏介 数学 Ⅰ の授業のあと 生徒から 内心や外心と頂点の延長線は中点と一致しないんですか? と質問があった その生徒には角の二等分線の話や鈍角三角形のときの話をしたら納得していたが 確かに一般的な点におけることは紙面上の図を見ただけではわかりづらいだろうし 生徒が自分で描く図は都合のよい図を描いてしまいがちである そんなことを発端にして考えてみた 1 FLSH 教材の概要特徴としては 三角形の頂点を動かすことができる 五心を表示できる 内接円 外接円も表示される 各点の座標 三角形の辺の長さが表示できる 正三角形にできる 延長線が表示できるといったことが可能である これにより 前述したような一般的に成り立つ図形の性質を示すことができる また 重心と内心が一致するならば正三角形である ということを 実験により体験 証明へといった流れで確認していくことも可能となる 数学とFLSH FLSHでこのような自由に動かす教材を作る際 アニメーションを作るわけではなく そのほとんどが アクション と呼ばれるプログラム ( コード ) を打ち込むことでできあがっていく 下がその一例である // 延長線 b = (y-yb)/(x-xb); mb_ra = Math.atan(mb)*180/Math.PI; setproperty("entyou_a"_rotation mb_ra); setproperty("entyou_a" _x p_l_x); setproperty("entyou_a" _y p_l_y); // 辺の長さ a_l = (x-xb)*(x-xb)+(y-yb)*(y-yb); a_l = Math.sqrt(a_l); a_lin = Math.round(a_l); 独特な部分もあるが 何となく何を しているかわかる部分もあるのではな いだろうか この中の数値処理自体は Mathematia などに近いものがある // sin os osa = (b_l*b_l+_l*_l-a_l*a_l)/(*b_l*_l); sina = Math.sqrt(1-osa*osa); osb = (-b_l*b_l+_l*_l+a_l*a_l)/(*a_l*_l); sinb = Math.sqrt(1-osb*osb); os = (b_l*b_l-_l*_l+a_l*a_l)/(*b_l*a_l); sin = Math.sqrt(1-os*os); // 外心 xo = (xa*sina+xb*sinb+x*sin)/(sina+sinb+sin); yo = (ya*sina+yb*sinb+y*sin)/(sina+sinb+sin); o_r = a_l/sina; setproperty("p_o" _x xo); setproperty("p_o" _y yo); setproperty("gaishinen" _x xo); setproperty("gaishinen" _y yo); setproperty("gaishinen" _width o_r); setproperty("gaishinen" _height o_r);

2 そこで ある程度の知識があれば数学と情報の練習もかねて用いてもおもしろいのではないだろうか これはある程度の下準備のされたファイルと FLSH のアプリケーションがあれば計算処理の結果をグラフなどで視覚的に表示することが可能となると思われる 環境が許せば できあがったものをいじ るだけでなく自分で作り なおかつ数学の仕組みもちょっとかませた e-learnig などというのもありなのではないだろうか 3 五心の座標と FLSH さてまた先程の アクション の中に戻ると次のような部分がある // 外心 xo = (xa*sina+xb*sinb+x*sin)/(sina+sinb+sin); yo = (ya*sina+yb*sinb+y*sin)/(sina+sinb+sin); これは処理上で五心を座標で設定する必要があるために設定しているのだが これがなかなか大変である まず実際に五心を座標で表現すると次のようになる 三角形の頂点を X Y X Y X Y とすると 重心 内心 傍心 X1 X X 3 Y1 Y Y3 3 3 ax1 bx X 3 ay1 by Y3 a b a b ax1 bx X3 ay1 by Y3 a b a b ax1 bx X 3 ay1 by Y3 a b a b ax1 bx X 3 ay1 by Y3 a b a b S r a b S r a b S r a b S r a b 外心 X1 sin X sin X3 sin Y1 sin Y sin Y3 sin a R sin sin sin sin sin sin sin 垂心 X1 tan X tan X3 tan Y1 tan Y tan Y3 tan tan tan tan tan tan tan S r a b

3 重心内心この証明はベクトルを用いることで次のように導かれる G s M s G s N t とおくと b a a s s g a s g 1 s a b N G b a b t t g b t g a 1 t b M 1 s t s 1 t s t a b より s t g a b s s I s b ~1 b I t t t a t t a a a a I I I 1 a t t ~ a a s a s t b a 1より 1 t これを解くと s t a b a a b a b b 1に代入して I a b b aa bb i a b a a i a b a b a b 心傍 s s E s b ~1 b t E t t a t t a a a a E E 1 a t t ~ a a E s a s t b a 1より 1 t これを解くと s t a b a a b a b b 1に代入して E a b b aa bb e a b a a e a b a b a b 同様にして他の傍心も導くことが可能

4 外心 O s t とする 1 MO より MO O s t s t s t 0 M 1 O NO より NO O 0 N s t s t s t b s tb os 0 sb os t b s b os t b os s b t b b os s より b os b t 1 b b sin D b b os b 1 os b sin 4 4S ここで os b b a 3 b b os b b b a b S 8S a b 同様にして t となるので なので b a b a b P 16 1 p S b a b a b a b a b b a b asin 4 4 4a 1 os a a b b b b a b a b 16 b a b a b であるから a b a 4 4 4a a os a a b b b 4 4 3a a b a b b b 4 a b a a a b a a b a b b a b p a b a a b os a ab os R sin ab os Rab sin 同様に b a b Rab sin a b Rab sin

5 つづき 心垂心 4 a b a b b 外Rab sin sin sin a b a b a b a b a b a b a b a b a b a b a b a b a b a b sheron の公式であるから Rab sin a Rab sin b Rabsin p Rabsin sin sin asin bsin sin sin sin sin bos H s t とする P より bos PH H P s t bos bos PH s t s t 0 bos b a s b os t 0 なので s b os t b os ~1 os 同様に QH b os s t b 0 b 1 より なので os b a b s b t b os ~ b a b os s b os b t b a とできるので外心と同様に os os b b a b a b b a b b S 8S b a b b a b a a b b a a b b a より t P a b a b 1 16 S b a a b b a a b a h b a a b b b a a b Q H P

6 つづき 心垂ここで a の係数に注目すると asin 4 b a a b a b 16 a b a a 4 4a 1 os a b a a 4 4a a os a b a a 4 a a b a b a a b b a b a b a b であるから a b a b a b a a b b b a a b h a b a b a os b os 4 a ab os os 4Rsin abosos 8Rabsin os os 8Rab tan os os os 同様に b a a b 8Rab tan os os os b a a b 8Rab tan os os os 8Rab os os os tan tan tan a b a b b a a b b a a b a b a b b 4 a b a b a b a b a b a b a b a b a b a b a b a b a 8Rab tan os os os b8rab tan os os os 8Rab tan os os os h 8Rab os os os tan tan tan a tan b tan tan tan tan tan

7 重心 内心 傍心は出しやすいが 外心や垂心はいろいろと変換していかなければならず 神奈川県元石川高校の星野敏司氏のホームページ *1 を参考に計算を行った この計算自体は図形の性質以外に ベクトルや三角比 面積公式を用いており 数学 の範囲では扱うことができない しかし数 Ⅱ 以降であれば複数の単元に渡った演習問題としてはおもしろいものであるし なにより非常に美しい対称性 関連性をもっておる ちょっと示すだけでも それらを感じさせることができるものではないだろうか *1 Meta mathematiian shp(htp://

[] 17 15 1,,, P.,,[3,4],[5,6], 3,,,[7] [7], 1,,,,,[8],, 1 acm bcm, AB = a + b,, AP : P B = b : a AP = x

[] 17 15 1,,, P.,,[3,4],[5,6], 3,,,[7] [7], 1,,,,,[8],, 1 acm bcm, AB = a + b,, AP : P B = b : a AP = x 006,Vol.5, 16-5 1,, 1. 15 [1],, 5 6 61.8 59. 1 3 48.8 44.6 47.1 3,,, 5 6 79.1 79. 1 3 67.7 59.6 5.7,,, 5 6 57.7 48.8 1 3 31.8 3.4 1.6 0 30 1, 17011034 16 [] 17 15 1,,, P.,,[3,4],[5,6], 3,,,[7] [7], 1,,,,,[8],,

More information

第1章 単 位

第1章  単  位 H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,

More information

竹田式数学 鉄則集

竹田式数学  鉄則集 合格への鉄則集 数学 ⅡB 竹鉄 ⅡB-01~23 竹鉄 ⅡB-1 式と証明 (1) 方程式の決定 方程式の決定問題 a+bi が解なら,a-bi も解 解と係数の関係を活用する 例題 クリアー 140 a,b は実数とする 3 次方程式 x 3 +ax 2 +bx+10=0 が 1+2i を解にもつとき, 定数 a,b の値を求めよ また, 他の解を求めよ 鉄則集 21 竹鉄 ⅡB-2 式と証明

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

PowerPoint Presentation

PowerPoint Presentation 応用数学 Ⅱ (7) 7 連立微分方程式の立て方と解法. 高階微分方程式による解法. ベクトル微分方程式による解法 3. 演算子による解法 連立微分方程式 未知数が複数個あり, 未知数の数だけ微分方程式が与えられている場合, これらを連立微分方程式という. d d 解法 () 高階微分方程式化による解法 つの方程式から つの未知数を消去して, 未知数が つの方程式に変換 のみの方程式にするために,

More information

untitled

untitled No. 1 2 3 1 4 310 1 5 311 7 1 6 311 1 7 2 8 2 9 1 10 2 11 2 12 2 13 3 14 3 15 3 16 3 17 2 18 2 19 3 1 No. 20 4 21 4 22 4 23 4 25 4 26 4 27 4 28 4 29 2760 4 30 32 6364 4 36 4 37 4 39 4 42 4 43 4 44 4 46

More information

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (

例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X ( 第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

S02 1 図において = =とする このとき = であることを証明せよ と において = 1 = 2 辺 は共通 より 3 辺 (3 組の辺 ) がそれぞれ等しい よって 合同な三角形の対応する角の大きさは等しい ゆえに = である

S02 1 図において = =とする このとき = であることを証明せよ と において = 1 = 2 辺 は共通 より 3 辺 (3 組の辺 ) がそれぞれ等しい よって 合同な三角形の対応する角の大きさは等しい ゆえに = である S01 1 図において = =とする このとき であることを証明せよ と において = 1 = 2 辺 は共通 3 1 2 3 より 3 辺 (3 組の辺 ) がそれぞれ等しい よって である S02 1 図において = =とする このとき = であることを証明せよ と において = 1 = 2 辺 は共通 3 1 2 3 より 3 辺 (3 組の辺 ) がそれぞれ等しい よって 合同な三角形の対応する角の大きさは等しい

More information

書式に示すように表示したい文字列をダブルクォーテーション (") の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf(" 情報処理基礎 "); printf("c 言語の練習 "); printf

書式に示すように表示したい文字列をダブルクォーテーション () の間に書けば良い ダブルクォーテーションで囲まれた文字列は 文字列リテラル と呼ばれる プログラム中では以下のように用いる プログラム例 1 printf( 情報処理基礎 ); printf(c 言語の練習 ); printf 情報処理基礎 C 言語についてプログラミング言語は 1950 年以前の機械語 アセンブリ言語 ( アセンブラ ) の開発を始めとして 現在までに非常に多くの言語が開発 発表された 情報処理基礎で習う C 言語は 1972 年にアメリカの AT&T ベル研究所でオペレーションシステムである UNIX を作成するために開発された C 言語は現在使われている多数のプログラミング言語に大きな影響を与えている

More information

04年度LS民法Ⅰ教材改訂版.PDF

04年度LS民法Ⅰ教材改訂版.PDF ?? A AB A B C AB A B A B A B A A B A 98 A B A B A B A B B A A B AB AB A B A BB A B A B A B A B A B A AB A B B A B AB A A C AB A C A A B A B B A B A B B A B A B B A B A B A B A B A B A B A B

More information

C#の基本

C#の基本 C# の基本 ~ 開発環境の使い方 ~ C# とは プログラミング言語のひとつであり C C++ Java 等に並ぶ代表的な言語の一つである 容易に GUI( グラフィックやボタンとの連携ができる ) プログラミングが可能である メモリ管理等の煩雑な操作が必要なく 比較的初心者向きの言語である C# の利点 C C++ に比べて メモリ管理が必要ない GUIが作りやすい Javaに比べて コードの制限が少ない

More information

1/2

1/2 札幌学院大学社会情報学部 AO 入試課題用テキスト (4) 1 札幌学院大学社会情報学部 AO 入試課題用テキスト HTML の基礎知識 (4) 1 スタイル指定 1-1 段落を罫線 ( ボーダー ) で囲む 前回はスタイル指定を行なって段落に色をつけた 今度は罫線で囲んで見よう これまでと同様に 開始タグの中に罫線の指定を行なえばよい HTML 文書は次の通りである 下線部が罫線を引くためのスタイル指定である

More information

目次 1. デジタル押し花の作り方 3 2. デジタル押し花をきれいに仕上げる方法 まとめ 課題にチャレンジ 19 レッスン内容 デジタル押し花 マイクロソフト社のワープロソフト Word 2010( これ以降 Word と記述します ) の図ツールに搭載されている [ 背景

目次 1. デジタル押し花の作り方 3 2. デジタル押し花をきれいに仕上げる方法 まとめ 課題にチャレンジ 19 レッスン内容 デジタル押し花 マイクロソフト社のワープロソフト Word 2010( これ以降 Word と記述します ) の図ツールに搭載されている [ 背景 le Word で楽しむデジタル押し花 Sa mp Word の画像加工 1 本テキストの作成環境は 次のとおりです Windows 7 Home Premium Microsoft Word 2010 画面の設定 解像度 1024 768 ピクセル 本テキストは 次の環境でも利用可能です Windows 7 Home Premium 以外のオペレーティングシステムで Microsoft Word

More information

広報さっぽろ 2016年8月号 厚別区

広報さっぽろ 2016年8月号 厚別区 8/119/10 P 2016 8 11 12 P4 P6 P6 P7 13 P4 14 15 P8 16 P6 17 18 19 20 P4 21 P4 22 P7 23 P6 P7 24 25 26 P4 P4 P6 27 P4 P7 28 P6 29 30 P4 P5 31 P5 P6 2016 9 1 2 3 P4 4 P4 5 P5 6 7 8 P4 9 10 P4 1 b 2 b 3 b

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

ネットショップ・オーナー2 ユーザーマニュアル

ネットショップ・オーナー2  ユーザーマニュアル 1 1-1 1-2 1-3 1-4 1 1-5 2 2-1 A C 2-2 A 2 C D E F G H I 2-3 2-4 2 C D E E A 3 3-1 A 3 A A 3 3 3 3-2 3-3 3-4 3 C 4 4-1 A A 4 B B C D C D E F G 4 H I J K L 4-2 4 C D E B D C A C B D 4 E F B E C 4-3 4

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

ありがとうございました

ありがとうございました - 1 - - 2 - - 3 - - 4 - - 5 - 1 2 AB C A B C - 6 - - 7 - - 8 - 10 1 3 1 10 400 8 9-9 - 2600 1 119 26.44 63 50 15 325.37 131.99 457.36-10 - 5 977 1688 1805 200 7 80-11 - - 12 - - 13 - - 14 - 2-1 - 15 -

More information

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編

EPSON エプソンプリンタ共通 取扱説明書 ネットワーク編 K L N K N N N N N N N N N N N N L A B C N N N A AB B C L D N N N N N L N N N A L B N N A B C N L N N N N L N A B C D N N A L N A L B C D N L N A L N B C N N D E F N K G H N A B C A L N N N N D D

More information

公務員人件費のシミュレーション分析

公務員人件費のシミュレーション分析 47 50 (a) (b) (c) (7) 11 10 2018 20 2028 16 17 18 19 20 21 22 20 90.1 9.9 20 87.2 12.8 2018 10 17 6.916.0 7.87.4 40.511.6 23 0.0% 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2.0% 4.0% 6.0% 8.0%

More information

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 A B (A/B) 1 1,185 17,801 6.66% 2 943 26,598 3.55% 3 3,779 112,231 3.37% 4 8,174 246,350 3.32% 5 671 22,775 2.95% 6 2,606 89,705 2.91% 7 738 25,700 2.87% 8 1,134

More information

橡hashik-f.PDF

橡hashik-f.PDF 1 1 1 11 12 13 2 2 21 22 3 3 3 4 4 8 22 10 23 10 11 11 24 12 12 13 25 14 15 16 18 19 20 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 144 142 140 140 29.7 70.0 0.7 22.1 16.4 13.6 9.3 5.0 2.9 0.0

More information

198

198 197 198 199 200 201 202 A B C D E F G H I J K L 203 204 205 A B 206 A B C D E F 207 208 209 210 211 212 213 214 215 A B 216 217 218 219 220 221 222 223 224 225 226 227 228 229 A B C D 230 231 232 233 A

More information

1

1 1 2 3 4 5 (2,433 ) 4,026 2710 243.3 2728 402.6 6 402.6 402.6 243.3 7 8 20.5 11.5 1.51 0.50.5 1.5 9 10 11 12 13 100 99 4 97 14 A AB A 12 14.615/100 1.096/1000 B B 1.096/1000 300 A1.5 B1.25 24 4,182,500

More information

案内(最終2).indd

案内(最終2).indd 1 2 3 4 5 6 7 8 9 Y01a K01a Q01a T01a N01a S01a Y02b - Y04b K02a Q02a T02a N02a S02a Y05b - Y07b K03a Q03a T03a N03a S03a A01r Y10a Y11a K04a K05a Q04a Q05a T04b - T06b T08a N04a N05a S04a S05a Y12b -

More information

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p

a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p a a a a y y ax q y ax q q y ax y ax a a a q q y y a xp p q y a xp y a xp y a x p p y a xp q y x yaxp x y a xp q x p y q p x y a x p p p p x p y a xp q y a x p q p p x p p q p q y a x xy xy a a a y a x

More information

目次 1. アニメーションの軌跡の概要と仕組み 3 2. パノラマ写真にアニメーションの軌跡を設定 まとめ 課題にチャレンジ 19 レッスン内容 アニメーションの軌跡の概要と仕組み アニメーションの軌跡とは スライドに配置したオブジェクト ( テキストや図形 画像など ) を

目次 1. アニメーションの軌跡の概要と仕組み 3 2. パノラマ写真にアニメーションの軌跡を設定 まとめ 課題にチャレンジ 19 レッスン内容 アニメーションの軌跡の概要と仕組み アニメーションの軌跡とは スライドに配置したオブジェクト ( テキストや図形 画像など ) を PowerPoint で楽しむムービー作成講座 第 9 回 アニメーションの軌跡で風景を見渡す PowerPoint で楽しむムービー作成講座 では 12 回に分けて デジタルカメラの写真や動画を 素材に ムービー作成ソフトを使用せずに PowerPoint 2010 だけでオリジナルムービーを作成す る方法を紹介します 本テキストの作成環境は 次のとおりです Windows 7 Home Premium

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

untitled

untitled 186 17 100160250 1 10.1 55 2 18.5 6.9 100 38 17 3.2 17 8.4 45 3.9 53 1.6 22 7.3 100 2.3 31 3.4 47 OR OR 3 1.20.76 63.4 2.16 4 38,937101,118 17 17 17 5 1,765 1,424 854 794 108 839 628 173 389 339 57 6 18613

More information

untitled

untitled 1. 3 14 2. 1 12 9 7.1 3. 5 10 17 8 5500 4. 6 11 5. 1 12 101977 1 21 45.31982.9.4 79.71996 / 1997 89.21983 41.01902 6. 7 5 10 2004 30 16.8 37.5 3.3 2004 10.0 7.5 37.0 2004 8. 2 7 9. 6 11 46 37 25 55 10.

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

662/04-直立.indd

662/04-直立.indd l l q= / D s HTqq /L T L T l l ε s ε = D + s 3 K = αγk R 4 3 K αγk + ( α + β ) K 4 = 0 γ L L + K R K αβγ () ㅧ ర ㅧ ర (4) (5) ()ᑼ (6) (8) (9) (0) () () (3) (3) (7) Ƚˎȁ Ȇ ၑა FYDFM වႁ ޙ 䊶䊶 䊶 䊶䊶 䊶 Ƚˏȁζ υ ίυέρθ

More information

FdData数学2年

FdData数学2年 中 学 中 間 期 末 試 験 問 題 集 ( 過 去 問 ): 数 学 2 年 http://www.fdtext.com/dat/ 係 数 の 決 定 1 [ 問 題 ](2 学 期 期 末 ) ax by 11 連 立 方 程 式 の 解 が x 3, y 4 になるという a, b の 値 を 求 めな bx ay 2 さい ax by 11 3a 4b 11 に x 3, y 4 を 代

More information

中綴じ3・4級.ren

中綴じ3・4級.ren 99 分野 用 語 解 説 クリック マウスの左ボタンを押す動作のこと ダブルクリック マウスの左ボタンを素早く2度続けてクリックする動作のこと ドラッグ マウスの左ボタンを押したまま マウスを動かすこと タッチタイピング キーボードを見ないでタイピングする技術のこと 右寄せ (右揃え) 入力した文字列などを行の右端でそろえること センタリング (中央揃え) 入力した文字列などを行の中央に位置付けること

More information

DVD DVD

DVD DVD 2 154 2 2011 4 2012 3 2 2 42 38 2 23 3 18 54 DVD DVD 3 1 3 155 1 1 2 3 1 3 1 11 12 3 DVD 156 2 3 2 12 2 1 8 1 7 1 6 3 6 3 2 6 2 1 5 9 12 2 3 10 7 6 23 1 157 1 12 2 6 10 18 6 6 2 1 1 2 3 158 2 6 2 3 70

More information

スペクトルの用語 1 スペクトル図表は フーリエ変換の終着駅です スペクトル 正確には パワースペクトル ですね この図表は 非常に重要な情報を提供してくれます この内容をきちんと解明しなければいけません まず 用語を検討してみましょう 用語では パワー と スペクトル に分けましょう 次に その意

スペクトルの用語 1 スペクトル図表は フーリエ変換の終着駅です スペクトル 正確には パワースペクトル ですね この図表は 非常に重要な情報を提供してくれます この内容をきちんと解明しなければいけません まず 用語を検討してみましょう 用語では パワー と スペクトル に分けましょう 次に その意 ピクトの独り言 フーリエ変換の話し _ その 4 株式会社アイネット スペクトルの用語 1 スペクトル図表は フーリエ変換の終着駅です スペクトル 正確には パワースペクトル ですね この図表は 非常に重要な情報を提供してくれます この内容をきちんと解明しなければいけません まず 用語を検討してみましょう 用語では パワー と スペクトル に分けましょう 次に その意味なり特徴なりを解明しましょう

More information

238 古川智樹 機能を持っていると思われる そして 3のように単独で発話される場合もあ れば 5の あ なるほどね のように あ の後続に他の形式がつく場合も あり あ は様々な位置 形式で会話の中に現れることがわかる では 話し手の発話を受けて聞き手が発する あ はどのような機能を持つ のであろ

238 古川智樹 機能を持っていると思われる そして 3のように単独で発話される場合もあ れば 5の あ なるほどね のように あ の後続に他の形式がつく場合も あり あ は様々な位置 形式で会話の中に現れることがわかる では 話し手の発話を受けて聞き手が発する あ はどのような機能を持つ のであろ 238 古川智樹 機能を持っていると思われる そして 3のように単独で発話される場合もあ れば 5の あ なるほどね のように あ の後続に他の形式がつく場合も あり あ は様々な位置 形式で会話の中に現れることがわかる では 話し手の発話を受けて聞き手が発する あ はどのような機能を持つ のであろうか この あ に関して あいづち研究の中では 主に 理解して いる信号 堀口1 7 として取り上げられているが

More information

JavaプログラミングⅠ

JavaプログラミングⅠ Java プログラミング Ⅰ 2 回目 ようこそ Java へ 今日の講義で学ぶ内容 画面へのメッセージの表示 文字や文字列 数値を表現するリテラル 制御コードを表すエスケープシーケンス 画面出力の基本形 ソースファイル名 : クラス名.java class クラス名 System.out.println(" ここに出力したい文字列 1 行目 "); System.out.println(" ここに出力したい文字列

More information

Microsoft PowerPoint - fuseitei_6

Microsoft PowerPoint - fuseitei_6 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という

More information

北海道経済 社会指標データベース操作マニュアル 北海道開発局開発監理部開発計画課 目 次 1 データベースの準備...1 1.1 動作環境... 1 1.2 データベースのインストール... 1 1.3 データベースのアンインストール... 1 1.4 データベースの起動と終了... 2 2 データベースの検索メニュー...3 2.1 画面構成... 3 3 統計データ検索...5 3.1 画面構成...

More information

<8CA48B86985F8F572E696E6464>

<8CA48B86985F8F572E696E6464> ISSN 2189-0218 創刊にあたって 横浜創英大学学長 小島謙一 平成 24 年 4 月に大学開設以来 大学の研究成果を外部に発信する準備をして参りましたが このたび 横浜創英大学研究論集を創刊するにいたりました 大学は 教育 研究 社会貢献を主たる任務にしております もちろん 大学は最高の教育機関であることは間違いありませんが 同時に研究機関としての役割もはたしていかなければなりません その結果として

More information

表1-表4_No78_念校.indd

表1-表4_No78_念校.indd mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm Fs = tan + tan. sin(1.5) tan sin. cos Fs ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

More information

05秋案内.indd

05秋案内.indd 1 2 3 4 5 6 7 R01a U01a Q01a L01a M01b - M03b Y01a R02a U02a Q02a L02a M04b - M06b Y02a R03a U03a Q03a L03a M08a Y03a R04a U04a Q04a L04a M09a Y04a A01a L05b, L07b, R05a U05a Q05a M10a Y05b - Y07b L08b

More information

演習2

演習2 神戸市立工業高等専門学校電気工学科 / 電子工学科専門科目 数値解析 2017.6.2 演習 2 山浦剛 (tyamaura@riken.jp) 講義資料ページ h t t p://clim ate.aic s. riken. jp/m embers/yamaura/num erical_analysis. html 曲線の推定 N 次多項式ラグランジュ補間 y = p N x = σ N x x

More information

Processingをはじめよう

Processingをはじめよう Processing をはじめよう 第 7 章 動きその 2 目次 フレームレート スピードと方向 移動 回転 拡大 縮小 2 点間の移動 乱数 タイマー 円運動 今回はここまで 2 2 点間の移動 Example 7-6 (EX_08_06) 始点 (startx, starty) から終点 (stopx, stopy) まで移動する 座標更新の計算方法は後述 始点と終点を変更しても動作する 変更して確認

More information

第4回

第4回 Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値

More information

R

R R ) R NTN NTN NTN NTN NTN @ 1. 2. 3. CONTENTS 4. 5. 6. NTN NTN NTN 1. NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN NTN 2. L1 4 -M8 230 4 -M10 8-11 175 260 250 150 210 230 Bpx 150 250 210 Bx Bpx

More information

JavaプログラミングⅠ

JavaプログラミングⅠ Java プログラミング Ⅰ 12 回目クラス 今日の講義で学ぶ内容 クラスとは クラスの宣言と利用 クラスの応用 クラス クラスとは 異なる複数の型の変数を内部にもつ型です 直観的に表現すると int 型や double 型は 1 1 つの値を管理できます int 型の変数 配列型は 2 5 8 6 3 7 同じ型の複数の変数を管理できます 配列型の変数 ( 配列変数 ) クラスは double

More information

DVIOUT-n_baika

DVIOUT-n_baika 1 三角関数の n 倍角の公式とその応用について述べます. なお Voyage 200 の操作の詳細は http://sci-tech.ksc.kwansei.ac.jp/~yamane にある はじめての数式処理電卓 Voyage 200 をご覧下さい. 2 倍角の公式 cos 2x =2cos 2 x 1=1 2sin 2 x sin 2x =2sinxcos x はよく知られています.3 倍角の公式

More information

150903_buzan_chugaku.indd

150903_buzan_chugaku.indd 学校説明会 第1回 2015 年 9 月 27 日 日 第2回 2015 年 10 月 25 日 日 13 00 第3回 2015 年 11 月 23 日 月 祝 第4回 2015 年 12 月 6 日 日 第5回 2016 年 1 月 16 日 土 会場 日本大学豊山中学校 B2F アリーナ 14 00 第 1 回 第 3 回では 体験授業 部活動体験を実施します 第 4 回 第 5 回では 入試問題解法ミニ講座を実施します

More information

< F2D8E7793B188C482CC8D4C8FEA E A778169>

< F2D8E7793B188C482CC8D4C8FEA E A778169> 中学校数学科 ( 平成 25 年度 ) 11 第 1 学年数学科学習指導案 ( 習熟度別少人数学級 ) 本時の主張 本時は,2 地点間の最短経路について, その仕組みを見いだし, 根拠を明らかにして作図の方法を説明する授業である 生徒には次の実態がある 対称な図形に関する基礎的な知識は身に付いている 条件を自ら設定し作図することに苦手さがある生徒が複数いる このような生徒の実態をふまえ, 次のような手だてを講じる

More information

Microsoft PowerPoint - chap10_OOP.ppt

Microsoft PowerPoint - chap10_OOP.ppt プログラミング講義 Chapter 10: オブジェクト指向プログラミング (Object-Oriented Programming=OOP) の入り口の入り口の入り口 秋山英三 F1027 1 例 : 部屋のデータを扱う // Test.java の内容 public class Test { public static void main(string[] args) { double length1,

More information

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6

7 27 7.1........................................ 27 7.2.......................................... 28 1 ( a 3 = 3 = 3 a a > 0(a a a a < 0(a a a -1 1 6 26 11 5 1 ( 2 2 2 3 5 3.1...................................... 5 3.2....................................... 5 3.3....................................... 6 3.4....................................... 7

More information

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1

次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1 4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション Partner logo サイエンス右揃え上部に配置 XLfit のご紹介 マーケティング部 15 年 3 月 23 日 概要 1. XLfit 機能の確認 - 特徴 3 Step Wizard - 主なツールについて - 主なグラフの表現 2. 実用例 % Inhibition 9 7 6 5 3 1-1 Comparison 1 Concentration 2 1. 基本編 1 特徴 (3 Step

More information

[題目]

[題目] 上越数学教育研究, 第 27 号, 上越教育大学数学教室,2012 年,pp.151-158. 対数教材の指導系統の改善に関する考察 - 対数のよさを実感する学習を志向して - 後藤竜太 上越教育大学大学院修士課程 1 年 1. はじめに筆者が高校時代受けた対数の授業は理解しにくく, 対数のよさや対数の具体的なイメージを実感できなかった なぜなら, その授業は公式を利用して形式的 機械的に解くという単調な作業が大部分であったからである

More information

��8��

��8�� コンピュータ演習第 8 回 今回のテーマは プレゼンテーション です プレゼンテーションソフトを使えば 効果的な資料を作成することができ より伝わりやすいプレゼンテーションを手助けしてくれます 今回は 文字を使った基本的な機能を実習します プレゼンテーションソフトの基本的な機能を実習します プレゼンテーションソフトの編集機能を使って 文章を効果的に伝えるプレゼンテーションを作成しましょう 連絡事項

More information

SQL インジェクションの脆弱性

SQL インジェクションの脆弱性 別紙 脆弱性体験学習ツール AppGoat ハンズオンセミナー 演習解説 SQL インジェクションの脆弱性 [ 演習 ] AppGoat を用いた疑似攻撃体験 SQL インジェクションのテーマ 不正なログイン ( 文字列リテラル ) 画面上に Congratulations!! と表示されると演習クリアです 3 脆弱性のある箇所を特定する ログイン ID またはパスワードにシングルクォート ' を入力し

More information

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす

受信機時計誤差項の が残ったままであるが これをも消去するのが 重位相差である. 重位相差ある時刻に 衛星 から送られてくる搬送波位相データを 台の受信機 でそれぞれ測定する このとき各受信機で測定された衛星 からの搬送波位相データを Φ Φ とし 同様に衛星 からの搬送波位相データを Φ Φ とす RTK-GPS 測位計算アルゴリズム -FLOT 解 - 東京海洋大学冨永貴樹. はじめに GPS 測量を行う際 実時間で測位結果を得ることが出来るのは今のところ RTK-GPS 測位のみである GPS 測量では GPS 衛星からの搬送波位相データを使用するため 整数値バイアスを決定しなければならず これが測位計算を複雑にしている所以である この整数値バイアスを決定するためのつの方法として FLOT

More information

13ィェィ 0002ィェィ 00ィヲ1 702ィョ ィーィ ィイ071 7ィ 06ィヲ02, ISSN

13ィェィ 0002ィェィ 00ィヲ1 702ィョ ィーィ ィイ071 7ィ 06ィヲ02, ISSN 13 13ィェィ 0002ィェィ 00ィヲ1 702ィョ050702 0709ィーィ ィイ071 7ィ 06ィヲ02, ISSN 1992-6138 1 70306070302071 70307090303 07030209020703 1 7 03000009070807 01090803010908071 7030709030503 0300060903031 709020705 ィヲ0302090803001

More information

Microsoft PowerPoint - LogicCircuits01.pptx

Microsoft PowerPoint - LogicCircuits01.pptx 論理回路 第 回論理回路の数学的基本 - ブール代数 http://www.info.kindai.ac.jp/lc 38 号館 4 階 N-4 内線 5459 takasi-i@info.kindai.ac.jp 本科目の内容 電子計算機 computer の構成 ソフトウェア 複数のプログラムの組み合わせ オペレーティングシステム アプリケーション等 ハードウェア 複数の回路 circuit の組み合わせ

More information

ページ MAP 本マニュアルでは 以下の操作手順を説明します スキャンする スキャンする手順を知りたい原稿の一部分をスキャンしたい書籍をきれいにスキャンしたい A4 を超える原稿をスキャンしたい P5 P19 P21 P23 保存する 印刷する 画像または PDF で保存したい P9 Word また

ページ MAP 本マニュアルでは 以下の操作手順を説明します スキャンする スキャンする手順を知りたい原稿の一部分をスキャンしたい書籍をきれいにスキャンしたい A4 を超える原稿をスキャンしたい P5 P19 P21 P23 保存する 印刷する 画像または PDF で保存したい P9 Word また 読ん de!! ココ < スキャナ > 利用手順書 2011( 平成 23) 年 1 月 24 日版 龍谷大学情報メディアセンター ページ MAP 本マニュアルでは 以下の操作手順を説明します スキャンする スキャンする手順を知りたい原稿の一部分をスキャンしたい書籍をきれいにスキャンしたい A4 を超える原稿をスキャンしたい P5 P19 P21 P23 保存する 印刷する 画像または PDF で保存したい

More information

<4D F736F F D2089C193A18F7495BD5F91B28BC68CA48B865F E646F6378>

<4D F736F F D2089C193A18F7495BD5F91B28BC68CA48B865F E646F6378> 正多角形による 多面体の構成 ~ フラーレンをめぐって ~ 青山学院大学理工学部物理 数理学科西山研究室 15107027 加藤春平 1 目次 まえがき 3 1. 等辺多角形 5 2. 凸多面体 7 3. オイラーの多面体定理 9 4. プラトンの多面体 11 5. 正多面体の諸量 15 6. 切頭多面体の諸量 19 7. フラーレン 34 8. まとめ 40 9. 参考文献 資料 41 2 まえがき

More information

Title 高等学校における微積分の初歩としての二次関数の指導過程 Author(s) 大田, 邦郎 Citation 北海道大學教育學部紀要 = THE ANNUAL REPORTS ON EDUCATIONAL SCIENCE, 40: 31-87 Issue Date 1982-03 DOI Doc URLhttp://hdl.handle.net/2115/29254 Right Type

More information

コンピュータ中級B ~Javaプログラミング~ 第3回 コンピュータと情報をやりとりするには?

コンピュータ中級B ~Javaプログラミング~  第3回 コンピュータと情報をやりとりするには? Copyright (C) Junko Shirogane, Waseda University 2016, All rights reserved. 1 プログラミング初級 (Java) 第 10 回オブジェクト指向って? 白銀純子 Copyright (C) Junko Shirogane, Waseda University 2016, All rights reserved. 2 第 10

More information

... 1.... 1... 1... 1... 1... 1... 2... 3... 3... 3 100... 4... 8... 9... 9... 11... 13... 13... 13... 14... 14... 16... 18... 18... 18... 20... 20...

... 1.... 1... 1... 1... 1... 1... 2... 3... 3... 3 100... 4... 8... 9... 9... 11... 13... 13... 13... 14... 14... 16... 18... 18... 18... 20... 20... ... 1.... 1... 1... 1... 1... 1... 2... 3... 3... 3 100... 4... 8... 9... 9... 11... 13... 13... 13... 14... 14... 16... 18... 18... 18... 20... 20... 20 1 ... 21... 21... 22... 22... 23. 23... 24... 24...

More information

PX-047A Series

PX-047A Series B K L & L & A B C D E F A B A B C A B C A B A B A B C D E F G P BB H I y y & & K L L & & K L L L L & & & & L d L & & & & L L & & & L & & & & L & & & & & & & & L L L L L L & & & A B C D E F G

More information

Microsoft PowerPoint - stat-2014-[9] pptx

Microsoft PowerPoint - stat-2014-[9] pptx 統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: kkarato@eco.u-toyama.ac.j website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を

More information

001-007 扉・口絵・目次

001-007 扉・口絵・目次 1 6 6 7 1 a a a a 2 a a a 3 4 5 a 6 7 8 9 10 a 11 a a a 12 13 14 15 a 16 17 18 19 20 21 22 23 24 b b 25 b 26 27 aa 28 r r 29 a s d f 30 b b 31 32 33 1 34 35 36 37 38 6 39 6 40 41 42 43 44 45 7 47 48

More information

1.Access Access2007 版てくてく 2007 へのバージョンアップバージョンアップ手順手順について 1-1 Access2007 版てくてく2007について 作業手順の概要について 1 2. てくてく 2007 のインストールインストールについて 2-1 インストールの概

1.Access Access2007 版てくてく 2007 へのバージョンアップバージョンアップ手順手順について 1-1 Access2007 版てくてく2007について 作業手順の概要について 1 2. てくてく 2007 のインストールインストールについて 2-1 インストールの概 1.Access Access2007 版てくてく 2007 へのバージョンアップバージョンアップ手順手順について 1-1 Access2007 版てくてく2007について 1 1-2 作業手順の概要について 1 2. てくてく 2007 のインストールインストールについて 2-1 インストールの概要 2 2-2 インストールの開始 2 2-3 Microsoft Office Access Runtime

More information

(1) (2) (3) (4) 4 (1) (2) (3) (4) (jargon) ( ) 1 PC Personal Computer Politically Correct 108

(1) (2) (3) (4) 4 (1) (2) (3) (4) (jargon) ( ) 1 PC Personal Computer Politically Correct 108 7 1 1 PowerPoint(Microsoft) Impress(OpenOffice.org) Keynote(Apple) Impress 107 7 7.1 1 4 (1) (2) (3) (4) 4 (1) (2) (3) (4) 7.2 7.2.1 1 (jargon) ( ) 1 PC Personal Computer Politically Correct 108 7.2. 7.2.2

More information

1_表紙タイトル

1_表紙タイトル AfterEffects Trial-Template QuickReference ご 利 用 頂 きまして 誠 にありがとうございます この 度 はNONNOFILMをご 利 用 頂 きまして 誠 にありがとうございます NONNOFILMのAfterEffects 専 用 こだわりテンプレートには 初 心 者 の 方 向 けの 様 々な 工 夫 が 施 されています 初 めての 方 でも 披

More information

目次. 画面構成と操作概要 画面操作 住所 目標物等から探す ナビゲータマップから探す 地図を拡大 縮小 スクロールする 表示設定を行う 詳細情報を表示する 概算

目次. 画面構成と操作概要 画面操作 住所 目標物等から探す ナビゲータマップから探す 地図を拡大 縮小 スクロールする 表示設定を行う 詳細情報を表示する 概算 大阪府 地図情報提供システム 操作マニュアル 平成 28 年 2 月大阪府 目次. 画面構成と操作概要... - 2. 画面操作... 2-2. 住所 目標物等から探す... 2-2.2 ナビゲータマップから探す... 2-8 2.3 地図を拡大 縮小 スクロールする... 2-9 2.4 表示設定を行う... 2-0 2.5 詳細情報を表示する... 2-2 2.6 概算距離を計測する... 2-5

More information

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y No1 1 (1) 2 f(x) =1+x + x 2 + + x n, g(x) = 1 (n +1)xn + nx n+1 (1 x) 2 x 6= 1 f 0 (x) =g(x) y = f(x)g(x) y 0 = f 0 (x)g(x)+f(x)g 0 (x) 3 (1) y = x2 x +1 x (2) y = 1 g(x) y0 = g0 (x) {g(x)} 2 (2) y = µ

More information

help_ja

help_ja interviewscribe ユーザーズガイド ヤナセ 2012 1 1. 概要 interviewscribeは テープ起こし作業を効率的に行うためのツールです フレーズ分割 interviewscribeでは音声データを 発音している部分毎に分割し フレーズ として管理します フレーズに分割することで 数秒のフレーズ毎に聞き取り作業を進められ 再生 聞き取り テキス ト変換の一連の作業をスムーズに進めることが出来ます

More information

制 度 の 目 的 概 要 酒 類 を 除 く 飲 食 料 品 を 対 象 とした 場 合 の 制 度 試 案 対 象 品 目 l

制 度 の 目 的 概 要 酒 類 を 除 く 飲 食 料 品 を 対 象 とした 場 合 の 制 度 試 案 対 象 品 目 l 酒 類 を 除 く 飲 食 料 品 を 対 象 とした 場 合 制 度 の 目 的 概 要 酒 類 を 除 く 飲 食 料 品 を 対 象 とした 場 合 の 制 度 試 案 対 象 品 目 l 対 象 品 目 (つづき) 対 象 品 目 (つづき) 対 象 品 目 (つづき) 一 体 商 品 の 取 扱 い 組 み 合 わせ 商 品 の 取 扱 い 区 分 経 理 の 方 法 区 分 経 理 の

More information

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t

4.6: 3 sin 5 sin θ θ t θ 2t θ 4t : sin ωt ω sin θ θ ωt sin ωt 1 ω ω [rad/sec] 1 [sec] ω[rad] [rad/sec] 5.3 ω [rad/sec] 5.7: 2t 4t sin 2t sin 4t 1 1.1 sin 2π [rad] 3 ft 3 sin 2t π 4 3.1 2 1.1: sin θ 2.2 sin θ ft t t [sec] t sin 2t π 4 [rad] sin 3.1 3 sin θ θ t θ 2t π 4 3.2 3.1 3.4 3.4: 2.2: sin θ θ θ [rad] 2.3 0 [rad] 4 sin θ sin 2t π 4 sin 1 1

More information

本編一括.doc

本編一括.doc 1-1 - Aomori 1-2 - 1-3 - 1-4 - 1-5 - 1-6 - 1-7 - 1-8 - 1-9 - 1-10 - 1-11 - 1-12 - 1-13 - 1-14 - 1-15 - 2-16 - 2-17 - 2-18 - 2-19 - 2-20 - 2-21 - 2-22 - 2-23 - 2-24 - 2-25 - 2-26 - 2-27 - 2-28 - 2-29 -

More information

5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き

5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き 5 分で解くシリーズ 01 平面図形 1998 年度本試験数学 ⅠA 第 問 [] 四角形 ABCD は円に内接し, ABC は鈍角で 1 AB, BC 6, si ABC 3 とする また, 線分 AC と BD は直角に交わるとする このとき cosabc クケ コ, AC サシ となる 円の半径は スセ ソ であり タツ si CAB チ, si ACB テとなる また,AC と BD の交点を

More information

1 2

1 2 ( ) ( ) ( ) 1 2 59 2 21 24 275 43 3 26 486 103 27 28 98 105 104 99 1 48 25 29 72 14 33 11-10 3 11 8 14,663 4 8 1 6.0 8 1 0.7 11-6 27 19 22 71 5 12 22 12 1,356 6 4,397 3 4 11 8 9 5 10 27 17 6 12 22 9

More information