5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き"

Transcription

1 5 分で解くシリーズ 01 平面図形 1998 年度本試験数学 ⅠA 第 問 [] 四角形 ABCD は円に内接し, ABC は鈍角で 1 AB, BC 6, si ABC 3 とする また, 線分 AC と BD は直角に交わるとする このとき cosabc クケ コ, AC サシ となる 円の半径は スセ ソ であり タツ si CAB チ, si ACB テとなる また,AC と BD の交点を H とおくと, DH トナ BH

2 5 分で解くシリーズ 0 確率 1(+ 英文法 ) 大学受験を終えた仲良し 5 人組の白石君 黒本君 赤木君 青田君 緑川君が卒業旅行で岡山の旅館に泊まりました (1) 旅館では 5 人のために雪と月の 部屋を用意してくれていました しかし 5 人は 全員が 1 つの部屋になってもいいので くじ引き で部屋を決めたい と旅館の方にお願いしました 旅館の方は快くそれを受け入れ 簡単にできる くじ引き の方法まで考えてくれました (a) 旅館の人になったつもりで 簡単なくじ引き の方法を考えてください ( 実際に使うものは くじ 以外のものでもかまいません ) (b) 5 人が泊まる泊まり方の組み合わせは 全部で何通りあるでしょうか () 部屋が決まったところで 旅館の方から 夕食のデザートとして 白桃アイスクリーム と きび団子 の 種類をご用意しております どちらか1つを選んで召し上がっていただくのですが 準備の関係で今お選びいただけませんでしょうか と言われました そこで これも くじ引き で決めよう となったのですが 少し悪乗りをして ハズレ も入れようということになりました 5 人は 全員がデザートなしになってもいいので くじ引き でデザートを決めたい と旅館の方にお願いしました 旅館の方はこれも快く受け入れ 簡単にできる くじ引き の方法まで考えてくれました (a) 旅館の人になったつもりで 簡単なくじ引き の方法を考えてください ( 実際に使うものは くじ 以外のものでもかまいません ) (b) 5 人が食べることになるデザートの組み合わせは 全員が食べられない場合も含めて全部で何通りあるでしょうか

3

4

5

6 5 分で解くシリーズ 06 式と証明 (1) x+y=1 を満たす x,y について ax + bxy + cy = 1 が常に成り立つように a,b,c を定めよ () 3 実数 a, b, c が a+b+c=1 を満たすとき a + b + c 1 3 となることを示せ (3) x>0, y>0, z>0 とする 1 x + y + 3 z = 1 4 のとき x+y+3z の最小値を求めよ

7 siα=si3α (0<α<π/) を満たす α を求めよ

8 0 として 5 分で解くシリーズ 08 三角関数 01 年度本試験数学 II B 第 1 問 si cos を満たすについて考えよう ただし, 0 とする たとえば, のとき,のとり得る値は 6 シとスシ の二つ このように,の各値に対して,のとり得る値は二つある そのうちの小さい方を 1, 大きい 方を とし 1 y si 3 が最大となるの値とそのときの y の値を求めよう 1, をを用いて表すと, 0 のときは 1 セソ, タ セソ となり, のときは 1 チツ, テ チ ツ となる 1 したがって, のとり得る値の範囲は 3 ト 1 ニヌ ナ 3 ネ よって,y が最大となるの値は ノハヒ フ であるこ とがわかる フ に当てはまるものを, 次の0~3のうちから一つ選べ

9 関数 5 分で解くシリーズ 09 三角関数 3 01 年度追試験数学 II B 第 1 問 f 3ta ( x ) x 4 3 3(si 3cos ) 1 ta x について, すべての実数 x に対して f( x) 0 が成り立つようなの値の範囲を求めよう ただし, とする 不等式 f( x) 0 がすべての実数 x に対して成り立つための条件は, 次方程式 f( x) 0 の判別式 D が D チ 0 を満たすことチに当てはまるものを, 次の0~のうちから一つ選べ 0 1 倍角の公式により si 3cos ツ cos 3ta si 1 ta テトであるから, 判別式 D は D 1( ナ si cos )( ナ si cos ニ ) と表すことができる ここでナ si cos ニヌ 0 ヌに当てはまるものを, 次の0~のうちから一つ選べ 0 1 また ナ si cos ネ si ノ であるから, 条件 D チ 0 により, 不等式 f( x) 0 がすべての実数 x に対して成り立つようなの とり得る値の範囲は フ ハヒハヒ であることがわかる

10 5 分で解くシリーズ 10 微積 1 放物線 y=x +7 と その接線のうち点 P(1,-1) を通る 本の直線で囲まれた面積を求めよ

11 5 分で解くシリーズ 11 微積 本の放物線 y=(x+3) -6 y=(x-3) +6 とその共通接線で囲まれた面積を求めよ

12 5 分で解くシリーズ 1 微積 3 本の放物線 y=-x y=(x-4) +10 とその共通接線で囲まれた面積を求めよ

13 5 分で解くシリーズ 13 微積 年度本試験数学 II B 問 座標平面上で, 放物線 y x を C とする 曲線 C 上の点 P の x 座標を a とする 点 P における C の接線 l の方程式は y アイ x a ウ a 0 のとき直線 l が x 軸と交わる点を Q とすると,Q の座標は エ, カ オ a 0 のとき, 曲線 C と直線 l および x 軸で囲まれた図形の面積を S とすると S a キ クケ a のとき, 曲線 C と直線 l および直線 x で囲まれた図形の面積を T とすると 3 a ス T サ a シ a コセ a 0 のときは S 0, a のときはT 0 であるとして,0a に対してU S T とおく a がこの範囲を動くとき,U は a ソで最大値 a ツ テ で最小値 ト ナニ をとる タ チをとり,

14 009 年度追試験数学 II B 第 問 関数 f( x) を で定める f ( x) u( u ) du f( x) を計算すると となる x 1 f ( x) ( x イ )( x ウ ) ア f( x) 0 となる x の値の範囲は x エオ f( x) は x カで極大値 キクをとり, x ケで極小値コをとる y f ( x) のグラフを C とする C 上の点 P( t, f ( t)) における C の接線 l と C の共有点 の x 座標は,t および サシ t スしたがって,C と l が 1 点だけを共有 するのは, t セのときまた,C と l のすべての共有点の y 座標が正とな るのは, ソタ t チかつ t ツ テ のとき t セとし, st セとおく 接線 l の傾きは, s ト C と l の二つの共有点のうち P と異なるものを Q とする 点 Q における C の接線を m とする と,m の傾きは, ナ s ニ直線 l と m のなす角を 0 とす ると 1 1 ta ヌ ノ ネ s s ハ したがって, 相加平均と相乗平均の関係により t セ 4 1 ヒ のとき, ta は最大となる このとき, も最大となる

15 5 分で解くシリーズ 15 数列 年度本試験数学 II B 第 3 問 数直線上で点 P に実数 a が対応しているとき,a を点 P の座標といい, 座標が a である 点 P を P( a) で表す 数直線上に点 P 1(1), P () をとる 線分 PP 1 を3 : 1に内分する点を P 3 とする 一般に, 自然数 に対して, 線分 PP 1 る x1 1, x であり, x 3 P を 3 : 1 に内分する点を とする 点 P の座標を x とす アイ数列 { x } の一般項を求めるために, この 数列の階差数列を考えよう 自然数 に対して y x1 x とする エオ y1 ウ, y 1 y ( 1,, 3, ) カ エオ したがって, y ( 1,, 3, ) であり カ x クコ エオ ( 1,, 3, ) ケケ カ キ となる ただし, キ, サについては, 当てはまるものを, 次の 0 ~3 のうち から一つずつ選べ 同じものを繰り返し選んでもよい サ 次に, 自然数 に対して S k1 k y を求めよう r k エオ カ とおくと S rs シ k1 r r ス k1 ( 1,, 3, ) であり, したがって ツ セソ 1 1 S 1 タ チ テ ト となる ただし, シ, ス, ツ, ナについては, 当てはまるものを, 次の 0 ~3のうちから一つずつ選べ 同じものを繰り返し選んでもよい ナ

16 5 分で解くシリーズ 16 数列 008 年度本試験数学 II B 第 3 問 (1) 数列 { a } は初項が 7, 公差が 4 の等差数列とする 数列 { a } の一般項は a アイ ウエ であり, 初項から第 項までの和は ak オカ キ k1 () 数列 { b } は, 第 項が b p q r という の 次式で表され b1 b オカ キ ( 1,, 3, ) 1 を満たすとする このとき, p ク, q ケ, r コ であり, b 1 サシ さらに, 次の条件によって定まる数列 { c } を考えよう c1 1 c1 c オカ キ ( 1,, 3, ) 1とより, d c b とおくと d1 ス d 0 ( 1,, 3, ) が成り立つ これより, 数列 { c } の一般項は 1 c セ ソ ク ケ コ 数列 { c } の初項から第 項までの和 となる c k k 1 ツトニヌ 3 タ チ ノテナネ は

17 5 分で解くシリーズ 17 数列 年度追試験数学 II B 第 3 問 { a } を初項 a, 公差 d の等差数列とし,{ b } を初項 a, 公比 r の等比数列とする ただ し, a 0, r 1とする (1) a5 bとすると ar ( ア ) d イさらに, a 17 b 3 とすると a r ウ, d エとなる このとき, a m b となる m は を用いて 1 m オ カ キ と表される () c 1 オ カ キとおく このとき, 数列 { c } は漸化式 c1 ク c ケ ( 1,, 3, ) を満たす p を実数とし, p 0 とする 数列 { d } を d pc ク c ケ により定めるとき,{ d } の階差数列が等比数列であるとする このとき p コ サ また, 数列 { d } の初項から第 項までの和 S は S シ ( セ ソ ) ス タ チ

18 5 分で解くシリーズ 18 数列 年度本試験数学 II B 第 3 問 自然数の列 1,,3,4, を, 次のように群に分ける 1, 3, 4, 5 6, 7, 8, 9, 10, 11, 1 第 1群第 群第 3群 ここで, 一般に第 群は (3 ) 個の項からなるものとする 第 群の最後の項を a で表 す (1) a1 1, a 5, a 3 1, a 4 アイ a a1 ウ エ (, 3, 4, ) が成り立ち オクキ a カケ ( 1,, 3, ) よって,600 は, 第 コサ 群の小さい方から シス 番目の項 () 1,, 3, に対し, 第 ( 1) 群の小さい方から 番目の項を b で表すと セチタ b ソツ であり 1 テ 1 1 b ト ナ が成り立つ これより 1 ニ bk ヌ k1 となる ネ ( 1,, 3, )

19 5 分で解くシリーズ 19 数列 年度追試験数学 II B 第 3 問 数列 { a } を a ( 1,, 3, ) で定める (1) a を 10 で割った商を b とし, 余りを c として, 数列 { b } と { c } を定める このとき a 10b c ( b と c は整数で, 0 c 10 ) S とおく a T bk U c k1 k1 k k 1 S を求めると S イ ア ウ k 数列 { c } の初めの 5 項は c 1 エ, c オ, c 3 カ, c 4 キ, c 5 ク であ る 自然数 p で, すべての に対して c p c となるものがあり, その最小のものは p ケ 以下では p ケとし, 自然数 を pl m (l と m は整数で, 0 m p) と表す このとき U コサ l は m だけで定まり, これを d m とおけば d 0 シ, d 1 ス, d p1 セソ であるから S タチ T U T と表される ツ テ ナ l ト d m ニヌ () a を 11 で割った余りを e (0 e 11) として, 数列 { e } を定め V e k k 1 とおく 自然数 q で, すべての に対して e q e となるものがあり, その最小のものは q ネノで ある q と表すとき ネノとし, 自然数 を ql m (l と m は整数で, 0 m q) V ハヒ は m だけで定まる l

20 006 年度本試験数学 II B 第 4 問 平面上の三つのベクトル a,b, c は a = b = c = a + b = 1 を満たし,c は a に垂直で, b c > 0 であるとする (1) a とb の内積は アイ a b = ウ また a + b = エ であり, a + b とb のなす角はオカ () ベクトルc を a とb で表すと キ c = ( a + ケ b) ク (3) x, y を実数とする ベクトル p = xa + yc が 0 < p a < 1, 0 < p b < 1 を満たすための必要十分条件は コ < x < サ, x < シ y < x + ス x と y が上記の範囲を動くとき,p c は最大値セをとり, この最大値をとるときの p を a とb で表すと p = ソ a + タ b

21 007 年度追試験数学 II B 第 4 問 三角形 ABC の 3 辺の長さがそれぞれ AB 3, BC a, CA 6 であるとする 点 P は apa 6PB 3PC 0 を満たすとする また, AB x, AC y とおく (1) 直線 AP と直線 BC の交点を D とする AP, AD を x と y を用いて表すと, それぞ れ アエ AP x y イ ウイ ウ オキ AD x y カカ となる ( イとウは解答の順序を問わない ) () AD と x の内積を求めよう (1) よりキ AD x ク x y カ また, 余弦定理を用いると a x y ケコサ であるから, 求める内積は a AD x シスセ (3) AD のとき, a ソタこのとき, 点 P から直線 AB に下ろ した垂線と直線 AB との交点を H とする PH を x と y で表そう PH x チであるから, 実数 t を用いて AH txと表したとき t ツ ト テ したがって PH ナ ニネ ノ x ヌハ y

22 008 年度追試験数学 II B 第 4 問 ( 配点 0) 平面上に一辺の長さが 1 である正三角形 OPQ がある 直線 OQ に関して P と対称な点 を R とし, 直線 OP に関して Q と対称な点を S とする PS を a : (1 a) (0 a 1) に内分 する点を A,OR を b : (1 b) (0 b 1) に内分する点を B とする ベクトル OP,OQ をそ れぞれ p, q とおく (1) OA, OB を p, q で表すと OA p ア q OB イ p ウ q であるから, AR と BQ は AR エ p ( オ カ ) q B Q キ p ( ク ケ ) q となる ただし, オとカは解答の順序を問わない これより 1 AR B Q ( サ a シ b ab) コ () 直線 AR と BQ が垂直に交わるとする このとき,b は a を用いて ス a b a セ と表される さらに a 1 とすると AR ソタチ, B Q であり, 四角形 ABRQ の面積は ナニ ネノ ヌ ツテ また, 直線 AR と BQ の交点を C とすると 1 OC ( フ p ヘホ q) ハヒ ト

23

24 5 分で解くシリーズ 4 ベクトル 年度本試験数学 II B 第 3 問 点 A (0, 0, 0) を通り, ベクトル u ( 1, 1, 0) に平行な直線をl とする また, 点 B(0, 5, ) を通り, ベクトル v (1, 0, 1) に平行な直線を m とする l 上の点 P から m に下ろした垂線の足を P とする ま た,m 上の点 Q から l に下ろした垂線の足を Q とする PP QQ かつ PP QQ となる P と Q を求めよう 補足 : 点 P から m に下ろした垂線の足 とは, 点 P からひいた m の垂線と m との交点のこと (1) 実数 t,t, s, s により AP t u, BP t v, BQ s v, A Q s u と表される 直線 PP と直線 m が直交するから t ア イ ウ ベクトル PP の成分を t を用いて表すと オ PP ( エ カ t t, キ t, クケ 同様に直線 QQ と直線 l が直交するから 5 1 s s ベクトル QQ の成分を s を用いて表すと QQ ( シ ス セ ソ s, タチ ツ テ ト コ サ t ) s, ナ s) () さて, PP QP PQ QQ P Q であるから, PP QQ であるための条件はQP PQ で ある PQ (s t) u, QP ( t s) v であるから, PQ QP となるのは s ニ t 1 または s ヌネ t のとき (3) 1が成り立つとき, PP と QQ が垂直になるのは t ノまたはt ハのとき ( ノとハは解答の順序は問わない ) が成り立つときは, PP 実数 t の値はない と QQ が垂直になるような

25 5 分で解くシリーズ 5 融合問題 1 下の連立方程式を解け si x + 3 cos y = 3 3 si y + cos x =

26 5 分で解くシリーズ 6 融合問題 1. x を実数とするとき f(x)= x x + + x 6x + 13 の最小値を求めよ. x +y =1 のとき 3x+4y の最大値 最小値を求めよ 3. si α + si β = 1, cos α + cos β = 1 3 のとき ta{ (α + β) } を求めよ

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が

05 年度センター試験数学 ⅡB () において,cos q 0 であるから,P ( cos q, sin q) より, 直線 OP を表す方程式は y sin q sin q x cos q cos q x すなわち, (sin q) x - (cos q) y 0 ( ) ク 点 O,P,Q が 05 年度大学入試センター試験解説 数学 ⅡB 第 問 []() 点間の距離の公式から, OP ( cos q ) + ( sin q ) ( cos q + sin q ) ア PQ { ( cos q + cos 7q ) - cos q } + { ( sin q + sin 7q ) - sin q } cos q + sin q 7 7 イ である また, OQ ( cos q + cos

More information

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F8E6C8D5A>

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F8E6C8D5A> 06 年度大学入試センター試験解説 数学 Ⅱ B 第 問 () 8 より, 5 5 5 6 6 8 ア, イ また, 底の変換公式を用いると, log 7 log log 9 9 log 7 log ウエ, オ (), のグラフは, それぞれ = 89 = 右図のようになり, この つのグラフは 軸に関して対称 ここで, 0, のとき, と log カ のグラフが直線 に関して対称 であることから,

More information

2018年度 筑波大・理系数学

2018年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(

More information

1999年度 センター試験・数学ⅡB

1999年度 センター試験・数学ⅡB 99 センター試験数学 Ⅱ 数学 B 問題 第 問 ( 必答問題 ) [] 関数 y cos3x の周期のうち正で最小のものはアイウ 解答解説のページへ 0 x 360 のとき, 関数 y cos3x において, y となる x はエ個, y となる x はオ 個ある また, y sin x と y cos3x のグラフより, 方程式 sin x cos3x は 0 x 360のときカ個の解をもつことがわかる

More information

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F81798D5A97B98CE38F4390B A2E646F63>

<4D F736F F D F90948A F835A E815B8E8E8CB189F090E05F81798D5A97B98CE38F4390B A2E646F63> 07 年度大学入試センター試験解説 数学 Ⅰ A 第 問 9 のとき, 9 アイ 0 より, 0 であるから, 次に, 解答記号ウを含む等式の右辺を a とおくと, a a a 8 a a a 8 a これが 8 と等しいとき,( 部 ) 0 より, a 0 よって, a ウ ( 注 ) このとき, 8 9 (, より ) 7 エ, オカ また,より, これより, 9 であるから, 6 8 8 すなわち,

More information

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと

p tn tn したがって, 点 の 座標は p p tn tn tn また, 直線 l と直線 p の交点 の 座標は p p tn p tn よって, 点 の座標 (, ) は p p, tn tn と表され p 4p p 4p 4p tn tn tn より, 点 は放物線 4 p 上を動くこと 567_ 次曲線の三角関数による媒介変数表示 次曲線の三角関数による媒介変数表示 次曲線 ( 放物線 楕円 双曲線 ) の標準形の, についての方程式と, 三角関数による媒介変数表示は次のように対応している.. 放物線 () 4 p (, ) ( ptn, ptn ) (). 楕円. 双曲線 () () (, p p ), tn tn (, ) ( cos, sin ) (, ), tn cos (,

More information

2011年度 筑波大・理系数学

2011年度 筑波大・理系数学 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ

More information

重要例題113

重要例題113 04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0

More information

2017年度 千葉大・理系数学

2017年度 千葉大・理系数学 017 千葉大学 ( 理系 ) 前期日程問題 1 解答解説のページへ n を 4 以上の整数とする 座標平面上で正 n 角形 A1A A n は点 O を中心とする半径 1 の円に内接している a = OA 1, b = OA, c = OA 3, d = OA4 とし, k = cos とおく そして, 線分 A1A3 と線分 AA4 との交点 P は線分 A1A3 を n :1に内分するとする

More information

2015年度 金沢大・理系数学

2015年度 金沢大・理系数学 05 金沢大学 ( 理系 ) 前期日程問題 解答解説のページへ四面体 OABC において, 3 つのベクトル OA, OB, OC はどの つも互いに垂直で あり, h > 0 に対して, OA, OB, OC h とする 3 点 O, A, B を通る平面上の点 P は, CP が CA と CB のどちらとも垂直となる点であるとする 次の問いに答えよ () OP OA + OB とするとき, と

More information

.10.中高美術

.10.中高美術 中 学 校 美 術 / 特 別 支 援 学 校 中 学 部 高 等 部 美 術 第 1 問 第 2 問 第 3 問 第 4 問 第 5 問 第 6 問 ア イ ウ エ オ カ キ ク ケ コ サ シ ス セ ソ タ チ ツ テ ト ナ ニ ヌ ネ ノ 正 答 b c 配 点 3 3 備 考 ア イ ウ エ オ カ キ ク ケ コ サ シ ス セ ソ タ チ ツ テ ト ナ ニ ヌ ネ ノ 正 答 c

More information

2016年度 九州大・理系数学

2016年度 九州大・理系数学 0 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ 座標平面上の曲線 C, C をそれぞれ C : y logx ( x > 0), C : y ( x-)( x- a) とする ただし, a は実数である を自然数とするとき, 曲線 C, C が 点 P, Q で交わり, P, Q の x 座標はそれぞれ, + となっている また, 曲線 C と直線 PQ で囲まれた領域の面積を S,

More information

2016年度 広島大・文系数学

2016年度 広島大・文系数学 06 広島大学 ( 文系 ) 前期日程問題 解答解説のページへ a を正の定数とし, 座標平面上において, 円 C : x + y, 放物線 C : y ax + C 上の点 P (, ) を考える - におけるC の接線 l は点 Q( s, t) でC に接してい る 次の問いに答えよ () s, t および a を求めよ () C, l および y 軸で囲まれた部分の面積を求めよ () 円 C

More information

< BD96CA E B816989A B A>

< BD96CA E B816989A B A> 数 Ⅱ 平面ベクトル ( 黄色チャート ) () () ~ () " 図 # () () () - - () - () - - () % から %- から - -,- 略 () 求めるベクトルを とする S であるから,k となる実数 k がある このとき k k, であるから k すなわち k$, 求めるベクトルは --,- - -7- - -, から また ',' 7 (),,-,, -, -,

More information

2016年度 筑波大・理系数学

2016年度 筑波大・理系数学 06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,

More information

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂

< 図形と方程式 > 点間の距離 A x, y, B x, y のとき x y x y : に分ける点 æ ç è A x, y, B x, y のとき 線分 AB を : に分ける点は x x y y, ö ø 注 < のとき外分点 三角形の重心 点 A x, y, B x, y, C x, を頂 公式集数学 Ⅱ B < 式と証明 > 整式の割り算縦書きの割り算が出来ること f を g で割って 商が Q で余りが R のときは Q g f /////// R f g Q R と書ける 分数式 分母, 分子をそれぞれ因数分解し 約分する 既約分数式 加法, 減法については 分母を通分し分子の計算をする 繁分数式 分母 分子に同じ多項式をかけて 普通の分数式になおす 恒等式 数値代入法 係数比較法

More information

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき,

Math-Aquarium 例題 図形と計量 図形と計量 1 直角三角形と三角比 P 木の先端を P, 根元を Q とする A 地点の目の位置 A' から 木の先端への仰角が 30,A から 7m 離れた AQB=90 と なる B 地点の目の位置 B' から木の先端への仰角が 45 であ るとき, 図形と計量 直角三角形と三角比 P 木の先端を P, 根元を Q とする 地点の目の位置 ' から 木の先端への仰角が 0, から 7m 離れた Q=90 と なる 地点の目の位置 ' から木の先端への仰角が であ るとき, 木の高さを求めよ ただし, 目の高さを.m とし, Q' を右の図のように定める ' 0 Q' '.m Q 7m 要点 PQ PQ PQ' =x とおき,' Q',' Q' を

More information

学習指導要領

学習指導要領 () いろいろな式 学習指導要領ア式と証明 ( ア ) 整式の乗法 除法 分数式の計算三次の乗法公式及び因数分解の公式を理解し それらを用いて式の展開や因数分解をすること また 整式の除法や分数式の四則計算について理解し 簡単な場合について計算をすること 都立清瀬高校学力スタンダード 変数の 次式の展開や因数分解ができる ( 例 ) 次の式を展開せよ y ( 例 ) 次の式を因数分解せよ 8 7y

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 第 1 章第 節実数 東高校学力スタンダード 4 実数 (P.3~7) 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において, それぞれの数の範囲で四則計算を考えるとき, 計算がその範囲で常にできる場合には

More information

学習指導要領

学習指導要領 (1) 数と式 ア整式 ( ア ) 式の展開と因数分解二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること (ax b)(cx d) acx (ad bc)x bd などの基本的な公式を活用して 二次式の展開や因数分解ができる また 式の置き換えや一文字に着目するなどして 展開 因数分解ができる ( 例 ) 次の問に答えよ (1) (3x a)(4x

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 千早高校学力スタンダード 自然数 整数 有理数 無理数の用語の意味を理解す る ( 例 ) 次の数の中から自然数 整数 有理 数 無理数に分類せよ 3 3,, 0.7, 3,,-, 4 (1) 自然数 () 整数 (3) 有理数 (4) 無理数 自然数 整数 有理数 無理数の包含関係など

More information

2014年度 筑波大・理系数学

2014年度 筑波大・理系数学 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ f ( x) = x x とする y = f ( x ) のグラフに点 P(, ) から引いた接線は 本あるとする つの接点 A (, f ( )), B(, f ( )), C(, f ( )) を頂点とする三角形の 重心を G とする () + +, + + および を, を用いて表せ () 点 G の座標を, を用いて表せ () 点 G

More information

学習指導要領

学習指導要領 (1 ) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実 数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい 実数の絶対値が実数と対応する点と原点との距離で あることを理解する ( 例 ) 次の値を求めよ (1) () 6 置き換えなどを利用して 三項の無理数の乗法の計

More information

2015-2018年度 2次数学セレクション(整数と数列)解答解説

2015-2018年度 2次数学セレクション(整数と数列)解答解説 015 次数学セレクション問題 1 [ 千葉大 文 ] k, m, n を自然数とする 以下の問いに答えよ (1) k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5nが 3 で割り切れるとする このとき, mn を 7 で割った余りは 4 ではないことを示せ -1- 015 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ

More information

竹田式数学 鉄則集

竹田式数学  鉄則集 合格への鉄則集 数学 ⅡB 竹鉄 ⅡB-01~23 竹鉄 ⅡB-1 式と証明 (1) 方程式の決定 方程式の決定問題 a+bi が解なら,a-bi も解 解と係数の関係を活用する 例題 クリアー 140 a,b は実数とする 3 次方程式 x 3 +ax 2 +bx+10=0 が 1+2i を解にもつとき, 定数 a,b の値を求めよ また, 他の解を求めよ 鉄則集 21 竹鉄 ⅡB-2 式と証明

More information

2018年度 東京大・理系数学

2018年度 東京大・理系数学 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( ) = + cos (0 < < ) の増減表をつくり, + 0, 0 のと sin きの極限を調べよ 08 東京大学 ( 理系 ) 前期日程問題 解答解説のページへ n+ 数列 a, a, を, Cn a n = ( n =,, ) で定める n! an qn () n とする を既約分数 an p として表したときの分母

More information

FdData中間期末数学2年

FdData中間期末数学2年 中学中間 期末試験問題集( 過去問 ): 数学 年 方程式とグラフ [ 二元一次方程式 ax + by = c のグラフ ] [ 問題 ]( 後期中間 ) 二元一次方程式 x + y = 4 のグラフをかけ http://www.fdtext.com/dat/ [ 解答 ] 方程式の解を座標とする点の全体を, その方程式のグラフという 二元一次方程式 x + y = 4 の解は無数にあるが, 例えば,

More information

学力スタンダード(様式1)

学力スタンダード(様式1) (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 稔ヶ丘高校学力スタンダード 有理数 無理数の定義や実数の分類について理解し ている 絶対値の意味と記号表示を理解している 実数と直線上の点が一対一対応であることを理解 し 実数を数直線上に示すことができる 例 実数 (1) -.5 () π (3) 数直線上の点はどれか答えよ

More information

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と

平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と 平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある

More information

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si

公式集 数学 Ⅱ B 頭に入っていますか? 8 和積の公式 A + B A B si A + si B si os A + B A B si A si B os si A + B A B os A + os B os os A + B A B os A os B si si 9 三角関数の合成 si 公式集 数学 Ⅱ B 頭に入っていますか? < 図形と方程式 > 点間の距離 A x, B x, のとき x x + : に分ける点 A x, B x, のとき 線分 AB を:に分ける点 æ x + x + ö は ç, è + + ø 注 < のとき外分点 直線の方程式 傾き で 点 x, を通る : x 点 x, x, を通る : x 注 分母が のとき は座標軸と平行な直線 x x 4 直線の位置関係

More information

Microsoft Word - スーパーナビ 第6回 数学.docx

Microsoft Word - スーパーナビ 第6回 数学.docx 1 ⑴ 与式 =- 5 35 +14 35 =9 35 1 ⑵ 与式 =9-(-5)=9+5=14 1 ⑶ 与式 = 4(a-b)-3(5a-3b) = 8a-4b-15a+9b = -7a+5b 1 1 1 1 ⑷ 与式 =(²+ 1+1²)-{²+(-3+)+(-3) } 1 ⑷ 与式 =(²++1)-(²--6)=²++1-²++6=3+7 1 ⑸ 与式 = - ² + 16 = - +16

More information

2019対策 千葉大・文系数学

2019対策 千葉大・文系数学 09 入試対策 千葉大学 文系数学 998-08 過去問ライブラリー 電送数学舎 まえがき 本書には,998 年度以降に出題された千葉大学 ( 前期日程 ) の文系数学の全問題とその解答例を掲載しています 過去問の演習をスムーズに進めるために, 現行課程入試に対応した内容分類を行っています なお, 複数領域の融合問題の配置箇所は, 鍵となっている分野です また, 利便性の向上のため, 対応する問題と解答例のページにリンクを張っています

More information

学習指導要領

学習指導要領 習熟度別クラス編成において 基礎クラスの学力スタンダード 表示は ( 基礎 ) と応用クラスの学力スタンダード 表示は ( 応用 ) を設定する () いろいろな式 ア式と証明 ( ア ) 整式の乗法 除法, 分数式の計算三次の乗法公式及び因数分解の公式を理解し それらを用いて式の展開や因数分解をすること また 整式の除法や分数式の四則計算について理解し 簡単な場合について計算をすること 文字の 次式の展開や因数分解ができる

More information

2015-2017年度 2次数学セレクション(複素数)解答解説

2015-2017年度 2次数学セレクション(複素数)解答解説 05 次数学セレクション解答解説 [ 筑波大 ] ( + より, 0 となり, + から, ( (,, よって, の描く図形 C は, 点 を中心とし半径が の円である すなわち, 原 点を通る円となる ( は虚数, は正の実数より, である さて, w ( ( とおくと, ( ( ( w ( ( ( ここで, w は純虚数より, は純虚数となる すると, の描く図形 L は, 点 を通り, 点 と点

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数 実数のそれぞれの集 合について 四則演算の可能性について判断できる ( 例 ) 下の表において それぞれの数の範囲で四則計算を考えるとき 計算がその範囲で常にできる場合には を 常にできるとは限らない場合には を付けよ ただし 除法では 0 で割ることは考えない

More information

" 01 JJM 予選 4 番 # 四角形 の辺 上に点 があり, 直線 と は平行である.=,=, =5,=,= のとき, を求めよ. ただし,XY で線分 XY の長さを表すものとする. 辺 と辺 の延長線の交点を, 辺 と辺 の延長線の交点を G とする. 5 四角形 は直線 に関して線対称な

 01 JJM 予選 4 番 # 四角形 の辺 上に点 があり, 直線 と は平行である.=,=, =5,=,= のとき, を求めよ. ただし,XY で線分 XY の長さを表すものとする. 辺 と辺 の延長線の交点を, 辺 と辺 の延長線の交点を G とする. 5 四角形 は直線 に関して線対称な 1 " 数学発想ゼミナール # ( 改題 ) 直径を とする半円周上に一定の長さの弦がある. この弦の中点と, 弦の両端の各点から直径 への垂線の足は三角形をつくる. この三角形は二等辺三角形であり, かつその三角形は弦の位置にかかわらず相似であることを示せ. ( 証明 ) 弦の両端を X,Y とし,M を線分 XY の中点,, をそれぞれ X,Y から直径 への垂線の足とする. また,M の直径

More information

2011年度 東京大・文系数学

2011年度 東京大・文系数学 東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)

More information

学習指導要領

学習指導要領 (1) いろいろな式 学習指導要領紅葉川高校学力スタンダードア式と証明展開の公式を用いて 3 乗に関わる式を展開すること ( ア ) 整式の乗法 除法 分数式の計算ができるようにする 三次の乗法公式及び因数分解の公式を理解し そ 3 次の因数分解の公式を理解し それらを用いて因数れらを用いて式の展開や因数分解をすること また 分解することができるようにする 整式の除法や分数式の四則計算について理解し

More information

夏期講習高 センター数学 ⅠA テキスト第 講 [] 人の生徒に数学のテストを行った 次の表 は, その結果である ただし, 表 の数値はすべて正確な値であるとして解答せよ 表 数学のテストの得点 次

夏期講習高 センター数学 ⅠA テキスト第 講 [] 人の生徒に数学のテストを行った 次の表 は, その結果である ただし, 表 の数値はすべて正確な値であるとして解答せよ 表 数学のテストの得点 次 夏期講習高 センター数学 ⅠA テキスト第 講 第 講 三角比 データの分析 ABC は AB=,BC=,AC= を満たす ⑴ cos B= アイ である 辺 BC 上に点 D を取り, ABD の外接円の半径を R とするとき, AD R = ウであり, 点 D を点 B から点 C まで移動させるとき,R の最小値はエである ただし, 点 D は点 B とは異なる点とする ⑵ ABD の外接円の中心が辺

More information

学習指導要領

学習指導要領 (1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)

More information

< D8C6082CC90AB8EBF816989A B A>

< D8C6082CC90AB8EBF816989A B A> 数 Ⅰ 図形の性質 ( 黄色チャート ) () () () 点 は辺 を : に外分するから :=: :=: であるから :=: == () 点 は辺 を : に内分するから :=:=: = + %= また, 点 は辺 を : に外分するから :=:=: == =+=+= 直線 は の二等分線であるから :=: 直線 は の二等分線であるから :=: 一方, であるから, から, から :=: :=:

More information

2015年度 2次数学セレクション(整数と数列)

2015年度 2次数学セレクション(整数と数列) 05 次数学セレクション問題 [ 千葉大 文 ] k, m, を自然数とする 以下の問いに答えよ () k を 7 で割った余りが 4 であるとする このとき, k を 3 で割った余りは であることを示せ () 4m+ 5が 3 で割り切れるとする このとき, m を 7 で割った余りは 4 ではないことを示せ -- 05 次数学セレクション問題 [ 九州大 理 ] 以下の問いに答えよ () が正の偶数のとき,

More information

Math-quarium 練習問題 + 図形の性質 線分 は の二等分線であるから :=:=:=: よって = = = 線分 は の外角の二等分線であるから :=:=:=: よって :=: したがって == 以上から =+=+= 右の図において, 点 は の外心である α,βを求めよ α β 70

Math-quarium 練習問題 + 図形の性質 線分 は の二等分線であるから :=:=:=: よって = = = 線分 は の外角の二等分線であるから :=:=:=: よって :=: したがって == 以上から =+=+= 右の図において, 点 は の外心である α,βを求めよ α β 70 Math-quarium 練習問題 + 図形の性質 図形の性質 線分 に対して, 次の点を図示せよ () : に内分する点 () : に外分する点 Q () 7: に外分する点 R () 中点 M () M () Q () () R 右の図において, 線分の長さ を求めよ ただし,R//Q,R//,Q=,=6 とする Q R 6 Q から,:=:6=: より :=: これから,R:=: より :6=:

More information

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期

数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学

More information

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc

Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc (1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領 数と式 (1) 式の計算二次の乗法公式及び因数分解の公式の理解を深め 式を多面的にみたり目的に応じて式を適切に変形したりすること 東京都立町田高等学校学力スタンダード 整式の加法 減法 乗法展開の公式を利用できる 式を1 つの文字におき換えることによって, 式の計算を簡略化することができる 式の形の特徴に着目して変形し, 展開の公式が適用できるようにすることができる 因数分解因数分解の公式を利用できる

More information

< 中 3 分野例題付き公式集 > (1)2 の倍数の判定法は 1 の位が 0 又は偶数 ( 例題 )1~5 までの 5 つの数字を使って 3 ケタの数をつくるとき 2 の倍数は何通りできるか (2)5 の倍数の判定法は 1 の位が 0 又は 5 ( 例題 )1~9 までの 9 個の数字を使って 3

< 中 3 分野例題付き公式集 > (1)2 の倍数の判定法は 1 の位が 0 又は偶数 ( 例題 )1~5 までの 5 つの数字を使って 3 ケタの数をつくるとき 2 の倍数は何通りできるか (2)5 の倍数の判定法は 1 の位が 0 又は 5 ( 例題 )1~9 までの 9 個の数字を使って 3 () の倍数の判定法は の位が 0 又は偶数 ~ までの つの数字を使って ケタの数をつくるとき の倍数は何通りできるか () の倍数の判定法は の位が 0 又は ~9 までの 9 個の数字を使って ケタの数をつくるとき の倍数は何通りできるか () の倍数の判定法は 下 ケタが 00 又は の倍数 ケタの数 8 が の倍数となるときの 最小の ケタの数は ( 解 ) 一の位の数は の 通り 十の位は一の位の数以外の

More information

学習指導要領 ( イ ) 集合集合と命題に関する基本的な概念を理解し それを事象の考察に活用すること 向丘高校学力スタンダード 三つの集合について 共通部分 和集合を求めることができる また 二つの集合について ド モルガンの法則 を理解する ( 例 ) U ={ n n は 1 桁の自然数 } を

学習指導要領 ( イ ) 集合集合と命題に関する基本的な概念を理解し それを事象の考察に活用すること 向丘高校学力スタンダード 三つの集合について 共通部分 和集合を求めることができる また 二つの集合について ド モルガンの法則 を理解する ( 例 ) U ={ n n は 1 桁の自然数 } を (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 向丘高校学力スタンダード 自然数 整数 有理数 無理数 実数のそれぞれの 集合について 四則演算の可能性について判断できる ( 例 ) 下の表において それぞれの数の範囲で四則計算を考えるとき 計算がその範囲で常にできる場合には を 常にできるとは限らない場合には をつけよ ただし

More information

丛觙形ㆮ隢穓ㆮ亄ç�›å‹ƒç·ı

丛觙形ㆮ隢穓ㆮ亄ç�›å‹ƒç·ı 三角形の面積は == 三角形の面積の二等分線 == ( 面積 )=( 底辺 ) ( 高さ ) 2 の公式で求められます. 次の図のように, ABC の頂点 A から対辺 BC の中点 ( 真ん中の点,1 対 1 に内分する点 ) D に線分 AD をひくと, ABD と DCA とは, 底辺が等しく, 高さが共通になるから, これら 2 つの三角形の面積は等しくなります.( 高さは底辺と垂直 ( 直角

More information

数学 Ⅲ 無限等比級数の問題解答 問 1 次の無限級数の和を求めよ (1) (5) (2) (6) (7) (3) ( 解 )(1) 初項 < 公比 < の無限等比級数より収束し (4) (2) (3) その和は ( 答 ) であるから 初項 < 公比 となっている よって 収束し その和は よって

数学 Ⅲ 無限等比級数の問題解答 問 1 次の無限級数の和を求めよ (1) (5) (2) (6) (7) (3) ( 解 )(1) 初項 < 公比 < の無限等比級数より収束し (4) (2) (3) その和は ( 答 ) であるから 初項 < 公比 となっている よって 収束し その和は よって 問 1 次の無限級数の和を求めよ (1) (5) (2) (6) (7) (3) ( 解 )(1) 初項 < 公比 < の無限等比級数より収束し (4) (2) (3) その和は であるから 初項 < 公比 となっている よって 収束し その和は よって 収束し その和は < の無限等比級数 であるから 初項 < 公比

More information

学習指導要領

学習指導要領 (1) 数と式 学習指導要領ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 都立大江戸高校学力スタンダード 平方根の意味を理解し 平方根の計算法則に従って平方根を簡単にすることができる ( 例 1) 次の値を求めよ (1)5 の平方根 () 81 ( 例 ) 次の数を簡単にせよ (1) 5 () 7 1 (3) 49 無理数の加法や減法 乗法公式を利用した計算がで

More information

2013年度 信州大・医系数学

2013年度 信州大・医系数学 03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,

More information

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三

. 角の二等分線と調和平均 平面上に点 を端点とする線分 と を重ならないようにとる, とし とする の二等分線が線分 と交わる点を とし 点 から に垂直に引いた直線が線分 と交わる点 とする 線分 の長さを求めてみよう 点 から に垂直な直線と および との交点をそれぞれ, Dとする つの直角三 角の二等分線で開くいろいろな平均 札幌旭丘高校中村文則 0. 数直線上に現れるいろいろな平均下図は 数 (, ) の調和平均 相乗平均 相加平均 二乗平均を数直線上に置いたものである, とし 直径 中心 である円を用いていろいろな平均の大小関係を表現するもっとも美しい配置方法であり その証明も容易である Q D E F < 相加平均 > (0), ( ), ( とすると 線分 ) の中点 の座標はである

More information

Microsoft Word - 数学Ⅰ

Microsoft Word - 数学Ⅰ () 数と式 ア数と集合 ( ア ) 実数 数を実数まで拡張する意義を理解し 簡単な 無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい イ 整数 ウ ア 無理数 自然数 整数 有理数 無理数 実数のそれぞれ の集合について 四則演算の可能性について判断 できる ( 例 ) 下の表において,

More information

二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま

二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま 二次関数 二次関数とは ともなって変化する つの数 ( 変数 ) x, y があります y 0 9 6 5 つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また, つの変数を式に表すと, x となります < 二次関数の例 > x y 0 7 8 75 x ( 表の上の数 ) を 乗して 倍すると, y ( 表の下の数 ) になります x y 0 - -8-8 -

More information

【】 1次関数の意味

【】 1次関数の意味 FdText 数学 1 年 : 中学 塾用教材 http://www.fdtext.com/txt/ 直線と角 解答欄に次のものを書き入れよ 1 直線 AB 2 線分 AB 1 2 1 2 右図のように,3 点 A,B,Cがあるとき, 次の図形を書き入れよ 1 直線 AC 2 線分 BC - 1 - 次の図で a, b, c で示された角を A,B,C,D の文字を使って表せ a : b : c :

More information

2019対策 千葉大・理系数学

2019対策 千葉大・理系数学 09 入試対策 千葉大学 理系数学 998-08 過去問ライブラリー 電送数学舎 まえがき 本書には,998 年度以降に出題された千葉大学 ( 前期日程 ) の理系数学の全問題とその解答例を掲載しています 過去問の演習をスムーズに進めるために, 現行課程入試に対応した内容分類を行っています なお, 複数領域の融合問題の配置箇所は, 鍵となっている分野です また, 利便性の向上のため, 対応する問題と解答例のページにリンクを張っています

More information

相加平均 相乗平均 調和平均が表す比 台形 の上底 下底 の長さをそれぞれ, とするとき 各平均により 台形の高さ はどのように比に分けられるだろうか 相乗平均は 相似な つの台形になるから台形の高さ を : の 比に分ける また 相加平均は は : の比に分けます 調和平均は 対角線 と の交点を

相加平均 相乗平均 調和平均が表す比 台形 の上底 下底 の長さをそれぞれ, とするとき 各平均により 台形の高さ はどのように比に分けられるだろうか 相乗平均は 相似な つの台形になるから台形の高さ を : の 比に分ける また 相加平均は は : の比に分けます 調和平均は 対角線 と の交点を 台形に潜むいろいろな平均 札幌旭丘高校中村文則 台形に調和平均 相加平均をみる 右図の台形 において = = とする の長さを, を用いて表してみよう = x = y = c とすると であることから : = : より c y = x + y であることから : = : より c x = x + y を辺々加えると x + y c + = より + = x + y c となる ここで = = c =

More information

Microsoft Word - 201hyouka-tangen-1.doc

Microsoft Word - 201hyouka-tangen-1.doc 数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見

More information

Microsoft Word - 微分入門.doc

Microsoft Word - 微分入門.doc 基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,

More information

本書の目的 B 本書の難易度 50 本書の内容 B A

本書の目的 B 本書の難易度 50 本書の内容 B A 数列 漸化式問題を得意分野に! 漸化式は 0 パターン完全解説 別解満載! ライバルを置き去りにする 冊! 数列問題の基礎完全対策難関大 医大の数列 漸化式問題の極意 第 章数第 章漸化式 0 種パターンの完全対策第 章数列 漸化式の応用問題第 4 章数列 級数の極限値の問題第 5 章三角関数と微積分の漸化式第 6 章数列 漸化式の融合問題 i 本書の目的 B 0 0..6 0 0 本書の難易度 50

More information

ピタゴラスの定理の証明4

ピタゴラスの定理の証明4 [ 証明 ] この証明を論理的に厳密に行うには 何回か三角形 四角形の合同を証明しなくてはなりません 以下では 直感的な分かりやすさを重視して この証明を行いません 三角形 において であるとする 辺 を一辺とする正方形 を三角形 の外側につくる 辺 を一辺とする正方形 を三角形 の外側につくる 辺 を一辺とする正方形 Fを三角形 の外側につくる 直線 と直線 との交点を J とし 直線 と直線 F

More information

2018試行 共通テスト 数学ⅠA 解答例

2018試行 共通テスト 数学ⅠA 解答例 第 1 問 共通テスト ( 試行調査 018) 数学 Ⅰ 数学 A 解答例 [1] (1) 1 のみを要素としてもつ集合が集合 A の部分集合 であることは, C = {1} とおくと, CÌ Aと表される () 命題 x Î, y Î ならば, x+ yîである が偽であることを示すための反例は, x Î かつ y Î かつ x+ yï から探すと, ( x, y ) = (3-3, 3-1),

More information

二等辺三角形の性質 (2) 次の図の の大きさを求めなさい () = P=Q P=R Q 68 R P (2) (3) 五角形 は正五角形 = F 50 F (4) = = (5) === = 80 2 二等辺三角形の頂角の外角を 底角を y で表すとき y を の式で表しなさい y 2-5-2

二等辺三角形の性質 (2) 次の図の の大きさを求めなさい () = P=Q P=R Q 68 R P (2) (3) 五角形 は正五角形 = F 50 F (4) = = (5) === = 80 2 二等辺三角形の頂角の外角を 底角を y で表すとき y を の式で表しなさい y 2-5-2 三角形 四角形 二等辺三角形の性質 () 二等辺三角形と正三角形 二等辺三角形 2つの辺が等しい三角形( 定義 ) 二等辺三角形の性質定理 二等辺三角形の底角は等しい 定理 2 二等辺三角形の頂点の二等分線は 底辺を直角に2 等分する 正三角形 3 辺が等しい三角形 ( 定義 ) 次の図で 同じ印をつけた辺や角が等しいとき の大きさを求めなさい () (2) (3) 65 40 25 (4) (5)

More information

2014年度 九州大・理系数学

2014年度 九州大・理系数学 04 九州大学 ( 理系 ) 前期日程問題 解答解説のページへ関数 f ( x) = x-sinx ( 0 x ) を考える 曲線 y = f ( x ) の接線で傾きが となるものを l とする () l の方程式と接点の座標 ( a, b) を求めよ () a は () で求めたものとする 曲線 y = f ( x ), 直線 x = a, および x 軸で囲まれた 領域を, x 軸のまわりに

More information

数論入門

数論入門 数学のかたち 共線問題と共点問題 Masashi Sanae 1 テーマ メネラウスの定理 チェバの定理から 共線問題と共点問題について考える 共線 点が同一直線上に存在 共点 直線が 1 点で交わる 2 内容 I. メネラウスの定理 1. メネラウスの定理とその証明 2. メネラウスの定理の応用 II. 3. チェバの定理とその証明 メネラウスの定理 チェバの定理の逆 1. メネラウスの定理の逆

More information

2014年度 九州大・文系数学

2014年度 九州大・文系数学 014 九州大学 ( 文系 ) 前期日程問題 1 解答解説のページへ 座標平面上の直線 y =-1 を l 1, 直線 y = 1 を l とし, x 軸上の 点 O(0, 0), A ( a, 0) を考える 点 P( x, y) について, 次の条件を考える d(p, l1 ) PO かつ d(p, l ) PA 1 ただし, d( P, l) は点 P と直線 l の距離である (1) 条件

More information

平成 30 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) -3 (-6+4) を計算しなさい 表合計 2 次の (1)~(6) の問

平成 30 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) -3 (-6+4) を計算しなさい 表合計 2 次の (1)~(6) の問 平成 30 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) -3 (-6+4) を計算しなさい 表合計 2 次の (1)~(6) の問いに答えなさい 合計 (1) 関数 y = x 2 において,x の変域が -2 x 3 のとき, y

More information

Microsoft Word - 漸化式の解法NEW.DOCX

Microsoft Word - 漸化式の解法NEW.DOCX 閑話休題 漸化式の解法 基本形 ( 等差数列, 等比数列, 階差数列 ) 等差数列 : d 等比数列 : r の一般項を求めよ () 3, 5 () 3, () 5より数列 は, 初項 3, 公差の等差数列であるので 5 3 5 5 () 数列 は, 初項 3, 公比 の等比数列であるので 3 階差数列 : f の一般項を求めよ 3, より のとき k k 3 3 において, を代入すると 33 となるので,は

More information

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に

座標軸以外の直線のまわりの回転体の体積 ( バウムクーヘン分割公式 ) の問題の解答 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 に 立体の体積の求め方 図 1 の立体の体積 V を求める方法を考えてみる 図 1 図 1 のように 軸の から までの長さを 等分する そして とおく とすると となる 図 1 のように のときの 軸に垂直な平面 による立体の断面積を とする 図 1の から までの斜線部分の立体 の体積を とすると, 図 2のように は 底面積 高さ の角柱の体積とみなせる よって 図 2 と表せる ただし とすると,

More information

2015-2018年度 2次数学セレクション(整数と数列)解答解説

2015-2018年度 2次数学セレクション(整数と数列)解答解説 05 次数学セレクション解答解説 [ 千葉大 文 ] () k を自然数, l, N を 0 以上の整数とするとき, k l+ l l (i) k= l+ のとき = = 8 = (7+ ) = (7N + ) = 7 N + これより, k を 7 で割った余りは である k l+ l l (ii) k= l+ のとき = = 4 8 = 4(7+ ) = 4(7N + ) = 7 4N + 4

More information

< F2D30365F8EF68BC68CA48B E6A7464>

< F2D30365F8EF68BC68CA48B E6A7464> 第 2 学年 * 組数学 Ⅱ 学習指導案 指導者飯島朋恵 1 単元名図形と方程式 2 単元の目標座標や式を用いて直線や円などの基本的な平面図形の性質や関係を数学的に表現し, その有用性を認識するとともに, 事象の考察に活用することができる 3 単元の評価規準 数学への関心 意欲 態度 数学的な見方や考え方 数学的な技能 数量や図形などについての知識 理解 図形の性質や関係 図形を方程式や不等 図形の性質や関係を

More information

【】三平方の定理

【】三平方の定理 FdText 数学 3 年 : 中学 塾用教材 http://www.fdtext.com/txt/ 三角形 x を求めよ (3) (4) (5) (6) (3) (4) (5) (6) [ 解答 ] (1) 34 cm (2) 2 2 cm (3) 13cm (4) 2 7 cm (5) 5 3cm (6) 11 cm - 1 - 次の三角形, 台形の高さ (h) を求めよ (3) (4) (3)

More information

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 + ( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n

More information

1 次の (1) から (4) までの各問いに答えなさい (1) ' を計算しなさい (2)2#(-5 2 ) を計算しなさい 中数 A 1

1 次の (1) から (4) までの各問いに答えなさい (1) ' を計算しなさい (2)2#(-5 2 ) を計算しなさい 中数 A 1 平成 26 年度全国学力 学習状況調査 中学校第 3 学年 数学 A 注 意 1 先生の合図があるまで, 冊子を開かないでください 2 調査問題は,1ページから 30 ページまであります 3 解答は, 全て解答用紙 ( 解答冊子の 数学 A ) に記入してください 4 解答は,HBまたはBの黒鉛筆( シャープペンシルも可 ) を使い, 濃く, はっきりと書いてください 5 解答を選択肢から選ぶ問題は,

More information

Σ(72回生用数ⅠA教材NO.16~30).spr

Σ(72回生用数ⅠA教材NO.16~30).spr 日々の演習 Σ( シグマ ) No. 16 16 ( ) 組 ( ) 番名前 ( ) 1 [ 改訂版 4STEP 数学 Ⅰ 問題 119] 関数 f0x 1 =3x-,g0x 1 =x -3x+1 について, 次の値を求 めよ f001 6 [ 改訂版 4STEP 数学 Ⅰ 例題 16] a は定数とする 関数 y=x -4ax 00(x(1 について, 次の問いに答えよ 最小値 m を求めよ (7)

More information

STEP 数学 Ⅰ を解いてみた から直線 に下ろした垂線の足を H とすると, H in( 80 ) in より, S H in H 同様にして, S in, S in も成り立つ よって, S in 三角形の面積 ヘロンの公式 in in 辺の長

STEP 数学 Ⅰ を解いてみた   から直線 に下ろした垂線の足を H とすると, H in( 80 ) in より, S H in H 同様にして, S in, S in も成り立つ よって, S in 三角形の面積 ヘロンの公式 in in 辺の長 STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp 図形と計量 三角形の面積 三角形の面積 の面積を S とすると, S in in in 解説 から直線 に下ろした垂線の足を H とすると, H in より, S H in H STEP 数学 Ⅰ を解いてみた http://toitemit.ku.ne.jp から直線 に下ろした垂線の足を H とすると, H in(

More information

( 表紙 )

( 表紙 ) ( 表紙 ) 1 次の各問いに答えなさい. 解答用紙には答えのみ記入すること. ( 48 点 ) (1) U108 -U8 %5U6 + 7 U を計算しなさい. () 15a 7 b 8 &0-5a b 1& - 8 9 ab を計算しなさい. () + y - -5y 6 を計算しなさい. (4) 1 4 5 の 5 枚のカードから 枚を選び, 横に並べて 桁の数を作 るとき, それが の倍数になる確率を求めなさい.

More information

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト 名古屋工業大の数学 年 ~5 年 大学入試数学動画解説サイト http://mathroom.jugem.jp/ 68 i 4 3 III III 3 5 3 ii 5 6 45 99 5 4 3. () r \= S n = r + r + 3r 3 + + nr n () x > f n (x) = e x + e x + 3e 3x + + ne nx f(x) = lim f n(x) lim

More information

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 : 9 ( ) 9 5 I II III A B (0 ) 5 I II III A B (0 ), 6 8 I II A B (0 ), 6, 7 I II A B (00 ) OAB A B OA = OA OB = OB A B : P OP AB Q OA = a OB = b () OP a b () OP OQ () a = 5 b = OP AB OAB PAB a f(x) = (log

More information

断面の諸量

断面の諸量 断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 平成 28 年度全国学力 学習状況調査 中学校数学 2 特徴的な問題 A 問題より A B C 垂線の作図方法について理解しているかどうか 3 関連問題 問題番号 問題の概要 全国正答率 三重県 公立 正答率 H24A 4 (1) 角の二等分線の作図の方法で作図された直線がもつ性質として, 正しい記述を選ぶ 58.2% 56.9% H26A 4 (2) 線分の垂直二等分線の作図の方法で作図される直線について,

More information

【FdData中間期末過去問題】中学数学1年(比例と反比例の応用/点の移動/速さ)

【FdData中間期末過去問題】中学数学1年(比例と反比例の応用/点の移動/速さ) FdDt 中間期末過去問題 中学数学 1 年 ( 比例と反比例の応用 / 点の移動 / 速さ ) http://www.fdtet.com/dt/ 水そうの問題 [ 問題 ](2 学期期末 ) 水が 200 l 入る水そうに, 毎分 8 l の割合で水を入れていく 水を入れはじめてから 分後の水の量を y l とするとき, 次の各問いに答えよ (1), y の関係を式に表せ (2) の変域を求めよ

More information

スライド タイトルなし

スライド タイトルなし 線形代数 演習 (008 年度版 ) 008/5/6 線形代数 演習 Ⅰ コンピュータ グラフィックス, 次曲面と線形代数指南書第七の巻 直交行列, 実対称行列とその対角化, 次曲線池田勉龍谷大学理工学部数理情報学科 実行列, 正方行列, 実対称行列, 直交行列 a a N A am a MN 実行列 : すべての成分 a が実数である行列 ij ji ij 正方行列 : 行の数と列の数が等しい (

More information

模試対策 ( 小問集合 ) 1 (2x-3)0 6 x 3 +3x 2 +2x-71 を展開して整理したときの, x 2 の係数は 0ア1 s 展開してx 2 が出てくるところだけ計算すればよい である 次不等式 ax +bx+c<0 や ax +bx+c>0 の左辺を因数分解できた場合

模試対策 ( 小問集合 ) 1 (2x-3)0 6 x 3 +3x 2 +2x-71 を展開して整理したときの, x 2 の係数は 0ア1 s 展開してx 2 が出てくるところだけ計算すればよい である 次不等式 ax +bx+c<0 や ax +bx+c>0 の左辺を因数分解できた場合 模試対策 ( 小問集合 ) (-) + +- を展開して整理したときの, の係数は ア 展開して が出てくるところだけ計算すればよい 次不等式 ++c< や ++c> の左辺を因数分解できた場合 -- < の解は の解は

More information

問 題

問 題 数学 出題のねらい 数と式, 図形, 関数, 資料の活用 の 4 領域について, 基礎的な概念や原理 法則の理解と, それらに基づき, 数学的に考察したり, 表現したり, 処理したりする力をみることをねらいとした () 数と式 では, 数の概念についての理解の程度, 文字を用いた式を処理したり, 文字を用いて式に表現したりする力, 目的に応じて式を変形する力をみるものとした () 図形 では, 平面図形や空間図形についての理解の程度,

More information

【FdData中間期末過去問題】中学数学2年(連立方程式計算/加減法/代入法/係数決定)

【FdData中間期末過去問題】中学数学2年(連立方程式計算/加減法/代入法/係数決定) FdData 中間期末 : 中学数学 年 : 連立方程式計算 [ 元 1 次方程式 / 加減法 / 代入法 / 加減法と代入法 / 分数などのある連立方程式 / A=B=C, 元連立方程式 / 係数の決定 ] [ 数学 年 pdf ファイル一覧 ] 元 1 次方程式 次の方程式ア~カの中から, 元 1 次方程式をすべて選べ ア y = 6 イ x y = 5 ウ xy = 1 エ x + 5 = 9

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

2 2.1 ( ) ( 1) 1 ( ) C: y = ax 2 k : x = p P C P l P l h h k m m p 2 l( 2) y = ax 2 y = 2ax P(p, ap 2 ) l y = 2ap(x p) + ap 2 y = 2apx ap 2 p 0 h y =

2 2.1 ( ) ( 1) 1 ( ) C: y = ax 2 k : x = p P C P l P l h h k m m p 2 l( 2) y = ax 2 y = 2ax P(p, ap 2 ) l y = 2ap(x p) + ap 2 y = 2apx ap 2 p 0 h y = 2008, Vol.7, 48-59 2 1 2 2008 8 1 ( ) 1 1 3 y = ax 2 I 2 2 C 2 2 ([1],[2]) ( ) 2 ( ) 2 [3] () 2.3 1 2 48 2 2.1 ( ) ( 1) 1 ( ) C: y = ax 2 k : x = p P C P l P l h h k m m p 2 l( 2) y = ax 2 y = 2ax P(p,

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位

補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位 http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

埼玉県学力 学習状況調査 ( 中学校 ) 復習シート第 3 学年数学 組 番 号 名 前 ( 数と式 を問う問題 ) 1 次の計算をしなさい レベル 6~8 1 (27x-36y+18) (-9) 答え 2 15x 2 y 5xy 2 3 答え 2 次の各問いに答えなさい レベル 9 10 (1)

埼玉県学力 学習状況調査 ( 中学校 ) 復習シート第 3 学年数学 組 番 号 名 前 ( 数と式 を問う問題 ) 1 次の計算をしなさい レベル 6~8 1 (27x-36y+18) (-9) 答え 2 15x 2 y 5xy 2 3 答え 2 次の各問いに答えなさい レベル 9 10 (1) 埼玉県学力 学習状況調査 ( 中学校 ) 復習シート第 3 学年数学 組 番 号 名 前 ( 数と式 を問う問題 ) 1 次の計算をしなさい レベル 6~8 1 (27x-36y+18) (-9) 2 15x 2 y 5xy 2 3 2 次の各問いになさい レベル 9 10 (1) 次の等式を の中の文字について解きなさい c=5(a+b) a a= (2) 次の連立方程式を解きなさい 3x 5y

More information

Microsoft Word - 中2数学解答【一問一答i〜n】.doc.pdf

Microsoft Word - 中2数学解答【一問一答i〜n】.doc.pdf 塾 TV(05 年 4 月版) 一問一答 i-0 式の計算 次の計算をしなさい () xy x y 4 (4) a a 4 ( () ab a b a aaaa aaa a a (7) a a aa a 6a ) ( () x y 4 x y ab 4 x5 y 5 (5) 6 xy 6 xy (6) a b a b 4 6xy 6xy (8) 4 x y xy 4 xxyyy xy (4) ( x

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

O E ( ) A a A A(a) O ( ) (1) O O () 467

O E ( ) A a A A(a) O ( ) (1) O O () 467 1 1.0 16 1 ( 1 1 ) 1 466 1.1 1.1.1 4 O E ( ) A a A A(a) O ( ) (1) O O () 467 ( ) A(a) O A 0 a x ( ) A(3), B( ), C 1, D( 5) DB C A x 5 4 3 1 0 1 3 4 5 16 A(1), B( 3) A(a) B(b) d ( ) A(a) B(b) d AB d = d(a,

More information

平成 0 年度高校 1 年 ( 中入 ) シラバス予定 授業計画月単元 項目内容時数 10 節三角形への応用数学 Ⅱ 1 章方程式 式と証明 1 節整式 分数式の計算 1 正弦定理 2 余弦定理 三角形の面積 4 空間図形の計量 参 内接円の半径と三角形の面積 発展 ヘロンの公式 1 整式の乗法と因

平成 0 年度高校 1 年 ( 中入 ) シラバス予定 授業計画月単元 項目内容時数 10 節三角形への応用数学 Ⅱ 1 章方程式 式と証明 1 節整式 分数式の計算 1 正弦定理 2 余弦定理 三角形の面積 4 空間図形の計量 参 内接円の半径と三角形の面積 発展 ヘロンの公式 1 整式の乗法と因 平成 0 年度高校 1 年 ( 中入 ) シラバス 科 目 授業時数 教 材 学習到達 目標 時間 / 週 教科書 : Standard( 東京書籍 ), 数学 Ⅱ Standard( 東京書籍 ) 副教材 :Standard Buddy WIDE +A ( 東京書籍 ), 数学 Ⅱ+B( 東京書籍 ) 集合と論証,2 次関数, 図形と計量 ( ) 及び方程式 式の証明, 図形と方程式 ( 数学 Ⅱ)

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information